The invention relates to a humidifier container used to humidify gasses, such as oxygen and more particularly, to the method of coupling the upper and lower components of the container.
The invention herein is directed at a humidifier container used to humidify gasses, most commonly oxygen. The container most commonly holds distilled water in order to humidify the incoming gas when dispensed. It is common practice for medication and other fluids to be mixed as a fluid to humidify the dispensed gas as well.
The invention is directed to the manner in which the lower part of the device, which holds the fluid, is attached to the upper part which receives the dry gas and dispenses the humidified gas.
Currently all devices manufactured for this purpose, utilize a threaded upper section (cap) and a lower section (container vessel or cup). The lower section is turned and tightened with threaded sections to seal the lower section (container vessel or cup) to the upper part of the device.
The present invention is directed at the manner of coupling the upper and lower section of a humidifier container using magnetic coupling means. A series of corresponding magnets around the perimeter of the device secure the lower part to the upper part. Using magnets opposing an attracted metal may be used as well in place of corresponding magnet to magnet attraction which requires the poles of the magnets be oriented with their poles to attract each other.
This method removes the necessity for a threaded section on either of the parts. The magnetic sections around the perimeter can be placed either inside, along the sealing edge section or on the outside of the device. Locating the magnets on the outside of the device allows ease of alignment visually.
This has three basic benefits:
1) Ease of mating the lower part to the upper part with minimal force or precise threading/mating.
2) Ease of removal. The current method (threading) may be over tightened leading to difficulty in disassembling the device.
3) Eliminates the need for a pressure relief valve currently used on threaded type devices. Should a blockage of the dispensed gas flow exist, current devices have a pressure relief valve fitted on the device to relieve the excess pressure. Using magnetic force to couple the parts of the device has the advantage of the pressure breaking the seal and relieving the excess pressure without the need for the relief valve. The excess pressure overcomes the magnetic coupling force and the excess pressure is vented at the seal. Once the blockage is removed and the gas is allowed to flow freely from the device, the magnetically sealed device reseats itself and normal operation resumes.
The “magnetic fastener” or fastening means can be configured with a single upper and lower fastener in the form of a ring or by magnetizing one part and having the other manufactured from a metal. However, using multiple points allows for easier disassembly by turning one part of the device so that the magnetic fasteners no longer line up with each other and the magnetic force is broken. Given the typical sizes of the devices, it was found that four or more magnet points seem to work the best. Preferably, six “magnetic fastener” points should be positioned equally at 60 degrees points on center. This is useful since the sections can he aligned without regard to a “front” or “back”. If needed alignment could be necessitated by orienting the “magnetic fasteners” in such a way that misalignment would be impossible.
In addition, the “magnetic fasteners” can be varied by size. The size of the magnetic mating surfaces will vary dependent upon the size, weight and volume of the humidifier device. It will also vary in size if magnet pairs are used versus magnet against corresponding attracted metal sections.
Shape is also a consideration. The magnetic attractors can vary in shape to conform to the device to maximize magnetic force or adapt to conform to various shapes of the device.
There are three main types of magnets:
a) Permanent magnets: These are permanent in the sense that once they are magnetized, they retain a level of magnetism. Different types of permanent magnets have different characteristics or properties concerning how easily they can be demagnetized, how strong they can be, how their strength varies with temperature, and so on. There are four classes of permanent magnets; a) Neodymium Iron Boron (NdFeB or NIB), b) Samarium Cobalt (SmCo), c) Alnico, and d) Ceramic or Ferrite.
Permanent magnets can be manufactured in almost any shape. Round bars, rectangular bars, disks, rectangles, multi-fingered rings etc., or just about any custom shapes needed. Some are cast into a mold and require grinding to achieve final dimensions. Others start as a powder which is pressed into a mold or pressure bonded or sintered.
Temporary magnets are those which act like a permanent magnet when they are within a strong magnetic field, but lose their magnetism when the magnetic field disappears. Examples would be paperclips, nails, and pieces of iron. These may be used in conjunction with a permanent magnet as one of the components of the “magnetic fastener”.
Electromagnets: An electromagnet is a tightly wound helical coil of wire, usually with an iron core, which acts like a permanent magnet when current is flowing in the wire. The strength and polarity of the magnetic field created by the electromagnet are adjustable by changing the magnitude of the current flowing through the wire and by changing the direction of the current flow. This could be utilized but would require an external source for power.
Magnet polarity are typically Bi-polar or Unidirectional.
Magnets strength is rated in value of Gauss. The gauss of the magnet can be changed to suit the application. Permanent ceramic magnets were used in one of the prototypes, rare earth magnets in another. Rare earth magnets are much stronger by weight and volume than ceramic magnets but are more expensive. Typically a rare earth magnet would be smaller and exhibit the same gauss rating of a corresponding larger ceramic magnet.
Rare earth magnets have negative oxidation and temperature concerns.
A permanent magnet will retain its magnetism unless it is affected by a strong outside magnetic or electrical force, or elevated temperatures. If they are not exposed to any of these conditions, permanent magnets will lose magnetism on their own, however this degradation is very slow, on the order of one percentage point every ten years.
In the accompanying drawings:
Referring now to the drawings, various embodiments of the present invention are disclosed, which is a humidifier container used for humidifying a gas, such as oxygen, being utilized by a patient, and which has been specially modified with a magnetic coupling means for joining the cap and vessel of the container, the container in combination with the inventive coupling means being depicted generally as 10.
The present invention includes a humidifier container used for humidifying a gas, which is constructed with two primary components, a vessel or cup 12 and a cap or cover 14. This container 10 is modified or is provided with means 10 for coupling the cap 14 to the vessel 12 using magnetically attractive forces.
There are several configurations and embodiments contemplated for providing this feature.
Referring to
In another embodiment, the means for coupling the cap 14 to the vessel 12 using magnetically attractive forces comprises a plurality of radially spaced-apart magnets 16 around an external perimeter of said cap 14 and a corresponding plurality of radially-spaced apart metal members 20 around an external perimeter of the vessel 12. The plurality of radially spaced-apart magnets 16 around the external perimeter of the cap 16 are aligned with the corresponding plurality of radially-spaced apart metal members 20 around the external perimeter of the vessel 12 and configured so as to provide a secure engagement between the cap 14 and the vessel 12 during operation of said humidifying container.
Alternatively, the magnets 16 may be on the vessel 12 side and the corresponding metal members 20 may be on the cap 14 side. In this embodiment, the humidifier container includes means for coupling the cap 14 to the vessel 12 using magnetically attractive forces configured with a plurality of radially spaced-apart metal members 20 around an external perimeter of the cap 14 and a corresponding plurality of radially-spaced apart magnets 16 around an external perimeter of the vessel 12. In this embodiment, the plurality of radially spaced-apart metal members 20 around the external perimeter of the cap 14 are aligned with the corresponding plurality of radially-spaced apart magnets 16 around the external perimeter of the vessel and configured so as to provide a secure engagement between the cap 14 and the vessel 12 during operation of said humidifying container.
Another variant is depicted in
Another variant for the humidifier container includes means for coupling the cap 14 to the vessel 12 using magnetically attractive forces configured with a plurality of radially spaced-apart metal members 22 around an internal perimeter of the cap 14 and a corresponding plurality of radially-spaced apart magnets 18 around an internal perimeter of the vessel 12. In this variant, the plurality of radially spaced-apart metal members 22 around the internal perimeter of the cap 12 are aligned with the corresponding plurality of radially-spaced apart magnets 18 around the internal perimeter of the vessel 12 and configured so as to provide a secure engagement between the cap 14 and the vessel 14 during operation of said humidifying container.
Another variant of the humidifier container 12 includes means for coupling the cap 14 to the vessel 12 using magnetically attractive forces comprising a plurality of radially spaced-apart magnets 18 around an internal perimeter of the cap 14 and a corresponding plurality of radially-spaced apart metal members 22 around an internal perimeter of the vessel 12. In this variant, the plurality of radially spaced-apart magnets 18 around the internal perimeter of the cap 14 are aligned with the corresponding plurality of radially-spaced apart metal members 22 around the internal perimeter of the vessel 12 and configured so as to provide a secure engagement between the cap 14 and the vessel 12 during operation of said humidifying container.
In the various embodiments discussed above, the humidifier container coupling means for the cap 14 to the vessel 12 using magnetically attractive forces can include various combinations of magnet 16,18 to magnet 16,18 coupling means or magnet 16,18 to metal member 20,22 coupling means. These magnets 16,18 and metal members 20,22 can be shaped as desired, however, it is contemplated that round-shaped magnets 16,18 or metal members 20,22 or rectangular-shaped magnets 16,18 or metal members 20,22 in cross-section are preferred.
It should be understood that the drawings,
It should also be understood that although this specification describes a method of coupling a humidifier container using magnetic coupling means in lieu of a threaded means, the scope of the invention is intended to cover the use of magnetic coupling means in almost any circumstance where it would be beneficial to substitute a threaded connection with a magnetic coupling.
It should be understood that the preceding is merely a detailed description of one or more embodiments of this invention and that numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit and scope of the invention. The preceding description, therefore, is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents.