Magnetically coupled accessory for a self-propelled device

Information

  • Patent Grant
  • 10022643
  • Patent Number
    10,022,643
  • Date Filed
    Friday, September 30, 2016
    7 years ago
  • Date Issued
    Tuesday, July 17, 2018
    5 years ago
Abstract
A system comprising a self-propelled device and an accessory device. The self-propelled device includes a spherical housing, and a drive system provided within the spherical housing to cause the self-propelled device to roll. When the self-propelled device rolls, the self-propelled device and the accessory device magnetically interact to maintain the accessory device in contact with a top position of the spherical housing relative to an underlying surface on which the spherical housing is rolling on.
Description
BACKGROUND

Remote controlled devices have previously been operated using specialized remote controllers specific to a particular device. Accessories to remote controlled devices typically involve physical fastening means to connect the accessories to portions of a frame or housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure herein is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements, and in which:



FIG. 1 is an example block diagram illustrating a system to control operation of a self-propelled device;



FIG. 2 is a schematic depiction of a self-propelled device under control of a controller device;



FIG. 3 illustrates an example of a self-propelled devices, and shows a schematic, illustrating components of the example spherical self-propelled device;



FIG. 4 illustrates an example operation for causing motion of a self-propelled spherical device; and



FIG. 5 is an example block diagram illustrating a computer system upon which examples described may be implemented.





DETAILED DESCRIPTION

A self-propelled device is disclosed that includes a spherical housing and an internal drive system including one or more motors coupled to one or more wheels engaged to an inner surface of the spherical housing. A biasing mechanism, including a spring and a contact end, is coupled to the internal drive system to provide diametrically opposing force between the wheels and contact end to allow for power to the motors to be transferred to the inner surface of the spherical housing, causing the self-propelled device to roll along a surface. The self-propelled device can rotate based on a combination of movement of its center of mass, independent power to the motors, and the force of the biasing mechanism against the inner surface. A magnetic coupling component may be included with the biasing mechanism. The magnetic coupling component can comprise ferrous metal or a permanent magnet, such as a neodymium magnet, to provide a magnetic field through the spherical housing to magnetically interact with external devices or accessories.


An example external accessory is disclosed that includes a magnetic coupling component to magnetically couple with the magnetic coupling component of the biasing mechanism (e.g., the contact end). Accordingly, when the spherical housing of the self-propelled device is caused to roll, the external accessory can remain stably coupled to the contact end of the biasing mechanism via magnetic interaction through the spherical housing.


Either the self-propelled device, the external accessory, or both can include a magnet (e.g., a neodymium magnet) to produce the magnetic field causing the magnetic interaction. Such interaction may involve a magnetic attraction in which contact occurs between the external accessory and the outer surface of the spherical housing. In such examples, friction may be reduced by coating the outer surface of the spherical housing and/or a contact surface of the external accessory with a substantially frictionless material. Additionally or alternatively, the magnetic interaction may involve a repulsive force including stability mechanism (e.g., one or more further magnets) to create stable magnetic levitation between the external accessory and the spherical housing.


As used herein, “substantially” means between zero degrees and less than 90 degrees in the context of an angular rotation of the biasing mechanism while the self-propelled device is under operational control. Accordingly, a “substantially” stable, a “substantially” constant angle, or a “substantial” perpendicularity between the biasing mechanism (or spring component) and an external surface on which the self-propelled device rolls, means less than 90 degrees with respect to that surface, and typically less than 45 degrees while the self-propelled device is in a non-accelerated state. As further used herein, “substantially” in the context of friction between the outer surface of the spherical housing and the contact surface of the external accessory device, means a below normal frictional relation between two typical smooth surfaces (e.g., polished metal or wood surfaces). Thus, a “substantially” frictionless material means a material designed or manufactured for reduced friction such as a TEFLON® or a DELRIN® coating.


One or more examples described herein provide that methods, techniques, and actions performed by a computing device are performed programmatically, or as a computer-implemented method. Programmatically, as used herein, means through the use of code or computer-executable instructions. These instructions can be stored in one or more memory resources of the computing device. A programmatically performed step may or may not be automatic.


One or more examples described herein can be implemented using programmatic modules or components of a system. A programmatic module or component can include a program, a sub-routine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions. As used herein, a module or component can exist on a hardware component independently of other modules or components. Alternatively, a module or component can be a shared element or process of other modules, programs or machines.


Some examples described herein can generally require the use of computing devices, including processing and memory resources. For example, one or more examples described herein can be implemented, in whole or in part, on computing devices such as digital cameras, digital camcorders, desktop computers, cellular or smart phones, personal digital assistants (PDAs), laptop computers, printers, digital picture frames, and tablet devices. Memory, processing, and network resources may all be used in connection with the establishment, use, or performance of any example described herein (including with the performance of any method or with the implementation of any system).


Furthermore, one or more examples described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown or described with figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing examples can be carried and/or executed. In particular, the numerous machines shown with examples include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on smart phones, multifunctional devices or tablets), and magnetic memory. Computers, terminals, network enabled devices (e.g., mobile devices, such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums. Additionally, examples may be implemented in the form of computer-programs, or a non-transitory computer usable carrier medium capable of carrying such a program.


System Description


Referring now to the drawings, FIG. 1 is an example schematic depiction of a self-propelled device 100. The self-propelled device 100 can be operated to move under control of another device, such as a computing device operated by a user. The self-propelled device 100 can be configured with resources that enable one or more of the following: (i) maintain self-awareness of orientation and/or position relative to an initial reference frame after the device initiates movement; (ii) process control input programmatically, so as to enable a diverse range of program-specific responses to different control inputs; (iii) enable another device to control its movement using software or programming logic that is communicative with programming logic on the self-propelled device; and/or (iv) generate an output response for its movement and state that it is software interpretable by the control device.


The self-propelled device 100 can include several interconnected subsystems and modules. A processor 114 can execute programmatic instructions from a program memory 104. The instructions stored in the program memory 104 can be changed, for example to add features, correct flaws, or modify behavior. In some variations, the program memory 104 stores programming instructions that are communicative or otherwise operable with software executing on a linked controller device. The processor 114 is configured to execute different programs of programming instructions, in order to alter the manner in which the self-propelled device 100 interprets or otherwise responds to control inputs from the controller device.


A wireless communication port 110, in conjunction with a communication transducer 102, serves to exchange data between the processor 114 and other external devices. The data exchanges, for example, provide communications, control, logical instructions, state information, and/or updates for the program memory 104. The processor 114 can generate output corresponding to state and/or position information, communicated to the controller device via the wireless communication port 110. The mobility of the self-propelled device 100 may make wired connections undesirable. Thus, the term “connection” may be understood to mean a logical connection, such as a wireless link (e.g., BLUETOOTH), made without a physical connection to self-propelled device 100.


In variations, the wireless communication port 110 implements the BLUETOOTH communications protocol and the transducer 102 is an antenna suitable for transmission and reception of BLUETOOTH radio signals. Other wireless communication mediums and protocols may also be used in alternative implementations.


Sensors 112 can provide information about the surrounding environment and condition to the processor 114. In some variations, the sensors 112 include inertial measurement devices, including a three-axis gyroscope, a three-axis accelerometer, and/or a three-axis magnetometer. According to some variations, the sensors 114 provide input to enable the processor 114 to maintain awareness of the device's orientation and/or position relative to an initial reference frame after the device initiates movement. In various examples, the sensors 112 include instruments for detecting light, temperature, humidity, and/or measuring chemical concentrations or radioactivity.


State/variable memory 106 stores information about the present state of the system, including, for example, position, orientation, rates of rotation and translation about each axis. The state/variable memory 106 also stores information corresponding to an initial reference frame of the device upon, for example, the device being put in use (e.g., the device being switched on), as well as position and orientation information once the device is in use. In this way, some embodiments provide for the device 100 to utilize information of the state/variable memory 106 in order to maintain position and orientation information of the device 100 once the device starts moving.


A clock 108 provides timing information to the processor 114. In one example, the clock 108 provides a time-base for measuring intervals and rates of change. In similar examples, the clock 108 provides day, date, year, time, and alarm functions. The clock 108 can allow the self-propelled device 100 to provide an alarm or alert at pre-set times.


An expansion port 120 provides a connection for addition of accessories or devices. The expansion port 120 can provide for future expansion, as well as flexibility to add options or enhancements. For example, the expansion port 120 can be used to add peripherals, sensors, processing hardware, storage, displays, or actuators to the basic self-propelled device 100.


In variations, the expansion port 120 provides an interface capable of communicating with a suitably configured component using analog or digital signals. Thus, the expansion port 120 can provide electrical interfaces and protocols that are standard or well-known. Furthermore, the expansion port 120 implements an optical interface. Example interfaces appropriate for expansion port 120 include the Universal Serial Bus (USB), Inter-Integrated Circuit Bus (I2C), Serial Peripheral Interface (SPI), or ETHERNET.


A display 118 may be included to present information to outside devices or persons. The display 118 can present information in a variety of forms. In variations, display 118 can produce light in colors and patterns, sound, vibration, music, or combinations of sensory stimuli. In one embodiment, display 118 operates in conjunction with actuators 126 to communicate information by physical movements of device 100. For example, device 100 can be made to emulate a human head nod or shake to communicate “yes” or “no.”


In variations, the display 118 is an emitter of light, either in the visible or invisible range. Invisible light in the infrared or ultraviolet range may be useful, for example to send information invisible to human senses but available to specialized detectors. In some examples, the display 118 includes an array of Light Emitting Diodes (LEDs) emitting various light frequencies, arranged such that their relative intensity is variable and the light emitted is blended to form color mixtures.


In variations, the display 118 includes an LED array comprising several LEDs, each emitting a human-visible primary color. The processor 114 can vary the relative intensity of each of the LEDs to produce a wide range of colors. Primary colors of light are those in which a few colors can be blended in different amounts to produce a wide gamut of apparent colors. Many sets of primary colors are known, including for example red/green/blue, red/green/blue/white, and red/green/blue/amber. For example, red, green and blue LEDs together can comprise a usable set of three available primary-color devices comprising the display 118. In other examples, other sets of primary colors and white LEDs can be used. The display 118 can further include an LED used to indicate a reference point on the device 100 for alignment.


Power 124 stores energy for operating the electronics and electromechanical components of the device 100. In some examples, power 124 is a rechargeable battery. Furthermore, an inductive charge port 128 can allow for recharging power 124 without a wired electrical connection. In variations, the inductive charge port 128 can accept magnetic energy and convert it to electrical energy to recharge the batteries. The charge port 128 can provide a wireless communication interface with an external charging device.


A deep sleep sensor 122 can be included to place the self-propelled device 100 into a very low power or “deep sleep” mode where most of the electronic devices use no battery power. This may be useful for long-term storage or shipping.


In variations, the deep sleep sensor 122 is non-contact in that it senses through the housing of device 100 without a wired connection. The deep sleep sensor 122 may be a Hall Effect sensor mounted so that an external magnet can be applied at a pre-determined location on device 100 to activate the deep sleep mode.


Actuators 126 may be included to convert electrical energy into mechanical energy for various uses. A primary use of the actuators 126 is to propel and steer self-propelled device 100. Movement and steering actuators are also referred to as a drive system or traction system. The drive system moves device 100 in rotation and translation, under control of the processor 114. Examples of actuators 126 include, without limitation, wheels, motors, solenoids, propellers, paddle wheels, and pendulums.


The drive system actuators 126 can include two parallel wheels, each mounted to an axle connected to an independently variable-speed motor through a reduction gear system. Thus, the speeds of the two drive motors can controlled by the processor 114.


However, it should be appreciated that the actuators 126 can produce a variety of movements in addition to merely rotating and translating the self-propelled device 100. Thus, in some variations, the actuators 126 cause the device 100 to execute communicative or emotionally evocative movements, including emulation of human gestures, for example, head nodding, shaking, trembling, spinning, or flipping. In some variations, the processor 114 coordinates the actuators 126 with the display 118. For example, the processor 114 can provide signals to the actuators 126 and the display 118 to cause the device 100 to spin or tremble and simultaneously emit patterns of colored light. Thus, the device 100 can emit light and/or sound patterns synchronized with movements.


In further variations, the self-propelled device 100 can be used as a controller for other network-connected devices. The device 100 can contain sensors and wireless communication capability, and so it can perform a controller role for other devices. For example, the self-propelled device 100 can be held in the hand and used to sense gestures, movements, rotations, combination inputs, and the like.



FIG. 2 is an example schematic depiction of a self-propelled device 214 under control of a controller device 208, such as a smart phone or tablet computing device. More specifically, the self-propelled device 214 can be controlled in its movement by programming logic and/or controls that can originate from the controller device 208. The self-propelled device 214 is capable of movement under control of the computing device 208, which can be operated by a user 202. The computing device 208 can wirelessly communicate control data 204 to the self-propelled device 214 using a standard or proprietary wireless communication protocol. In variations, the self-propelled device 214 may be at least partially self-controlled, utilizing sensors and internal programming logic to control the parameters of its movement (e.g., velocity, direction, etc.). Still further, the self-propelled device 214 can communicate data relating to the device's position and/or movement parameters for the purpose of generating or alternating content on the computing device 208. In additional variations, self-propelled device 214 can control aspects of the computing device 208 by way of its movements and/or internal programming logic.


As described herein, the self-propelled device 214 may have multiple modes of operation, including those of operation in which the device is controlled by the computing device 208, is a controller for another device (e.g., another self-propelled device or the computing device 208), and/or is partially or wholly self-autonomous.


Additionally, embodiments enable the self-propelled device 214 and the computing device 208 to share a computing platform on which programming logic is shared, in order to enable, among other features, functionality that includes: (i) enabling the user 202 to operate the computing device 208 to generate multiple kinds of input, including simple directional input, command input, gesture input, motion or other sensory input, voice input or combinations thereof; (ii) enabling the self-propelled device 214 to interpret input received from the computing device 208 as a command or set of commands; and/or (iii) enabling the self-propelled device 214 to communicate data regarding that device's position, movement and/or state in order to effect a state on the computing device 208 (e.g., display state, such as content corresponding to a controller-user interface). Examples further provide that the self-propelled device 214 includes a programmatic interface that facilitates additional programming logic and/or instructions to use the device. The computing device 208 can execute programming that is communicative with the programming logic on the self-propelled device 214.


According to some examples, the self-propelled device 214 includes an actuator or drive mechanism causing motion or directional movement. The self-propelled device 214 may be referred to by a number of related terms and phrases, including controlled device, robot, robotic device, remote device, autonomous device, and remote-controlled device. In some examples, the self-propelled device 214 can be structured to move and be controlled in various media. For example, self-propelled device 214 can be configured for movement in media such as on flat surfaces, sandy surfaces or rocky surfaces.


The self-propelled device 214 may be implemented in various forms. As described below and with an example of FIG. 3, the self-propelled device 214 may correspond to a spherical object that can roll and/or perform other movements such as spinning. In such variations, the self-propelled device 214 can include an external accessory 216 to be magnetically coupled to the self-propelled device 214 via magnetic coupling through the device's 214 housing.


In other variations, the self-propelled device 214 can correspond to a radio-controlled aircraft, such as an airplane, helicopter, hovercraft or balloon. In other variations, device 214 can correspond to a radio controlled watercraft, such as a boat or submarine. Numerous other variations may also be implemented, such as those in which the device 214 is a robot.


In one embodiment, the self-propelled device 214 includes a sealed hollow envelope, substantially spherical in shape, capable of directional movement by action of actuators inside the enclosing envelope.


Continuing to refer to FIG. 2, the self-propelled device 214 can be configured to communicate with the computing device 208 using network communication links 210 and 212. Link 210 can transfer data from device 208 to device 214. Link 212 can transfer data from the self-propelled device 214 to the computing device 208. Links 210 and 212 are shown as separate unidirectional links for illustration, however, a single bi-directional communication link can perform communications in both directions. It should be appreciated that link 210 and link 212 are not necessarily identical in type, bandwidth, or capability. For example, communication link 210 from the computing device 208 to the self-propelled device 214 is often capable of a higher communication rate and bandwidth compared to link 212. In some situations, only one link 210 or 212 is established. In such a situation, communication is unidirectional.


The computing device 208 can correspond to any device comprising at least a processor and communication capability suitable for establishing at least unidirectional communications with the self-propelled device 214. Examples of such devices may include, without limitation: mobile computing devices (e.g., multifunctional messaging/voice communication devices such as smart phones), tablet computers, portable communication devices and personal computers. In some variations, the computing device 208 is an IPHONE available from APPLE COMPUTER, INC. of Cupertino, Calif. In other variations, the computing device 208 is an IPAD tablet computer, also from APPLE COMPUTER. In still other variations, the computing device 208 is any of the handheld computing and communication appliances executing the ANDROID operating system from GOOGLE, INC.


In still other variations, the computing device 208 is a personal computer, in either a laptop or desktop configuration. For example, device 208 can be a multi-purpose computing platform running the MICROSOFT WINDOWS operating system, the LINUX operating system, or the APPLE OS/X operating system, configured with an appropriate application program to communicate with self-propelled device 214.


In variations, the computing device 208 can be a specialized device, dedicated for enabling the user 202 to control and interact with the self-propelled device 214.


In one embodiment, multiple types of computing device 208 can be used interchangeably to communicate with the self-propelled device 214. In one embodiment, self-propelled device 214 is capable of communicating and/or being controlled by multiple devices (e.g., concurrently or one at a time). For example, device 214 can link with an IPHONE in one session and with an ANDROID device in a later session, without modification of device 214.


According to some variations, the user 202 can interact with the self-propelled device 214 via the computing device 208 in order to control the self-propelled device 214 and/or to receive feedback or interaction on the computing device 208 from the self-propelled device 214. As such, the user 202 may be enabled to specify input 204 through various mechanisms that are provided with the computing device 208. Examples of such inputs include text entry, voice command, touching a sensing surface or screen, physical manipulations, gestures, taps, shaking, and combinations of the above.


The user 202 may interact with the computing device 208 in order to receive feedback 206. The feedback 206 may be generated on the computing device 208 in response to user input. As an alternative or addition, the feedback 206 may also be based on data communicated from the self-propelled device 214 to the computing device 208, regarding, for example, the self-propelled device's position or state. Without limitation, examples of feedback 206 include text display, graphical display, sound, music, tonal patterns, modulation of color or intensity of light, haptic, vibrational or tactile stimulation. The feedback 206 may be combined with input that is generated on the computing device 208. For example, the computing device 208 may output content that is modified to reflect position or state information communicated from the self-propelled device 214.


In some embodiments, the computing device 208 and/or the self-propelled device 214 are configured such that user input 204 and feedback 206 maximize usability and accessibility for a user 202, who has limited sensing, thinking, perception, motor, or other abilities. This allows users with handicaps or special needs to operate system 200 as described.


It should be appreciated that the configuration illustrated in the FIG. 2 is only one of various possible configurations of networks including a self-propelled device with communication connections. Furthermore, while numerous embodiments described herein provide for a user to operate or otherwise directly interface with the computing device in order to control and/or interact with a self-propelled device, variations to embodiments described encompass enabling the user to directly control or interact with the self-propelled device 214 without use of an intermediary device such as computing device 208.


Example Self-Propelled Device



FIG. 3 illustrates an example of a self-propelled device 300, and shows a schematic illustrating the components of the example spherical self-propelled device. However, variations of the present disclosure are not limited to such devices. Rather, the above-discussed system 100 can be implemented with respect to any remote device in which pairings or connections are made. Referring to FIG. 3, the self-propelled device 300 can be of a size and weight allowing it to be easily grasped, lifted, and carried in an adult human hand. The self-propelled device 300 can include a spherical housing 302 with an outer surface that makes contact with an external surface as the device rolls. In addition, the spherical housing 302 includes an inner surface 304. Additionally, the self-propelled device 300 includes several mechanical and electronic components enclosed by the spherical housing 302.


The spherical housing 302 can be composed of a material that transmits signals used for wireless communication, yet are impervious to moisture and dirt. The spherical housing 302 can comprise a material that is durable, washable, and/or shatter-resistant. The spherical housing 302 may also be structured to enable transmission of light and can be textured to diffuse the light.


In one variation, the housing is made of sealed polycarbonate plastic. Furthermore, the spherical housing 302 can include on or more surfaces that are textured to diffuse light. In one example, the spherical housing 302 comprises two hemispherical shells with an associated attachment mechanism, such that the spherical housing 302 can be opened to allow access to the internal electronic and mechanical components.


Several electronic and mechanical components are located inside the envelope for enabling processing, wireless communication, propulsion and other functions (collectively referred to as the “interior mechanism”). Among the components, examples include a drive system 301 to enable the device to propel itself. The drive system 301 can be coupled to processing resources and other control mechanisms, as described with other examples. The carrier 314 serves as the attachment point and support for components of the drive system 301. The components of the drive system 301 are not rigidly attached to the spherical housing 302. Instead, the drive system 301 can include a pair of wheels 318, 320 that are in frictional contact with the inner surface 304 of the spherical housing 302.


The carrier 314 is in mechanical and electrical contact with an energy storage 316. The energy storage 316 provides a reservoir of energy to power the device 300 and electronics and can be replenished through an inductive charge port 326. The energy storage 316, in one example, is a rechargeable battery. In one variation, the battery is composed of lithium-polymer cells. In other variations, other rechargeable battery chemistries are used.


The carrier 314 can provide the mounting location for most of the internal components, including printed circuit boards for electronic assemblies, sensor arrays, antennas, and connectors, as well as providing a mechanical attachment point for internal components.


The drive system 301 can include motors 322, 324 and wheels 318, 320. The motors 322 and 324 connect to the wheels 318 and 320, respectively, each through an associated shaft, axle, and gear drive (not shown). The perimeter of wheels 318 and 320 are two points where the interior mechanism is in mechanical contact with inner surface 304. The points where wheels 318 and 320 contact inner surface 304 are an essential part of the drive mechanism of the ball, and so are preferably coated with a material to increase friction and reduce slippage. For example, the wheels 318 and 320 can be covered with silicone rubber tires.


In some variations, a biasing mechanism 315 is provided to actively force the wheels 318, 320 against the inner surface 304. In an example provided, a spring 312 and a spring end 310 can comprise the biasing mechanism 315. More specifically, the spring 312 and the spring end 310 are positioned to contact inner surface 304 at a point diametrically opposed to the wheels 318 and 320. The spring 312 and the spring end 310 provide additional contact force to reduce slippage of the wheels 318 and 320, particularly in situations where the interior mechanism is not positioned with the wheels at the bottom and where gravity does not provide adequate force to prevent the drive wheels 318, 320 from slipping. The spring 312 is selected to provide a force to press the wheels 318, 320 and the spring end 310 against inner surface 304.


The spring end 310 can be designed to provide near-frictionless contact with the inner surface 304. The spring end 310 can comprise a rounded surface configured to mirror a low-friction contact region at all contact points with the inner surface 304. Additional means of providing near-frictionless contact may be provided. In another implementation, the rounded surface may include one or more bearings to further reduce friction at the contact point where end 310 moves along inner surface 304. The spring 312 and the spring end 310 can be made of a non-magnetic material to avoid interference with sensitive magnetic sensors. However, in variations, the spring end 310 can include one or more magnetic components to magnetically couple to an external accessory device 330.


In some examples, the spring 312 has a spring constant such that the wheels 318, 320 and the spring end 310 are almost constantly engaged to the inner surface 304 of the spherical housing 302. As such, much of the power from the motors 322, 324 is transferred directly to rotating the spherical housing 302, as opposed to causing the internal components (i.e., the biasing mechanism 315 and internal drive system 301) to pitch. Thus, while motion of the self-propelled device 300 may be caused, at least partially, by pitching the internal components (and therefore the center of mass), motion may also be directly caused by active force of the wheels 318, 320 against the inner surface 304 of the spherical housing 302 (via the biasing mechanism 315) and direct transfer of electrical power from the motors 322, 324 to the wheels 318, 320. As such, the pitch of the biasing mechanism 315 may be substantially reduced, and remain substantially constant (e.g., substantially perpendicular to the external surface on which the self-propelled device 300 moves). Additionally or as an alternative, the pitch of the biasing mechanism 315 may increase (e.g., to over 45 degrees) during periods of hard acceleration or deceleration. Furthermore, under normal operating conditions, the pitch of the biasing mechanism 315, can remain stable or subtly vary (e.g., within 10-15 degrees).


The spring end 310 can be formed of a magnetic metal that can be attracted to a magnet. Such metals can include iron, nickel, cobalt, gadolinium, neodymium, samarium, or metal alloys containing proportions of these metals. Alternatively, the spring end 310 can include a substantially frictionless contact portion, in contact with the inner surface 304 of the spherical housing 302, and a magnetically interactive portion, in contact or non-contact with the inner surface 304, including the above metals or metal alloys. The substantially frictionless contact portion can be comprised of an organic polymer such as a thermoplastic or thermosetting polymer.


Alternatively, the spring end 310 can be formed of a magnet, such as a polished neodymium permanent magnet. In such variations, the spring end 310 can produce a magnetic field extending beyond the outer surface of the spherical housing 302 to magnetically couple with the external accessory device 330. Alternatively still, the spring end 310 can be comprised of a substantially frictionless contact portion, and have a magnet included therein.


Alternatively still, the magnetic component of the self-propelled device 300 may be included on any internal component, such as the spring 312 or the carrier 314, or an additional component coupled to the biasing mechanism 315 or the carrier 3114.


Additionally or alternatively, the external accessory device 330 can include a magnetic component 332 to magnetically couple with the biasing mechanism 315 (e.g., the spring end 310). The magnetic component 332 can comprise a permanent magnet, such as a neodymium magnet. In such variations, the magnetic component 332 can magnetically couple to the spring end 310. As such, the magnetic field produced by the magnetic component 332 can extend through the spherical housing 302 to remain in magnetic contact with the spring end 310.


Alternatively, the magnetic component 332 of the external accessory device 330 can comprise a magnetic metal that can be attracted to a magnet comprising the spring end 310. As stated above, such metals can include iron, nickel, cobalt, gadolinium, neodymium, samarium, or metal alloys containing proportions of these metals.


In further examples, one or more of the spring end 310 and the magnetic component can be comprised of any number of electro or permanent magnets. Such magnets may be irregular in shape to provide added magnetic stability upon motion of the self-propelled device 300. For example, the magnetic component 332 of the accessory device 330 can be a single or multiple magnetic strips including one or more tributary strips to couple with a single or multiple correspondingly shaped magnets included on the spring end 310. Furthermore, multiple magnets may be dispersed through the external accessory device 330 and the spring end 310 to provide additional stability.


Alternatively, the spring end 310 and external accessory device 330 can be in a stable magnetically repulsive state as the self-propelled device 300 moves. In such variations, either the magnetic component 332 or the spring end 310 can include a superconductor material to substantially eliminate dynamic instability of a repelling magnetic force in order to allow for stable magnetic levitation of the accessory device in relation to the spring end 310 while the spherical housing 302 rotates therebetween. In similar variations, a diamagnetic material may be included in one or more of the self-propelled device 300, spring end 310, or the external accessory device 330 and can provide stability for magnetic levitation. Thus, without the use of guiderails or a magnetic track, the self-propelled device 300 may be caused to maneuver in any direction with the external accessory device 330 remaining in a substantially constant position along a vertical axis of the self-propelled device (Cartesian or cylindrical z-axis, or spherical r-coordinate with no polar angle (θ)).


The external accessory device 330 can be in the form of any shape and can be comprised of any suitable material. A contact surface 334 of the external accessory device, or a surface closest to the outer surface of the spherical housing 302 (during magnetic interaction), can be formed to substantially correspond to the outer surface of the spherical housing 304. As such, both the spherical housing 302 of the self-propelled device 300 and the external accessory device 330, namely the contact surface 334, can have substantially equivalent radii of curvature. In certain variation, this radius of curvature can be on the order of 10-30 cm. However, it is contemplated that other examples of self-propelled devices and accompanying external accessory devices may have a radius on the order of one meter upwards to the size of a human transportation vehicle and beyond. As such, magnetic coupling or interaction may be achieved using powerful electromagnets disposed within the self-propelled device 300 to couple with the external accessory device 330, which may be configured to perform actions, carry payload, include a novel design, represent a character or figure, or the like.


The contact surface 334 of the external accessory device 330 can be formed or coated with a substantially frictionless material, such as a synthetic compound or suitable polymer. Other suitable compounds include TEFLON® brand polytetrafluoroethylene (PTFE) or DELRIN® brand polyoxymethylene (POM) coatings. However, any substantially frictionless coating is contemplated, including ultra-repellant surfaces or liquid-impregnated surfaces and materials, such as slippery liquid infused porous surface (SLIPS). Further examples of substantially frictionless surfaces or coatings include “ceramic alloys,” or “cermets,” which may be created by combining a metal alloy with a ceramic compound. For example, a metal/ceramic alloy comprised of boron, aluminum, and magnesium (AlMgB14) may be combined with the cermetic compound of titanium diboride (TiB2) to provide a near-frictionless coating for the contact surface 334 of the external accessory device 330.


Additionally or as an alternative, the outer surface of the spherical housing 302 can be comprised of any of the above substantially frictionless coatings or compounds discussed with respect to the contact surface 334 of the external accessory device 330. Accordingly, any combination of substantially frictionless coatings or compounds may be incorporated with respect to the outer surface of the spherical housing 302 and the contact surface of the external accessory device 330.


Furthermore, the spherical housing 302 may be formed to include an inner surface 304 more conducive to providing added friction using, for example, a rubber compound or other suitable synthetic compound, such as a silicone. Additionally, the spherical housing 302 may be formed to include an outer surface having near-frictionless properties using coatings or compounds discuss above.


In the above examples, when the self-propelled device 300 moves, the external accessory device 330 can remain magnetically coupled to the spring end 310 at a substantially constant position on top of the self-propelled device 300. As such, while the self-propelled device 300 is being maneuvered, the biasing mechanism 315 may have a variable tilt angle (polar angle (θ) relative to the plane of motion) that remains somewhat minimal, but in most cases, does not typically exceed 45 degrees, except during periods of relatively extreme acceleration. However, during continuous and stable maneuvering of the self-propelled device 300, the tilt of the biasing mechanism 315 may be closer to naught, or within 10 degrees. Furthermore, during maneuvering, the azimuth (φ) can vary at any angle depending on independent power transferred from the motors 322, 344 to the wheels 318, 320.


The various examples described are for illustrative purposes. With any of the systems described, variations include the addition of more or fewer computing devices, and/or more or fewer self-propelled devices. As described with some variations, additional sources or nodes can be provided from a remote network source. Additionally, in some operational environments, the presence of the computing device is optional. For example, the self-propelled devices can be partially or completely autonomous, using programming logic to function.



FIG. 4 illustrates an example technique for causing motion of a self-propelled spherical device 400. In the example illustrated by FIG. 4, the self-propelled device 400 is shown, having center of rotation 402 and center of mass 406, and in contact with planar surface 412. The drive mechanism for robotic device 400 can comprises two independently-controlled wheeled actuators 408 in contact with the inner surface of the enclosing spherical envelope of device 400. Also shown is sensor platform 404. Several components of device 400 are not shown in FIG. 4 for simplicity of illustration.


To achieve continuous motion at a constant velocity, the displacement of center of mass 406 relative to center of rotation 402 can be maintained by action of wheeled actuators 408. The displacement of the center of mass 406 relative to center of rotation 402 is difficult to measure, thus it is difficult to obtain feedback for a closed-loop controller to maintain constant velocity. However, the displacement is proportional to the angle 410 (equal to θ) between sensor platform 404 and surface 412. The angle 410 can be sensed or estimated from a variety of sensor inputs. Therefore, as an example, the speed controller for robotic device 400 can be implemented to use angle 410 to regulate speed for wheeled actuators 408 causing device 400 to move at a constant speed across surface 412. The speed controller can determine the desired angle 410 to produce the desired speed, and the desired angle set-point is provided as an input to a closed loop controller regulating the drive mechanism.



FIG. 4 illustrates use of angle measurement for speed control; however the technique can be extended to provide control of turns and rotations, with feedback of appropriate sensed angles and angular rates. It can be seen from the foregoing discussion that knowledge of the orientation angles is useful, in various embodiments, for control of a self-propelled device. Measuring the orientation of the device is also useful for navigation and alignment with other devices.


Hardware Diagram



FIG. 5 is an example block diagram that illustrates a computer system upon which examples described may be implemented. For example, one or more components discussed with respect to the system 100 of FIG. 1 may be performed by the system 500 of FIG. 5. The system 100 can also be implemented using a combination of multiple computer systems as described by FIG. 5.


In one implementation, the computer system 500 includes processing resources 510, a main memory 520, ROM 530, a storage device 540, and a communication interface 550. The computer system 500 includes at least one processor 510 for processing information and a main memory 520, such as a random access memory (RAM) or other dynamic storage device, for storing information and instructions 522 to be executed by the processor 510. The main memory 520 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor 510. The computer system 500 may also include a read only memory (ROM) 530 or other static storage device for storing static information and instructions for the processor 510. A storage device 540, such as a magnetic disk or optical disk, is provided for storing information and instructions. For example, the storage device 540 can correspond to a computer-readable medium that triggers logic for maneuvering the self-propelled device discussed with respect to FIGS. 1-4.


The communication interface 550 can enable computer system 500 to communicate with a controller device 580 via an established network link 552 (wireless or wireline). Using the network link 552, the computer system 500 can receive command instructions for maneuvering the self-propelled device.


Examples described herein are related to the use of computer system 500 for implementing the techniques described herein. According to one example, those techniques are performed by computer system 500 in response to processor 510 executing one or more sequences of one or more instructions contained in main memory 520. Such instructions may be read into main memory 520 from another machine-readable medium, such as storage device 540. Execution of the sequences of instructions contained in the main memory 520 causes processor 510 to perform the process steps described herein. In alternative implementations, hard-wired circuitry may be used in place of or in combination with software instructions to implement examples described herein. Thus, the examples described are not limited to any specific combination of hardware circuitry and software.


CONCLUSION

It is contemplated for examples described herein to extend to individual elements and concepts described herein, independently of other concepts, ideas or system, as well as for examples to include combinations of elements recited anywhere in this application. Although examples are described in detail herein with reference to the accompanying drawings, it is to be understood that this disclosure is not limited to those precise examples. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of this disclosure be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an example can be combined with other individually described features, or parts of other examples, even if the other features and examples make no mentioned of the particular feature. Thus, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.


While certain examples have been described above, it will be understood that the examples described are by way of example only. Accordingly, this disclosure should not be limited based on the described examples. Rather, the scope of the disclosure should only be limited in light of the claims that follow when taken in conjunction with the above description and accompanying drawings.

Claims
  • 1. A system comprising: a controller device;a self-propelled device comprising a spherical housing, a drive system provided within the spherical housing, one or more magnetic components, and an internal component that extends from the drive system to position the one or more magnetic components within an interior of the spherical housing, so as to be opposed to a point of contact between the spherical housing and an underlying surface; anda hardware component to control at least the drive system based on user interaction with the controller device;wherein the drive system, in maneuvering the spherical housing, causes the internal component to angularly displace relative to a vertical axis of the spherical housing, and wherein the controller device performs a feedback action in response to an event or condition.
  • 2. The system of claim 1, wherein the drive system includes a pair of wheels which are operable to enable the spherical housing to spin on the underlying surface.
  • 3. The system of claim 1, wherein the one or more magnetic components of the self-propelled device include at least two magnets that are dispersed within the spherical housing to stabilize an accessory device.
  • 4. The system of claim 1, further comprising: the accessory device, comprising one or more magnetic components and a contact surface having a radius of curvature that conforms to an exterior surface of the spherical housing, the contact surface of the accessory device being positionable along the exterior surface of the spherical housing to cause a magnetic interaction between the one or more magnetic components within the spherical housing and the one or more magnetic components of the accessory device;wherein the drive system is operable under control of the controller device to cause the spherical housing to maneuver, including to roll on the underlying surface, the magnetic interaction causing the accessory device to maintain contact with the exterior surface of the spherical housing both as the spherical housing rolls and when the internal component is angularly displaced.
  • 5. The system of claim 1, wherein the one or more magnetic components of the self-propelled device includes an electromagnet.
  • 6. The system of claim 1, wherein the internal component forces the drive system against the interior of the spherical housing.
  • 7. The system of claim 1, wherein the drive system maneuvers the spherical housing in any direction on the underlying surface when causing the internal component to displace.
  • 8. The system of claim 1, wherein the hardware component receives user input from the controller device that is in wireless communication with the self-propelled device, the hardware component implementing the user input to control the drive system.
  • 9. The system of claim 8, wherein the hardware component receives the user input directly from the user, and wherein the user input causes the drive system to maneuver the spherical housing in a particular manner that is determined from the user input by the hardware component.
  • 10. The system of claim 9, wherein the user input corresponds to a voice command, and wherein the hardware component comprises a processor to interpret the voice command as a directional command to cause the drive system to maneuver the spherical housing in a particular direction.
  • 11. The system of claim 1, wherein the internal component includes a biasing mechanism with a spring end that actively engages the interior of the spherical housing.
  • 12. The system of claim 1, further comprising a plurality of actuators which cause the spherical housing to perform an emotive action.
  • 13. The system of claim 12, wherein the emotive action includes one or more of a head nod, a shake, a tremble, or a spin.
  • 14. The system of claim 1, further comprising: a processor to control at least one or more illumination sources to illuminate at least a portion of the spherical housing.
  • 15. The system of claim 14, wherein the processor illuminates each of the one or more illumination sources as a feedback response to a user interaction.
  • 16. The system of claim 1, wherein the spherical housing includes two hemispherical shells which are structured to open and allow access to internal electrical components of the self-propelled device.
  • 17. The system of claim 16, wherein the internal electrical components of the self-propelled device include an energy storage.
  • 18. The system of claim 1, wherein the drive system is operable to accelerate or decelerate the self-propelled device to make the internal component angularly displace by a variable tilt angle that is more than 10 degrees with respect to the vertical axis, while the accessory device maintains continuous contact with the exterior surface of the spherical housing.
  • 19. The system of claim 18, wherein the variable tilt angle is more than 45 degrees with respect to the vertical axis.
  • 20. The system of claim 1, wherein the internal component that positions the one or more magnetic components includes a carrier.
  • 21. The system of claim 1, wherein the internal component is angularly displaced so as to maintain a constant angular range relative to the vertical axis of the spherical housing.
  • 22. The system of claim 21, wherein the constant angular range of the internal component includes an angular range of at least 10 degrees relative to the vertical axis of the spherical housing.
  • 23. The system of claim 22, wherein the constant angular range of the internal component includes an angular range of at least 45 degrees relative to the vertical axis of the spherical housing.
  • 24. A system comprising: a controller device;a self-propelled device comprising a spherical housing, a drive system provided within the spherical housing, one or more magnetic components, and an internal component that extends from the drive system to position the one or more magnetic components within an interior of the spherical housing, so as to be opposed to a point of contact between the spherical housing and an underlying surface, wherein the drive system, in maneuvering the spherical housing, causes the internal component to angularly displace relative to a vertical axis of the spherical housing; anda processor to control at least one or more illumination sources to illuminate at least a portion of the spherical housing as a feedback response to a user interaction.
  • 25. The system of claim 24, further comprising: an accessory device comprising one or more magnetic components and a contact surface having a radius of curvature that conforms to an exterior surface of the spherical housing, the contact surface of the accessory device being positionable along the exterior surface of the spherical housing to cause a magnetic interaction between the one or more magnetic components within the spherical housing and the one or more magnetic components of the accessory device;wherein the drive system is operable under control of the controller device to cause the spherical housing to maneuver, including to roll on the underlying surface, the magnetic interaction causing the accessory device to maintain contact with the exterior surface of the spherical housing both as the spherical housing rolls and when the internal component is angularly displaced.
RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 14/968,594 filed Dec. 14, 2015 entitled “MAGNETICALLY COUPLED ACCESSORY FOR A SELF-PROPELLED DEVICE”, which is a Continuation of U.S. patent application Ser. No. 14/663,446, entitled “MAGNETICALLY COUPLED ACCESSORY FOR A SELF-PROPELLED DEVICE”, filed Mar. 19, 2015, now U.S. Pat. No. 9,211,920 issued Dec. 15, 2015; which is a Continuation of U.S. patent application Ser. No. 14/459,235, entitled “MAGNETICALLY COUPLED ACCESSORY FOR A SELF-PROPELLED DEVICE”, filed Aug. 13, 2014; now U.S. Pat. No. 9,090,214, issued Jul. 28, 2015; which is a Continuation-in-part of U.S. patent application Ser. No. 14/035,841, entitled “SELF-PROPELLED DEVICE WITH ACTIVELY ENGAGED DRIVE SYSTEM,” filed Sep. 24, 2013; which is a Continuation of U.S. patent application Ser. No. 13/342,853, entitled “SELF-PROPELLED DEVICE WITH ACTIVELY ENGAGED DRIVE SYSTEM”, filed Jan. 3, 2012, now U.S. Pat. No. 8,571,781, issued Oct. 29, 2013; which claims the benefit under 35 U.S.C. § 119(e) to (i) U.S. Provisional Patent Application Ser. No. 61/430,023, entitled “METHOD AND SYSTEM FOR CONTROLLING A ROBOTIC DEVICE”, filed Jan. 5, 2011; (ii) U.S. Provisional Patent Application Ser. No. 61/430,083, entitled “METHOD AND SYSTEM FOR ESTABLISHING 2-WAY COMMUNICATION FOR CONTROLLING A ROBOTIC DEVICE”, filed Jan. 5, 2011; and (iii) U.S. Provisional Patent Application Ser. No. 61/553,923, entitled “A SELF-PROPELLED DEVICE AND SYSTEM AND METHOD FOR CONTROLLING SAME”, filed Oct. 31, 2011. All of the aforementioned priority applications are hereby incorporated by reference in their respective entirety.

US Referenced Citations (400)
Number Name Date Kind
90546 Huntington May 1869 A
933623 Cecil Sep 1909 A
1263262 McFaul Apr 1918 A
2796601 Hagopian Nov 1956 A
2949696 Easterling Aug 1960 A
2977714 Gibson Apr 1961 A
3313365 Jackson Apr 1967 A
3667156 Tomiyama Jun 1972 A
3683216 Post Aug 1972 A
3821995 Aghnides Jul 1974 A
4310987 Chieffo Jan 1982 A
4519466 Shiraishi May 1985 A
4541814 Martin Sep 1985 A
4601675 Robinson Jul 1986 A
4733737 Falamak Mar 1988 A
4893182 Gautraud Jan 1990 A
4897070 Wagstaff Jan 1990 A
4996468 Field et al. Feb 1991 A
5087000 Suto Feb 1992 A
5213176 Oroku et al. May 1993 A
5297981 Maxim et al. Mar 1994 A
5342051 Rankin et al. Aug 1994 A
5413345 Nauck May 1995 A
5439408 Wilkinson Aug 1995 A
5489099 Rankin et al. Feb 1996 A
5513854 Daver Mar 1996 A
5595121 Elliot Jan 1997 A
5628232 Bakholdin et al. May 1997 A
5644139 Allen et al. Jul 1997 A
5676582 Lin Oct 1997 A
5739657 Takayama et al. Apr 1998 A
5759083 Polumbaum et al. Jun 1998 A
5780826 Hareyama et al. Jul 1998 A
5793142 Richard Sep 1998 A
5871386 Bart et al. Feb 1999 A
5952796 Colgate et al. Sep 1999 A
5953056 Tucker Sep 1999 A
6021222 Yamagata Feb 2000 A
6144128 Rosen Nov 2000 A
6227933 Michaud et al. May 2001 B1
6246927 Dratman Jun 2001 B1
6315667 Steinhart Nov 2001 B1
6320352 Terazoe Nov 2001 B2
6390213 Bleicher May 2002 B1
6439956 Ho Jul 2002 B1
6449010 Tucker Sep 2002 B1
6456938 Bernard Sep 2002 B1
6458008 Hyneman Oct 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6502657 Kerrebrock et al. Jan 2003 B2
6535793 Allard Mar 2003 B2
6573883 Bertlett Jun 2003 B1
6584376 Van Kommer Jun 2003 B1
6615109 Matsuoka et al. Sep 2003 B1
6764373 Osawa et al. Jul 2004 B1
6785590 Kasuga Aug 2004 B2
6786795 Mullaney et al. Sep 2004 B1
6789768 Kalisch Sep 2004 B1
6856696 Ajioka Feb 2005 B1
6859555 Fang Feb 2005 B1
6901110 Tsougarakis et al. May 2005 B1
6902464 Lee Jun 2005 B1
6945843 Motosko Sep 2005 B1
6980956 Takagi et al. Dec 2005 B1
7058205 Jepson et al. Jun 2006 B2
7069113 Matsuoka et al. Jun 2006 B2
7130741 Bodin et al. Oct 2006 B2
7170047 Pal Jan 2007 B2
7173604 Marvit et al. Feb 2007 B2
7258591 Xu et al. Aug 2007 B2
7283647 McNitt Oct 2007 B2
7292711 Kiraly et al. Nov 2007 B2
7298869 Abernathy Nov 2007 B1
7324663 Kiraly et al. Jan 2008 B2
7328671 Kates Feb 2008 B2
7340077 Gokturk et al. Mar 2008 B2
7340344 Chappell Mar 2008 B2
7344430 Hasty et al. Mar 2008 B2
7409924 Kates Aug 2008 B2
7424867 Kates Sep 2008 B2
7432718 Ishihara et al. Oct 2008 B2
7463001 Tsurukawa Dec 2008 B2
7499077 Li Mar 2009 B2
7501780 Yamamoto Mar 2009 B2
7526362 Kim et al. Apr 2009 B2
7538764 Salomie May 2009 B2
7542597 Rahn et al. Jun 2009 B2
7639874 Bushell et al. Dec 2009 B2
7699683 Caspi Apr 2010 B2
7702131 Chinen et al. Apr 2010 B2
7714880 Johnson May 2010 B2
7714895 Pretlove et al. May 2010 B2
7726422 Sun et al. Jun 2010 B2
7729537 Grady Jun 2010 B2
7755660 Nejikovsky et al. Jul 2010 B2
7773773 Abercrombie Aug 2010 B2
7822507 Ishihara et al. Oct 2010 B2
7847504 Hollis Dec 2010 B2
7853357 Sawada et al. Dec 2010 B2
7889226 Pescatore et al. Feb 2011 B2
7957837 Ziegler et al. Jun 2011 B2
7979162 Niemela Jul 2011 B2
8025551 Torres et al. Sep 2011 B2
8038504 Wong Oct 2011 B1
8077981 Elangovan et al. Dec 2011 B2
8099189 Kaznov et al. Jan 2012 B2
8128450 Lmai Mar 2012 B2
8128500 Borst et al. Mar 2012 B1
8142287 Podoloff Mar 2012 B2
8144118 Hildreith Mar 2012 B2
8180436 Boyden et al. May 2012 B2
8190295 Garretson May 2012 B1
8195333 Ziegler et al. Jun 2012 B2
8197298 Willett Jun 2012 B2
8210289 Lu et al. Jul 2012 B1
8258917 Cai et al. Sep 2012 B2
8269447 Smoot et al. Sep 2012 B2
8274406 Karlsson et al. Sep 2012 B2
8275544 Wells et al. Sep 2012 B1
8326469 Phillips et al. Dec 2012 B2
8330639 Wong et al. Dec 2012 B2
8352643 Birnbaum et al. Jan 2013 B2
8355818 Nielsen et al. Jan 2013 B2
8364136 Hoffberg et al. Jan 2013 B2
8376756 Robb Feb 2013 B2
8392065 Tolstedt et al. Mar 2013 B2
8396611 Phillips et al. Mar 2013 B2
8400619 Bernstein et al. Mar 2013 B1
8417384 Togawa et al. Apr 2013 B2
8430192 Gillett Apr 2013 B2
8442661 Blackwell et al. May 2013 B1
8456298 Valtonen Jun 2013 B2
8459383 Burget Jun 2013 B1
8522902 Gomi et al. Sep 2013 B2
8523846 Makino Sep 2013 B2
8540038 Ullman Sep 2013 B1
8571781 Bernstein et al. Oct 2013 B2
8577595 Zhao et al. Nov 2013 B2
8600600 Jung Dec 2013 B2
8670889 Kaznov Mar 2014 B2
8672062 Schroll et al. Mar 2014 B2
8751063 Bernstein et al. Jun 2014 B2
8766983 Marks et al. Jul 2014 B2
8788130 Tran et al. Jul 2014 B1
8805947 Kuzkin Aug 2014 B1
8811675 Chadranshekar Aug 2014 B2
8838273 Hvass et al. Sep 2014 B2
8862301 Araki et al. Oct 2014 B2
8882559 Fessenmaier Nov 2014 B2
8885882 Yin et al. Nov 2014 B1
9008860 Waldock Apr 2015 B2
9011197 Smoot et al. Apr 2015 B2
9014848 Farlow et al. Apr 2015 B2
9041622 McCulloch May 2015 B2
9090214 Bernstein et al. Jul 2015 B2
9114838 Bernstein et al. Aug 2015 B2
9150263 Bernstein et al. Oct 2015 B2
9193404 Bernstein et al. Nov 2015 B2
9211920 Bernstein et al. Dec 2015 B1
9218316 Bernstein et al. Dec 2015 B2
9280717 Polo et al. Mar 2016 B2
9290220 Bernstein et al. Mar 2016 B2
9292758 Polo et al. Mar 2016 B2
9389612 Bernstein et al. Jul 2016 B2
9394016 Bernstein et al. Jul 2016 B2
9395725 Berstein et al. Jul 2016 B2
9429940 Bernstein et al. Aug 2016 B2
9457730 Berstein et al. Oct 2016 B2
9481410 Bernstein et al. Nov 2016 B2
9483876 Polo et al. Nov 2016 B2
9558612 Lyons Jan 2017 B2
20020011368 Berg Jan 2002 A1
20020036104 Kerrebrock et al. Mar 2002 A1
20020142701 Rosenberg Oct 2002 A1
20030093182 Yokoyama May 2003 A1
20030118217 Kondo et al. Jun 2003 A1
20030179176 Waterston Sep 2003 A1
20030216834 Allard Nov 2003 A1
20030216835 Wakui Nov 2003 A1
20040002843 Robarts et al. Jan 2004 A1
20040015266 Skoog Jan 2004 A1
20040168837 Michaud et al. Sep 2004 A1
20040182614 Yoshiaki Sep 2004 A1
20040186623 Dooley et al. Sep 2004 A1
20040192163 Siegel Sep 2004 A1
20040198159 Xu et al. Oct 2004 A1
20050004723 Duggan et al. Jan 2005 A1
20050091684 Kawabata Apr 2005 A1
20050186884 Evans Aug 2005 A1
20050216186 Dorfman Sep 2005 A1
20050226192 Red Oct 2005 A1
20050264472 Rast Dec 2005 A1
20060080802 Tani Apr 2006 A1
20060095158 Lee et al. May 2006 A1
20060101465 Kato et al. May 2006 A1
20060132318 Shimizu Jun 2006 A1
20060164261 Stiffler Jul 2006 A1
20060241812 Juang Oct 2006 A1
20060271251 Hopkins Nov 2006 A1
20070034734 Yoeli Feb 2007 A1
20070085706 Feyereisen et al. Apr 2007 A1
20070112462 Kim et al. May 2007 A1
20070150103 Im Jun 2007 A1
20070162862 Ogasawara Jul 2007 A1
20070192910 Vu Aug 2007 A1
20070215394 Sun Sep 2007 A1
20070249422 Podoloff Oct 2007 A1
20070259592 Imai et al. Nov 2007 A1
20070282484 Chung et al. Dec 2007 A1
20080009965 Bruemmer et al. Jan 2008 A1
20080012518 Yamamoto Jan 2008 A1
20080033641 Medalia Feb 2008 A1
20080077284 Swope Mar 2008 A1
20080082208 Hong Apr 2008 A1
20080086241 Phillips et al. Apr 2008 A1
20080121097 Rudakevych et al. May 2008 A1
20080174268 Koo et al. Jul 2008 A1
20080174448 Hudson Jul 2008 A1
20080182479 Elliott et al. Jul 2008 A1
20080240507 Niwa et al. Oct 2008 A1
20080263628 Normal et al. Oct 2008 A1
20080267450 Sugimoto et al. Oct 2008 A1
20080269949 Norman et al. Oct 2008 A1
20090016583 Wolf Jan 2009 A1
20090018712 Duncan Jan 2009 A1
20090028439 Elangovan et al. Jan 2009 A1
20090033623 Lin Feb 2009 A1
20090055019 Stiehl et al. Feb 2009 A1
20090057238 Garti Mar 2009 A1
20090069084 Reece Mar 2009 A1
20090073034 Lipsky et al. Mar 2009 A1
20090078484 Kocijan Mar 2009 A1
20090081923 Dooley et al. Mar 2009 A1
20090133467 Mori et al. May 2009 A1
20090138232 Fuwa May 2009 A1
20090153349 Lin Jun 2009 A1
20090157221 Sip Jun 2009 A1
20090161983 Ciurea Jun 2009 A1
20090164638 Jang Jun 2009 A1
20090171516 Reich Jul 2009 A1
20090187299 Fregene Jul 2009 A1
20090198371 Emanuel et al. Aug 2009 A1
20090204261 Strand et al. Aug 2009 A1
20090222148 Knotts et al. Sep 2009 A1
20090226035 Iihoshi et al. Sep 2009 A1
20090245656 Hu Oct 2009 A1
20090256822 Amireh et al. Oct 2009 A1
20090257741 Greb Oct 2009 A1
20090262074 Nasiri et al. Oct 2009 A1
20090265671 Sachs et al. Oct 2009 A1
20090278932 Yi Nov 2009 A1
20090284553 Seydoux Nov 2009 A1
20090316012 Matos Dec 2009 A1
20100002909 Lefevre et al. Jan 2010 A1
20100004798 Bodin et al. Jan 2010 A1
20100010669 Lee et al. Jan 2010 A1
20100010672 Wang et al. Jan 2010 A1
20100032224 Liu Feb 2010 A1
20100057059 Makino Mar 2010 A1
20100063652 Anderson et al. Mar 2010 A1
20100066676 Kramer et al. Mar 2010 A1
20100084513 Gariepy et al. Apr 2010 A1
20100090661 Chen et al. Apr 2010 A1
20100106344 Edwards et al. Apr 2010 A1
20100145236 Greenberg et al. Jun 2010 A1
20100169098 Patch Jul 2010 A1
20100172287 Krieter Jul 2010 A1
20100178982 Ehrman Jul 2010 A1
20100183195 Sharma Jul 2010 A1
20100234993 Seelinger et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100261526 Anderson et al. Oct 2010 A1
20100264756 Lee et al. Oct 2010 A1
20100283988 Mosier et al. Nov 2010 A1
20100302247 Perez et al. Dec 2010 A1
20100302359 Adams Dec 2010 A1
20100305778 Dorneich et al. Dec 2010 A1
20100305781 Felix Dec 2010 A1
20100312917 Allport Dec 2010 A1
20100324753 Okumatsu Dec 2010 A1
20110003640 Ehrman Jan 2011 A9
20110018731 Linsky et al. Jan 2011 A1
20110018794 Linsky et al. Jan 2011 A1
20110022196 Linsky et al. Jan 2011 A1
20110035054 Gal et al. Feb 2011 A1
20110050940 Lanz et al. Mar 2011 A1
20110060492 Kaznov et al. Mar 2011 A1
20110065488 Okamura et al. Mar 2011 A1
20110071652 Brown et al. Mar 2011 A1
20110071702 Wang et al. Mar 2011 A1
20110082566 Herr et al. Apr 2011 A1
20110087371 Sandberg et al. Apr 2011 A1
20110138416 Kang et al. Jun 2011 A1
20110153885 Mak et al. Jun 2011 A1
20110156943 Wong et al. Jun 2011 A1
20110174565 Rochat Jul 2011 A1
20110183732 Block et al. Jul 2011 A1
20110184590 Duggan et al. Jul 2011 A1
20110201362 Bregman-Amitai et al. Aug 2011 A1
20110132671 Lee et al. Sep 2011 A1
20110213278 Horak et al. Sep 2011 A1
20110231013 Smoot et al. Sep 2011 A1
20110234488 Ge et al. Sep 2011 A1
20110237324 Glavin et al. Sep 2011 A1
20110246904 Pinto Oct 2011 A1
20110249869 Stoeffler Oct 2011 A1
20110250967 Kulas Oct 2011 A1
20110249074 Cranfill Nov 2011 A1
20110273379 Chen et al. Nov 2011 A1
20110283223 Vaittinen et al. Nov 2011 A1
20110285349 Widmer et al. Nov 2011 A1
20110286631 Wagner et al. Nov 2011 A1
20110291926 Gokturk et al. Dec 2011 A1
20110294397 Tsai Dec 2011 A1
20110301901 Panagas Dec 2011 A1
20110304633 Beardsley Dec 2011 A1
20110308873 Kim et al. Dec 2011 A1
20110313568 Blackwell et al. Dec 2011 A1
20110320153 Lightcap Dec 2011 A1
20110320830 Ito Dec 2011 A1
20120009845 Schmelzer Jan 2012 A1
20120035799 Ehrmann Feb 2012 A1
20120043149 Kim et al. Feb 2012 A1
20120043172 Ichikawa Feb 2012 A1
20120059520 Kossett Mar 2012 A1
20120065747 Brown et al. Mar 2012 A1
20120072023 Ota Mar 2012 A1
20120083945 Oakley et al. Apr 2012 A1
20120083962 Sato et al. Apr 2012 A1
20120099756 Sherman et al. Apr 2012 A1
20120100915 Margalit et al. Apr 2012 A1
20120106783 Chang et al. May 2012 A1
20120112553 Stoner May 2012 A1
20120129605 Livet May 2012 A1
20120143482 Goossen et al. Jun 2012 A1
20120146775 Kudo et al. Jun 2012 A1
20120149359 Huang Jun 2012 A1
20120155724 Kitamura Jun 2012 A1
20120167014 Joo et al. Jun 2012 A1
20120168240 Wilson Jul 2012 A1
20120173018 Allen et al. Jul 2012 A1
20120173050 Berstein et al. Jul 2012 A1
20120185115 Dean Jul 2012 A1
20120193154 Wellborn et al. Aug 2012 A1
20120197439 Wang et al. Aug 2012 A1
20120200380 Kocijan Aug 2012 A1
20120215355 Bewley et al. Aug 2012 A1
20120229647 Calman et al. Sep 2012 A1
20120232977 Calman et al. Sep 2012 A1
20120233015 Calman et al. Sep 2012 A1
20120240077 Vaittinen et al. Sep 2012 A1
20120244969 Binder Sep 2012 A1
20120258645 Cheng Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120263154 Blanchflower et al. Oct 2012 A1
20120291926 Misra et al. Nov 2012 A1
20120293548 Perez et al. Nov 2012 A1
20120298049 Cook et al. Nov 2012 A1
20120298430 Schroll et al. Nov 2012 A1
20120302129 Persaud Nov 2012 A1
20120306850 Balan et al. Dec 2012 A1
20120307001 Osako et al. Dec 2012 A1
20120309261 Boman Dec 2012 A1
20120311810 Gilbert et al. Dec 2012 A1
20130022274 Lawrence Jan 2013 A1
20130040533 Miller Feb 2013 A1
20130050069 Ota Feb 2013 A1
20130065482 Trickett Mar 2013 A1
20130105239 Fung May 2013 A1
20130109272 Rindlishbacher May 2013 A1
20130113307 Kim et al. May 2013 A1
20130143482 Regier Jun 2013 A1
20130200207 Pongratz Aug 2013 A1
20130259386 Chadranshekar Oct 2013 A1
20130265225 Nasiri et al. Oct 2013 A1
20130293584 Anderson et al. Nov 2013 A1
20130307875 Anderson et al. Nov 2013 A1
20140008496 Ye Jan 2014 A1
20140015493 Wirz et al. Jan 2014 A1
20140051513 Polo et al. Feb 2014 A1
20140120887 Huang May 2014 A1
20140207280 Duffley Jul 2014 A1
20140238762 Berberian et al. Aug 2014 A1
20140249697 Fredriksson Sep 2014 A1
20140371954 Lee et al. Dec 2014 A1
20150091697 Takayasu Apr 2015 A1
20150175202 MacGregor Jun 2015 A1
20150209664 Haseltine Jul 2015 A1
20150268666 Wang et al. Sep 2015 A1
20160033967 Bernstein et al. Feb 2016 A1
20160054734 Bernstein et al. Feb 2016 A1
20160090133 Bernstein et al. Mar 2016 A1
20160148367 Polo et al. May 2016 A1
20160202696 Bernstein et al. Jul 2016 A1
20160246299 Berberian et al. Aug 2016 A1
20160282871 Berstein et al. Sep 2016 A1
20160291591 Bernstein et al. Oct 2016 A1
20160291595 Halloran Oct 2016 A1
20160349748 Bernstein et al. Dec 2016 A1
20170092009 Polo et al. Mar 2017 A1
Foreign Referenced Citations (46)
Number Date Country
1302717 Jul 2001 CN
1765595 May 2006 CN
101154110 Apr 2008 CN
201147642 Nov 2008 CN
201220111 Apr 2009 CN
101426664 May 2009 CN
102060060 May 2011 CN
102421629 Apr 2012 CN
19809168 Sep 1999 DE
10146862 May 2002 DE
102011108689 Apr 2012 DE
371149 Jun 1990 EP
1944573 Jul 2008 EP
102010042395 Apr 2012 EP
3727 Jan 1898 GB
2309650 Aug 1997 GB
2319756 Jun 1998 GB
3182290 Aug 1991 JP
H07-308462 Nov 1995 JP
9254838 Sep 1997 JP
2000218578 Aug 2000 JP
2001153650 Jun 2001 JP
2002126373 May 2002 JP
2002345706 Dec 2002 JP
2004042246 Feb 2004 JP
2004148439 May 2004 JP
2004260917 Sep 2004 JP
2005165692 Jun 2005 JP
2007072802 Mar 2007 JP
2007213353 Aug 2007 JP
2008040725 Feb 2008 JP
2011530756 Dec 2011 JP
2012022457 Feb 2012 JP
4893862 Mar 2012 JP
10-2008-040725 Aug 2008 KR
10-2008-0092595 Oct 2008 KR
10-2009-0000013 Jan 2009 KR
20100001408 Jan 2010 KR
10-2009-69873 Jul 2010 KR
10-2008-0073626 Aug 2011 KR
20105393 Apr 2010 TW
1997025239 Jul 1991 WO
2006049559 May 2006 WO
2008008847 Jan 2008 WO
2012094349 Jul 2012 WO
2012103525 Aug 2012 WO
Non-Patent Literature Citations (252)
Entry
US 9,342,073, 05/2016, Berstein et al. (withdrawn)
Korean Office Action in Application 10-2014-7034020, dated Dec. 23, 2016, 11 pages.
U.S. Appl. No. 14/884,632, Office Action dated Jan. 25, 2017, 7 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Feb. 1, 2017, 12 pages.
U.S. Appl. No. 13/342,914, Decision on Appeal dated Feb. 1, 2017, 8 pages.
Chinese Office Action in Application 201620300686.0, dated Feb. 3, 2016, 5 pages.
Chinese Office Action in Application 201702030180700, dated Feb. 7, 2017, 8 pages.
Japanese Office Action in Application 2015-512768, dated Dec. 6, 2016, 9 pages.
PCT International Preliminary Report on Patentability in PCT/US2015/030877, dated Feb. 23, 2017, 5 pages.
PCT International Preliminary Report on Patentability in PCT/US2015/044885, dated Feb. 23, 2017, 5 pages.
U.S. Appl. No. 14/054,636, Notice of Allowance dated Mar. 1, 2017, 7 pages.
U.S. Appl. No. 14/271,203, Office Action dated Feb. 21, 2017, 12 pages.
U.S. Appl. No. 15/232,490, Amendment and Response filed Feb. 22, 2017, 3 pages.
“Roll, Pitch, and Yaw, How Things Fly”, How Things Fly website, https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw.
Airioiu, “Force Feedback Stabilization for Remote Control of an Assistive Mobile Robot”, AACC Publication, 2011, pp. 4898-4903.
Chinese Office Action in Application 201380036857.2, dated Jun. 2016, 10 pages.
Chinese Office Action in Application 201620300686, dated Sep. 9, 2016, 3 pages.
Diolaiti et al., “Tele-operation of a Mobile Robot Through Haptic Feedback”, IEEE, 2002, p. 1-6.
European Search Report in Application 12731945.7, dated Nov. 6, 2014, 7 pages.
European Search Report in Application 13817382.2, dated Mar. 11, 2016, 8 pages.
Gearbox Ball Prototype, Pictures from Video, Orbotix, Inc. Jun. 29, 2010, 91 pages. http://www.youtube.com/watch?v=qRBM7bAaXpU.
Halme et al., “Motion Control of a Spherical Mobile Robot”, Helsinki, IEEE AMC, 1996, pp. 259-264, 6 pages.
Harmo et al., “Moving Eye—Interactive Teleprescence over Internet with a Ball Shaped Mobile Robot,” Automation Tech Lab, Finland, Oct. 2, 2001, 6 pages, http://automation.tkk.fi/files/tervetaas/movingeye4.pdf.
Hashimoto et al., “TouchMe: An Augmented Reality Based Remote Robot Manipulation”, Nov. 2011, pp. 61-66.
Joshi et al., “Design, modeling and controllability of a spherical mobile robot”, 13th Natl Conf on Mechanism & Machines, IISc, Bangalore, India, Dec. 13, 2007, 6 pages.
Korean Office Action in Application 10-2015-7003642, dated Nov. 28, 2016, 13 pages.
Liu et al., “Motion Control of a Spherical Mobile Robot by Feetback Linearization”, 7th WC on IC&A, Jun. 27, 2008, Chongqing, China, 1 page, Abstract Only.
Osorio et al., “Mobile Robots Design and Implementation: From Virtual Simulation to Real Robots”, IDME Publication, 2010, 6 pages.
PCT International Search Report in PCT/US2012/020115, dated Dec. 3, 2012, 9 pages.
PCT International Search Report in PCT/US2013/041023, dated Aug. 28, 2013, 9 pages.
PCT International Search Report in PCT/US2013/050327, dated Oct. 15, 2013, 11 pages.
PCT International Search Report in PCT/US2014/037013, dated Aug. 26, 2014, 8 pages.
PCT International Search Report in PCT/US2014/059973, dated Dec. 17, 2014, 11 pages.
PCT International Search Report in PCT/US2014/068606, dated Mar. 2, 2015, 7 pages.
PCT International Search Report in PCT/US2015/030877, dated Aug. 13, 2015, 5 pages.
PCT International Search Report in PCT/US2015/044885, dated Oct. 29, 2015, 7 pages.
Shu, et al., “Motion Control of Spherical Robot Based on Conservation of Angular Momentum”, IEEE Intl Conf on Mechatronics & Automation, 2012-08, Changchun, China, pp. 599-604, 6 pages.
Simsarian et al., “Achieving Virtual Presence with a Semi-autonomous Robot through a Multi-reality and speech control interface”, 1996, pp. 50-63.
U.S. Appl. No. 13/342,853, Amendment and Response filed Feb. 19, 2013, 7 pages.
U.S. Appl. No. 13/342,853, Notice of Allowance dated Apr. 19, 2013, 6 pages.
U.S. Appl. No. 13/342,853, Notice of Allowance dated Jun. 20, 2013, 6 pages.
U.S. Appl. No. 13/342,853, Office Action dated Oct. 16, 2012, 10 pages.
U.S. Appl. No. 13/342,874, Amendment and Response filed Sep. 13, 2013, 21 pages.
U.S. Appl. No. 13/342,874, Amendment and Response filed Jan. 21, 2014, 13 pages.
U.S. Appl. No. 13/342,874, Amendment and Response filed Jul. 14, 2014, 13 pages.
U.S. Appl. No. 13/342,874, Amendment and Response filed Mar. 5, 2015, 11 pages.
U.S. Appl. No. 13/342,874, Amendment and Response filed Jul. 7, 2015, 9 pages.
U.S. Appl. No. 13/342,874, Notice of Allowance dated Jul. 24, 2015, 18 pages.
U.S. Appl. No. 13/342,874, Notice of Allowance dated Aug. 11, 2015, 3 pages.
U.S. Appl. No. 13/342,874, Office Action dated May 13, 2013, 17 pages.
U.S. Appl. No. 13/342,874, Office Action dated Nov. 18, 2013, 17 pages.
U.S. Appl. No. 13/342,874, Office Action dated Apr. 29, 2014, 16 pages.
U.S. Appl. No. 13/342,874, Office Action dated Sep. 4, 2014, 16 pages.
U.S. Appl. No. 13/342,874, Office Action dated Apr. 7, 2015, 8 pages.
U.S. Appl. No. 13/342,884, Amendment and Response filed Sep. 16, 2013, 32 pages.
U.S. Appl. No. 13/342,884, Amendment and Response filed Jan. 21, 2014, 11 pages.
U.S. Appl. No. 13/342,884, Notice of Allowance dated Feb. 19, 2014, 14 pages.
U.S. Appl. No. 13/342,884, Office Action dated Apr. 16, 2013, 13 pages.
U.S. Appl. No. 13/342,884, Office Action dated Nov. 18, 2013, 15 pages.
U.S. Appl. No. 13/342,892, Amendment and Response filed Sep. 9, 2013, 27 pages.
U.S. Appl. No. 13/342,892, Amendment and Response filed Feb. 18, 2014, 12 pages.
U.S. Appl. No. 13/342,892, Appeal Brief filed Jul. 17, 2014, 30 pages.
U.S. Appl. No. 13/342,892, Office Action dated Apr. 9, 2013, 19 pages.
U.S. Appl. No. 13/342,892, Office Action dated Nov. 15, 2013, 18 pages.
U.S. Appl. No. 13/342,892, Response to Appeal Brief dated Aug. 6, 2014, 16 pages.
U.S. Appl. No. 13/342,908, Advisory Action dated Aug. 11, 2014, 3 pages.
U.S. Appl. No. 13/342,908, Advisory Action dated Sep. 18, 2014, 4 pages.
U.S. Appl. No. 13/342,908, Amendment and Response filed Oct. 15, 2013, 32 pages.
U.S. Appl. No. 13/342,908, Amendment and Response filed Mar. 20, 2014, 21 pages.
U.S. Appl. No. 13/342,908, Amendment and Response filed Aug. 4, 2014, 13 pages.
U.S. Appl. No. 13/342,908, Amendment and Response filed Sep. 5, 2014, 18 pages.
U.S. Appl. No. 13/342,908, Amendment and Response filed Apr. 6, 2015, 12 pages.
U.S. Appl. No. 13/342,908, Notice of Allowance dated Apr. 29, 2015, 12 pages.
U.S. Appl. No. 13/342,908, Office Action dated Jun. 13, 2013, 34 pages.
U.S. Appl. No. 13/342,908, Office Action dated Dec. 20, 2013, 26 pages.
U.S. Appl. No. 13/342,908, Office Action dated Jun. 5, 2014, 21 pages.
U.S. Appl. No. 13/342,908, Supplemental Amendment and Response filed Apr. 17, 2015, 10 pages.
U.S. Appl. No. 13/342,914, Advisory Action dated Feb. 13, 2014, 3 pages.
U.S. Appl. No. 13/342,914, Amendment and Response filed Sep. 3, 2013, 24 pages.
U.S. Appl. No. 13/342,914, Amendment and Response filed Feb. 3, 2014, 12 pages.
U.S. Appl. No. 13/342,914, Appeal Brief filed Jul. 3, 2014, 27 pages.
U.S. Appl. No. 13/342,914, Office Action dated Jun. 3, 2013, 30 pages.
U.S. Appl. No. 13/342,914, Office Action dated Nov. 13, 2013, 28 pages.
U.S. Appl. No. 13/342,914, Response to Appeal Brief dated Jul. 29, 2014, 10 pages.
U.S. Appl. No. 13/549,097, Amendment and Response filed Mar. 24, 2015, 14 pages.
U.S. Appl. No. 13/549,097, Amendment and Response filed Jan. 22, 2016, 16 pages.
U.S. Appl. No. 13/549,097, Office Action dated Dec. 26, 2014, 20 pages.
U.S. Appl. No. 13/549,097, Office Action dated Oct. 22, 2015, 20 pages.
U.S. Appl. No. 13/549,097, Office Action dated Oct. 4, 2016, 22 pages.
U.S. Appl. No. 13/766,455, Amendment and Response filed Jul. 15, 2015, 11 pages.
U.S. Appl. No. 13/766,455, Notice of Allowance dated Aug. 20, 2015, 15 pages.
U.S. Appl. No. 13/766,455, Office Action dated Apr. 15, 2015, 9 pages.
U.S. Appl. No. 13/894,247, Amendment and Response filed Aug. 13, 2015, 9 pages.
U.S. Appl. No. 13/894,247, Notice of Allowance dated Oct. 29, 2015, 7 pages.
U.S. Appl. No. 13/894,247, Office Action dated Jun. 12, 2015, 14 pages.
U.S. Appl. No. 14/035,841 Amendment and Response filed Sep. 14, 2015, 12 pages.
U.S. Appl. No. 14/035,841, Notice of Allowance dated Sep. 25, 2015, 5 pages.
U.S. Appl. No. 14/035,841, Notice of Allowance dated Oct. 7, 2015, 2 pages.
U.S. Appl. No. 14/035,841, Notice of Allowance dated Oct. 16, 2015, 2 pages.
U.S. Appl. No. 14/035,841, Office Action dated May 13, 2015, 12 pages.
U.S. Appl. No. 14/054,636, Amendment and Response filed Mar. 17, 2016, 13 pages.
U.S. Appl. No. 14/054,636, Amendment and Response filed Sep. 23, 2016, 14 pages.
U.S. Appl. No. 14/054,636, Notice of Allowance dated Dec. 21, 2016, 8 pages.
U.S. Appl. No. 14/054,636, Office Action dated Jan. 20, 2016, 14 pages.
U.S. Appl. No. 14/054,636, Office Action dated Jun. 24, 2016, 23 pages.
U.S. Appl. No. 14/137,954, Amendment and Response filed Aug. 3, 2015, 14 pages.
U.S. Appl. No. 14/137,954, Amendment and Response filed Feb. 5, 2016, 11 pages.
U.S. Appl. No. 14/137,954, Amendment and Response filed Jun. 6, 2016, 12 pages.
U.S. Appl. No. 14/137,954, Notice of Allowance dated Sep. 26, 2016, 8 pages.
U.S. Appl. No. 14/137,954, Office Action dated May 4, 2015, 26 pages.
U.S. Appl. No. 14/137,954, Office Action dated Nov. 5, 2015, 31 pages.
U.S. Appl. No. 14/137,954, Office Action dated Apr. 12, 2016, 27 pages.
U.S. Appl. No. 14/148,541, Amendment and Response filed Sep. 4, 2015, 14 pages.
U.S. Appl. No. 14/148,541, Notice of Allowance dated Nov. 18, 2015, 11 pages.
U.S. Appl. No. 14/148,541, Office Action dated Jun. 4, 2015, 18 pages.
U.S. Appl. No. 14/261,288, Amendment and Response filed Nov. 5, 2015, 12 pages.
U.S. Appl. No. 14/261,288, Notice of Allowance dated Nov. 23, 2015, 10 pages.
U.S. Appl. No. 14/261,288, Office Action dated Jul. 7, 2015, 13 pages.
U.S. Appl. No. 14/271,203, Advisory Action dated Mar. 2, 2016, 3 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Oct. 26, 2015, 10 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Feb. 23, 2016, 9 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Mar. 11, 2016, 9 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Jun. 6, 2016, 9 pages.
U.S. Appl. No. 14/271,203, Office Action dated Jul. 27, 2015, 11 pages.
U.S. Appl. No. 14/271,203, Office Action dated Dec. 21, 2015, 10 pages.
U.S. Appl. No. 14/271,203, Office Action dated Apr. 4, 2016, 10 pages.
U.S. Appl. No. 14/271,203, Office Action dated Aug. 1, 2016, 17 pages.
U.S. Appl. No. 14/459,235, Notice of Allowance dated Mar. 6, 2015, 9 pages.
U.S. Appl. No. 14/459,235, Notice of Allowance dated Jun. 25, 2015, 7 pages.
U.S. Appl. No. 14/663,446, Notice of Allowance dated Sep. 25, 2015, 9 pages.
U.S. Appl. No. 14/691,349, Amendment and Response filed Aug. 28, 2015, 11 pages.
U.S. Appl. No. 14/691,349, Amendment and Response filed Jan. 26, 2016, 6 pages.
U.S. Appl. No. 14/691,349, Notice of Allowance dated Mar. 4, 2016, 5 pages.
U.S. Appl. No. 14/691,349, Notice of Allowance dated Jun. 6, 2016, 5 pages.
U.S. Appl. No. 14/691,349, Office Action dated Jul. 17, 2015, 9 pages.
U.S. Appl. No. 14/832,801, Amendment and Response filed Feb. 5, 2016, 10 pages.
U.S. Appl. No. 14/832,801, Amendment and Response filed Feb. 12, 2016, 8 pages.
U.S. Appl. No. 14/832,801, Notice of Allowance dated Mar. 22, 2016, 10 pages.
U.S. Appl. No. 14/832,801, Notice of Allowance dated May 11, 2016, 5 pages.
U.S. Appl. No. 14/832,801, Office Action dated Nov. 6, 2015, 6 pages.
U.S. Appl. No. 14/839,610, Amendment and Response filed Feb. 18, 2016, 11 pages.
U.S. Appl. No. 14/839,610, Notice of Allowance dated Mar. 23, 2016, 16 pages.
U.S. Appl. No. 14/839,610, Office Action dated Nov. 18, 2015, 7 pages.
U.S. Appl. No. 14/850,910, Amendment and Response filed Feb. 18, 2016, 7 pages.
U.S. Appl. No. 14/850,910, Notice of Allowance dated Mar. 17, 2016, 11 pages.
U.S. Appl. No. 14/850,910, Office Action dated Nov. 25, 2015, 8 pages.
U.S. Appl. No. 14/968,594, Amendment and Response filed Apr. 5, 2016, 7 pages.
U.S. Appl. No. 14/968,594, Notice of Allowance dated Jul. 19, 2016, 6 pages.
U.S. Appl. No. 14/968,594, Office Action dated Feb. 3, 2016, 5 pages.
U.S. Appl. No. 14/975,510, Amendment and Response filed May 12, 2016, 8 pages.
U.S. Appl. No. 14/975,510, Notice of Allowance dated Jul. 7, 2016, 5 pages.
U.S. Appl. No. 14/975,510, Office Action dated Feb. 12, 2016, 6 pages.
U.S. Appl. No. 15/017,211, Notice of Allowance dated Jul. 5, 2016, 10 pages.
U.S. Appl. No. 15/017,211, Notice of Allowance dated Aug. 8, 2016, 4 pages.
U.S. Appl. No. 15/232,490, Office Action dated Sep. 23, 2016, 5 pages.
Search Report in Application 13790911.5, dated Oct. 14, 2016, 10 pages.
Loy et al., “Fast Radial Symmetry Analysis and Machine Intelligence, for Detecing Points of Interest”, IEEE Transactions on Pattern IEEE Computer Society, USA, vol. 25, No. 8, Aug. 1, 2003, 15 pages.
Search Report in Application 14795148.7, dated Dec. 7, 2016, 7 pages.
Chinese Office Action in Application 201480029695.4, dated May 27, 2017, 22 pages.
Chinese Office Action in Application 201510463007.1, dated May 31, 2017, 8 pages.
Chinese Office Action in Application 201620300686, dated May 2, 2017, 2 pages. (No English Translation).
European Extended Search Report in Application 14853882.0, dated Jun. 22, 2017, 6 pages.
European Office Action in Application 13817383.8, dated Apr. 20, 2017, 6 pages.
Korean Office Action in Application 10-2014-7034020, dated Jun. 30, 2017, 11 pages.
U.S. Appl. No. 15/232,490, Notice of Allowance dated Sep. 21, 2017, 7 pages.
U.S. Appl. No. 15/146,631, Office Action dated Sep. 21, 2017, 14 pages.
U.S. Appl. No. 13/549,097, Advisory Action dated Sep. 22, 2017, 2 pages.
U.S. Appl. No. 13/342,892, Supplemental Notice of Allowance dated Jul. 26, 2017, 2 pages.
U.S. Appl. No. 13/549,097, Amendment and Response filed Aug. 25, 2017, 11 pages.
U.S. Appl. No. 14/054,636, Supplemental Notice of Allowance dated Aug. 2, 2017, 4 pages.
U.S. Appl. No. 14/137,954, Supplemental Notice of Allowance dated Jul. 27, 2017, 2 pages.
U.S. Appl. No. 14/271,203, Amendment and Response filed Aug. 18, 2017, 11 pages.
U.S. Appl. No. 14/884,632, Supplemental Notice of Allowance dated Jul. 28, 2017, 2 pages.
U.S. Appl. No. 15/040,331, Notice of Allowance dated Aug. 1, 2017, 9 pages.
U.S. Appl. No. 15/146,631, Amendment and Response filed Aug. 18, 2017, 10 pages.
U.S. Appl. No. 15/177,809, Office Action dated Aug. 16, 2017, 6 pages.
U.S. Appl. No. 15/180,485, Office Action dated Aug. 17, 2017, 9 pages.
U.S. Appl. No. 15/232,490, Notice of Allowance dated Aug. 10, 2017, 5 pages.
Wright's Brothers Propulsion System, Smithsonian national Air and Museum, retrieved , retreived Aug. 17, 2017, https://airandspacasi.edu/exhibitions/wright-brothers/online/fly/1903/propulsion.cfm, 5 pages.
Chinese Notice of Allowance in Application 201380036857.2, dated Aug. 1, 2017, 4 pages.
Chinese Office Action in Application 201510463336.6, dated Jul. 17, 2017, 5 pages. (No English Translation).
Korean Notice of Allowance in Application 10-2015-7003642, dated Jul. 25, 2017, 4 pages.
U.S. Appl. No. 15/232,490, Amendment and Response filed Jul. 10, 2017, 3 pages.
U.S. Appl. No. 15/146,631, Office Action dated May 16, 2017, 11 pages.
U.S. Appl. No. 15/040,331, Amendment and Response filed Jul. 10, 2017, 10 pages.
U.S. Appl. No. 14/884,632, Supplemental Notice of Allowance dated Jun. 1, 2017, 2 pages.
U.S. Appl. No. 14/884,632, Notice of Allowance dated May 15, 2017, 8 pages.
U.S. Appl. No. 14/137,954, Notice of Allowance dated Jun. 29, 2017, 8 pages.
U.S. Appl. No. 13/342,892, Board Decision dated May 5, 2017, 8 pages.
U.S. Appl. No. 13/342,892, Notice of Allowance dated Jun. 7, 2017, 7 pages.
U.S. Appl. No. 13/342,892, Supplemental Notice of Allowance dated Jun. 29, 2017, 2 pages.
U.S. Appl. No. 13/549,097, Office Action dated Jun. 26, 2017, 30 pages.
U.S. Appl. No. 14/054,636, Notice of Allowance dated Jul. 7, 2017, 7 pages.
Airplane Flying Handbook (FAA-H-8083-3B) Chapter 10, Figure, 10-2, https://www.faa.gov/regulationspolicies/handbooks_manuals/aviation/airplane_handbook/media/12_afh_ch10.pdf, 10 pages, 2004, 10 pages.
Chinese Office Action in Application 201380036857.2, dated Mar. 22, 2017, 11 pages.
Curriculum of Dr. Jason Janet cited in IPR2017-01272, filed Apr. 20, 2017, 6 pages.
Declaration of Dr. Jason Janet cited in IPR2017-01272, filed Apr. 20, 2017, 79 pages.
European Extended Search Report in Application 14795148.7, dated Apr. 5, 2017, 12 pages.
Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, Feedback Control of Dynamic Systems, Fourth Edition, Prentice Hall, 2002, 28 pages.
Hashem Ghariblu and Hadi Mohammadi, Structure and Dynamic Modeling of a Spherical Robot, 8th International Symposium on Mechatronics and its Applications, 2012, 5 pages.
Hiroyuki Fujita, A Decade of MEMS and its Future, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems, 1997, 8 pages.
How a Small Robotics Startup Helped Disney Bring BB-8 to Life, US Chamber of Commerce (https://www.uschamber.com/above-thefold/how-small-robatics-startup-helped-disney-bring-bb-8-life), Retrieved on Mar. 31, 2017, 6 pages.
Japanese Office Action in Application 2015-521853, dated Feb. 14, 2017, 6 pages.
Martyn Williams, Sony unwraps high-tech ‘healing’ ball, CNN.com, published Mar. 28, 2002, http://edition.cnn.com/2002/TECH/ptech/03/28/robodex.healing.ball.idg/?related, retreived on Apr. 4, 2017, 1 page.
Masato Ishikawa, Ryohei Kitayoshi, and Toshiharu Sugie, Dynamic rolling locomotion by spherical mobile robots considering its generalized momentum, Proceedings of SICE Annual Conference 2010 2311 (2010), 6 pages.
Meet BB-8: The New Droid in the Lives of Star Wars Buffs, Wharton School of the University of Pennsylvania (Nov. 13, 2015) (http://knowledge.wharton.upenn.edu/article/meet-bb-8-the-newdroid-in-the-lives-of-star-wars-buffs/), Retrieved on Mar. 31, 2017, 3 pages.
Petition for Inter Parties Review of U.S. Pat. No. 9,211,920, filed Apr. 20, 2017, 75 pages.
Qiang Zhan, Yao Cai, and Caixia Yan, Design, Analysis and Experiments of an Omni-Directional Spherical Robot, IEEE International Conference on Robotics and Automation 4921, 2011, 6 pages.
Randall Munroe, New Pet, http://xkcd.com/413/, Retrieved from Internet Archive (http://web.archive.org/web/20080701080435/http://xkcd.com/413/) (2008), Retrieved on Apr. 13, 2017, 3 pages.
U.S. Appl. No. 13/549,097, Amendment and Response filed Mar. 14, 2017, 13 pages.
U.S. Appl. No. 14/137,954, Notice of Allowance dated Mar. 8, 2017, 8 pages.
U.S. Appl. No. 14/884,632, Amendment and Response filed Apr. 19, 2017, 3 pages.
U.S. Appl. No. 14/933,827, Office Action dated Apr. 21, 2017, 7 pages.
U.S. Appl. No. 15/040,331, Office Action dated Apr. 13, 2017, 10 pages.
U.S. Appl. No. 15/232,490, Office Action dated Mar. 17, 2017, 4 pages.
Xialing Lv and Minglu Zhang, Robot Control Based on Voice Command, IEEE International Conference on Automation and Logistics 2490, 2008, 5 pages.
U.S. Appl. No. 13/549,097, Amendment and Response filed Oct. 24, 2017, 11 pages.
U.S. Appl. No. 14/271,203, Office Action dated Oct. 18, 2017, 13 pages.
U.S. Appl. No. 14/933,827, Amendment and Response filed Oct. 20, 2017, 6 pages.
U.S. Appl. No. 14/933,827, Office Action dated Nov. 22, 2017, 8 pages.
U.S. Appl. No. 15/177,809, Amendment and Response filed Nov. 17, 2017, 7 pages.
U.S. Appl. No. 15/180,485, Amendment and Response filed Nov. 17, 2017, 11 pages.
U.S. Appl. No. 15/180,485, Office Action dated Dec. 7, 2017, 9 pages.
Chinese Notice of Allowance in Application 201510463336.6, dated Nov. 17, 2017, 4 pages.
European Office Action in Application 12731845.7, dated Oct. 25, 2017, 6 pages.
European Office Action in Application 13817382.8, dated Nov. 14, 2017, 5 pages.
Japanense Office Action in 2015-512768, dated Sep. 26, 2017,10 pages.
Japanese Office Action in Application 2015-521853, dated Oct. 31, 2017, 6 pages.
A. Milelle et al., “Model-Based Relative Localization for Cooperative Robots Using Stero Vision”, Dec. 3, 2005, https://infoscience.epfi.ch/record/97591/files/Model-Based_Relative_Localization_MILELLA05.pdf.
European Office Action in Application 13790911.5, dated Jan. 26, 2018, 7 pages.
U.S. Appl. No. 15/180,485, Amendment and Response dated Dec. 22, 2017, 8 pages.
U.S. Appl. No. 15/180,485, Notice of Allowance dated Jan. 26, 2018, 10 pages.
U.S. Appl. No. 14/146,631, Office Action dated Feb. 2, 2018, 12 pages.
U.S. Appl. No. 14/271,203, Advisory Action dated Jan. 18, 2018, 3 pages.
U.S. Appl. No. 14/271,203, Amendment and Response dated Dec. 22, 2017, 12 pages.
U.S. Appl. No. 14/933,827, Advisory Action dated Dec. 28, 2017, 2 pages.
U.S. Appl. No. 14/933,827, Amendment and Response dated Dec. 18, 2017, 6 pages.
U.S. Appl. No. 15/010,337, Office Action dated Dec. 22, 2017, 12 pages.
U.S. Appl. No. 15/146,631, Amendment and Response dated Dec. 18, 2017, 9 pages.
U.S. Appl. No. 15/177,809, Notice of Allowance dated Dec. 12, 2017, 8 pages.
U.S. Appl. No. 15/281,478, Notice of Allowance dated Feb. 22, 2018, 8 pages.
U.S. Appl. No. 13/549,097, Notice of Allowance dated Apr. 18, 2018, 12 pages.
U.S. Appl. No. 14/271,203, Office Action dated Apr. 6, 2018, 13 pages.
U.S. Appl. No. 15/146,631, Advisory Action dated Apr. 23, 2018, 2 pages.
U.S. Appl. No. 15/177,809, Supplemental Notice of Allowance dated Mar. 15, 2018, 2 pages.
U.S. Appl. No. 15/177,809, Supplemental Notice of Allowance dated Mar. 21, 2018, 2 pages.
U.S. Appl. No. 15/180,485 Supplemental Notice of Allowance dated Mar. 15, 2018, 2 pages.
U.S. Appl. No. 14/933,827, Amendment and Response dated Mar. 29, 2018, 6 pages.
U.S. Appl. No. 14/933,827, Office Action dated May 10, 2018, 7 pages.
European Search Report in Application 15831882.4, dated Mar. 1, 2018, 16 pages.
Chinese Notice of Allowance in Application 201510463007.1, dated Mar. 5, 2018, 6 pages.
Chinese Office Action in Application 201480029695.4, dated Feb. 23, 2018, 14 pages.
Related Publications (1)
Number Date Country
20170080352 A1 Mar 2017 US
Provisional Applications (3)
Number Date Country
61430023 Jan 2011 US
61430083 Jan 2011 US
61553923 Oct 2011 US
Continuations (4)
Number Date Country
Parent 14968594 Dec 2015 US
Child 15281478 US
Parent 14663446 Mar 2015 US
Child 14968594 US
Parent 14459235 Aug 2014 US
Child 14663446 US
Parent 13342853 Jan 2012 US
Child 14035841 US
Continuation in Parts (1)
Number Date Country
Parent 14035841 Sep 2013 US
Child 14459235 US