Magnetically coupled implantable pump system and method

Information

  • Patent Grant
  • 9226840
  • Patent Number
    9,226,840
  • Date Filed
    Thursday, June 3, 2010
    14 years ago
  • Date Issued
    Tuesday, January 5, 2016
    9 years ago
Abstract
A magnetically coupled, implantable pump system comprises an external controller and an implantable device. A non-implantable magnet in an external controller produces a magnetic field that couples the non-implantable magnet to a magnet in the implantable device. A non-implantable motor moves the non-implantable magnet in a rotational direction. When the non-implantable magnet moves in the rotational direction, a piston coupled to the magnet moves within the implantable device. As the piston moves, an amount of fluid from a reservoir in the implantable device moves out of the reservoir and into an inflatable portion of a gastric band. The implantable device may also move fluid out of the inflatable portion of the gastric band.
Description
FIELD

The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, relates to implantable pump systems that are remotely actuated by a magnetic coupling with an external device.


BACKGROUND

Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts the passage of food into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach provides a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, the gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract.


Over time, a stoma created by a gastric band may need adjustment in order to maintain an appropriate size, which is neither too restrictive nor too passive. Accordingly, prior art gastric band systems provide a subcutaneous fluid access port connected to an expandable or inflatable portion of the gastric band. By adding fluid to or removing fluid from the inflatable portion by means of a hypodermic needle inserted into the access port, the effective size of the gastric band can be adjusted to provide a tighter or looser constriction.


Some non-invasive procedures for adjustment of gastric bands without the use of a hypodermic needle have been proposed. For example, a remotely adjustable gastric band is a medical device which allows a healthcare worker to adjust a gastric band without requiring hypodermic needles to connect to an implanted, subcutaneous access port. A handheld controller can be used to send radio frequency waves for powering and communicating with the implanted device. The implanted device can fill or drain the gastric band as requested by the healthcare worker via the handheld controller.


Such remotely adjustable gastric band systems have some challenges. For example, the implantable pump system has certain design parameters relating to size, power dissipation, flow rate, back pressure, and Magnetic Resonance Imaging (MRI) considerations. These different parameters result in sometimes conflicting constraints for the pump implementation.


Some remotely adjustable pump motors may be powered by a piezo element in a peristaltic pump. In certain circumstances, actuation of the piezo element (or combination of piezo elements) may result in heating of the patient's tissue.


Some other implantable devices have also been disclosed, but these devices suffer from certain disadvantages. For example, Sohn, U.S. Pat. No. 6,417,750, generally discloses magnetically-coupled implantable medical devices, but Sohn does not disclose implantable pumps for use with gastric banding systems.


Hassler, et al., U.S. Pat. No. 7,390,294, discloses a bellows accumulator driven by a piezoelectric system. The system collapses or extends to displace accumulated fluid. The system serves as both a reversible pump and reservoir. However, Hassler utilizes internal electrical power to drive the pump, which may lead to heating of a patient's tissue.


Lorenzen, et al., U.S. Pat. No. 7,396,353, discloses an infusion device and a driving mechanism for delivery of an infusion medium. A coil capable of being electrically activated to provide an electromagnetic field surrounds a piston channel. The piston channel provides a passage for communication of the infusion medium to an outlet chamber located at one end of the piston channel. Because the coil utilizes energy local to the drive mechanism in order to deliver the infusion medium, Lorenzen's device may also lead to heating of a patient's tissue.


Gillies, U.S. Pat. No. 6,834,201, discloses catheter navigation using an MRI device. The internal device utilizes coils that are responsive to an external magnetic field. The current induced in the internal coils generates heat that is then dissipated, so Gillies requires additional components in order to attempt to dissipate the generated heat.


Nelson, et al., U.S. Pat. No. 7,367,340, discloses systems and methods for moving and/or restraining tissue in the upper respiratory system of a patient. But Nelson does not disclose driving an internal magnet with an external magnet. In fact, all of Nelson's magnets are internal. Further, Nelson does not disclose driving a pump to fill or drain an inflatable portion of a gastric band.


Some remotely adjustable gastric banding systems that have been proposed utilize external power and/or transmit telemetric signals through the skin in order to power and/or actuate pumps associated with the remotely adjustable systems. Thus, remotely adjustable gastric banding systems that receive less or no power from an external transmitter are disclosed herein. Further, remotely adjustable gastric banding systems that reduce tissue heating are disclosed herein.


SUMMARY

Generally described herein are remotely adjustable and remotely powered gastric band systems, and methods of use thereof. The apparatus, systems and methods described herein aid in facilitating obesity control and/or treating obesity-related diseases while being non-invasive once implanted.


In an embodiment, a system for adjusting a gastric band comprises an external controller and an implantable device. The external controller comprises a non-implantable magnet that produces a magnetic field. The external controller also comprises a non-implantable motor that is coupled to the non-implantable magnet. The non-implantable motor moves the non-implantable magnet in a rotational direction.


The implantable device comprises a magnet that is magnetically coupled to the non-implantable magnet. A piston is coupled to the magnet and is located next to a reservoir that contains a fluid. The implantable device may comprise a screw drive coupled between the magnet and the piston to facilitate moving the piston within the implantable device. In an embodiment, the implantable device comprises a seal to prevent leakage of the fluid in the reservoir. Further, in an embodiment, the reservoir may be located within a flexible pouch disposed in the implantable device.


The gastric band has an inflatable portion that may be filled or drained with the implantable device. For example, when the magnet rotates in response to the rotation of the non-implantable magnet, the piston moves within the implantable device causing a portion of the fluid in the reservoir to move into the inflatable portion of the gastric band. The magnet may also rotate in a second direction to facilitate draining the inflatable portion of the gastric band.


A method for adjusting the inflatable portion of the gastric band comprises positioning the external controller near a patient. A magnetic field is generated by the non-implantable magnet, which causes the non-implantable magnet to be magnetically coupled to the magnet of the implantable device. The non-implantable magnet moves in a first direction which causes the magnet to also move in the first direction. A first portion of the fluid in the reservoir moves into the inflatable portion of the gastric band when the magnet moves in the first direction. The non-implantable magnet may also be moved in a second direction which causes the magnet to also move in the second direction. A second portion of the fluid from the inflatable portion of the gastric band moves into the reservoir when the magnet moves in the second direction.


In an alternate embodiment, a system for adjusting a gastric band with an inflatable portion comprises a non-implanted, rotatable magnet capable of producing a magnetic field. The system further includes an implantable device that comprises a reservoir containing a fluid and coupled to the inflatable portion of the gastric band. A second magnet is magnetically coupled to the non-implanted magnet, and the second magnet rotates in response to the non-implanted magnet rotating. The implantable device also comprises a piston coupled to the second magnet, and the piston moves in response to the second magnet rotating. When the piston moves, a portion of the fluid in the reservoir moves into or out of the inflatable portion of the gastric band.


Further, in another embodiment, an implantable system for adjusting a gastric band implanted in a patient for a treatment of obesity comprises a reservoir containing a fluid. The reservoir is coupled to an inflatable portion of the gastric band. An internal magnet is magnetically coupled to a magnet external to the patient, and the internal magnet moves in response to the external magnet moving. The implantable system also includes a piston coupled to the internal magnet. The piston moves in response to the internal magnet moving, thereby causing a portion of the fluid in the reservoir to move into or out of the inflatable portion of the gastric band.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a side, sectional view of a gastric banding system and an external controller according to an embodiment of the present invention.



FIG. 2 illustrates a perspective view of a gastric banding system and an external controller according to an embodiment of the present invention.



FIG. 3 illustrates a side, sectional view of an implantable pump with a seal according to an embodiment of the present invention.



FIG. 4 illustrates a side, sectional view of an implantable pump with a flexible pouch according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention generally provides remotely adjustable gastric banding systems, for example, for treatment of obesity and obesity related conditions, as well as systems for controlling inflation of gastric banding systems.


A remotely adjustable gastric band is a medical device which allows a healthcare worker to adjust a gastric band without utilizing hypodermic needles to connect to an implanted access port. An external and/or handheld controller can be used to cause the implanted device to fill or drain the gastric band as requested by the healthcare worker via the handheld controller. The handheld controller may be a remote device configured to communicate with the implantable device using a magnetic and/or electrical field.


The filling and draining of the band is accomplished by a set of fluidic elements including pumps, valves, and sensors which monitor and/or move fluid between the gastric band and a reservoir. In accordance with various embodiments, different numbers, types, and orientations of the fluidic elements may be utilized to obtain the desired results. Any and/or all of these various components may be configured to be controlled by an external controller.


The fluids used within the systems of the present invention include any fluid that is biocompatible and incompressible. The fluid has no adverse effect on the patient in the unlikely event that a leak emanates from the system. The fluid can simply be water or any biocompatible polymer oil such as castor oil. In an example embodiment, the fluid is saline.


In various embodiments, motion in the external controller may induce motion in the implantable device to move fluid into or out of an inflatable portion of the gastric band. For example, the external controller may include a rotational motor that causes an external magnet within and/or proximate to the external controller to rotate. In an alternate embodiment, a motor may not be utilized to cause the external magnet to rotate. Rather, the external magnet may be rotated manually and/or by other means. Any system that allows adjustment of a gastric banding system by moving a magnet external to the patient's body is contemplated within the scope of the present invention.


The external magnet is magnetically coupled to a magnet in the implantable device, and when the external magnet rotates, the internal magnet rotates as well. The internal rotational magnet may be connected to a pump directly or may provide torque transfer via a spring, gears, or similar implementation to a suitable pump mechanism. The external controller may further include a linear motor that causes an external magnet to move in a linear direction to induce linear motion in an internal magnet to actuate the pump.


In various embodiments, different pumps may be utilized to provide a motion that moves the fluid from the pump to the gastric band. For example, rotary motion actuators, linear geared actuators, mechanical pumps, stroke pumps, geared plungers, and combinations thereof may be utilized to provide the desired pumping action.


With reference to FIG. 1, one embodiment of the invention comprises an internal gastric banding system 100 and an external controller 150. The external controller 150 may comprise a motor 160 which may be referred to as a non-implantable motor because of its location external to a patient's body. The motor 160 is coupled to a rotational magnet 170 that is also external to the patient's body. The rotational magnet 170 may also be referred to as a non-implantable magnet because it is not implanted in the patient's body. As noted above, a motor may not be used to rotate the rotational magnet 170. Rather, manual and other means may be utilized to rotate the rotational magnet 170.


The rotational magnet 170 is coupled to the motor 160 via a drive shaft 165 that facilitates rotation of the rotational magnet 170. The motor 160, the driveshaft 165, and/or the rotational magnet 170 may be located within and/or outside of the handheld controller 150. For example, the rotational magnet 170 may be located at least partially outside of the controller 150.


The internal gastric banding system 100 comprises an implantable device, such as an implantable pump 110 that is coupled to a gastric band 105 via tubing 107. The implantable pump 110 is operable to move a fluid between the pump 110 and an inflatable portion 103 of the gastric band 105 to facilitate adjustment of the gastric band 105 about the patient's stomach.


According to various embodiments, components of the gastric banding system 100 may be placed in their respective positions within a patient using common surgical techniques. The surgical techniques may be similar to those used in the placement of conventional gastric banding systems. For example, the gastric band 105 may be placed around the stomach using laparoscopic techniques, as known to those of skill in the art. Like a conventional access port, various components of the gastric banding system 100 may be sutured onto the rectus muscle sheath or any other conveniently accessible muscle. The tubing 107 to the gastric band 105 passes through the rectus muscle into the peritoneal cavity in the same or similar manner as the tubing of a conventional access port.


The implantable pump 110 may be used to replace or complement a conventional access port for adjusting inflation of the gastric band 105. In some embodiments, the system includes a conventional access port fluidly coupled to the gastric banding system 100, for example, between a reservoir 140 and a piston 130. The conventional access port may also be coupled to the tubing 107, directly to the gastric band 105, and/or to other components of the gastric banding system 100 in order to fill and drain the inflatable portion 103 of the gastric band 105. The conventional access port may be used, for example, with a hypodermic needle via a subcutaneous injection, to fill or drain the gastric band 105 in conjunction with and/or in addition to the filling and draining provided by the implantable pump 110.


In an embodiment, the pump 110 comprises the piston 130 that acts on the fluid contained in the syringe-type reservoir 140. As the piston 130 moves within a housing 125 of the pump 110, the piston 130 causes the fluid to enter or exit the reservoir 140 in order to fill or drain the inflatable portion 103 of the gastric band 105. A flow meter and/or flow control device may be coupled between the reservoir 140 and the gastric band 105 to measure the amount of the fluid moving into or out of the inflatable portion 103 of the gastric band 105. The fluid may be contained within a pouch 122 that is coupled to the tubing 107 to facilitate filling or draining the gastric band 105. In an embodiment, a seal may be utilized between the piston 130, the housing 125 and/or the reservoir 140 in order to prevent leakage of the fluid from the reservoir 140.


The reservoir 140 and the piston 130 may move precisely metered volumes of a fluid (e.g., saline) through the tubing 107 into the gastric band 105. Moving the fluid into the gastric band 105 causes inflation of the inflatable portion 103, such as at least one bladder, and constricts around the cardia, or upper portion of the stomach, forming a stoma that restricts the passage of food into a lower portion of the stomach. This stoma can provide a patient with a sensation of satiety or fullness that discourages overeating.


In contrast, moving the fluid out of the inflatable portion 103 of the gastric band 105 contracts the pressure around the cardia and allows a stoma to be at least partially released and regains the patient's hunger sensation. The reservoir 140 and the piston 130 facilitate moving the fluid out of the gastric band 105.


In an embodiment, the piston 130 is coupled to an internal magnet 115 via an internal drive shaft 120. For example, as illustrated in FIG. 1, the internal drive shaft 120 may include a screw drive. The drive shaft 120 is coupled to a header 127 disposed between the piston 130 and the internal magnet 115 such that the magnet 115 and the piston 130 move in a direction normal to the header 127 when the magnet 115 rotates. Similarly, when the magnet 115 rotates, the piston 130 moves in an axial direction within the pump 110 in order to move fluid into or out of the reservoir 140. For example, the magnet 115 may move clockwise for reduction of the volume in the reservoir 140, and the magnet 115 may move counterclockwise for expansion of the volume in the reservoir 140.


In an embodiment, as illustrated in FIG. 2, an implantable pump 210 is implanted within a patient's body. A boundary 209, such as skin, separates the implantable pump 210 from the external controller 250. When the external controller 250 is brought sufficiently close to the boundary 209 and/or the internal magnet 215, an external magnet 270 within the external controller 250 magnetically couples to the internal magnet 215.


A motor 260 in the external controller 250 causes the external magnet 270 to rotate, and the magnetic field that permeates the boundary 209 causes the internal magnet 215 to rotate. As the internal magnet 215 rotates turning drive shaft 220, fluid enters or exits the implantable pump 225 of system 210 via tubing 207 in order to fill or drain the gastric band.


In such a configuration, the power for the pump 210 may be provided solely through the magnetic coupling, and the pump 210 would not utilize any internal electric power. The electric power is provide externally, with respect to the patient, in order to drive the rotation of the external magnet 270.


Thus, embodiments of the present invention allow for the filling and draining the gastric band while minimizing power dissipation within the implantable pump 210, which reduces the resultant temperature rise of the patient's tissue surrounding the pump 210. In various embodiments, a substantial amount of power is moved from within the patient's body to the external controller 250 where enhanced power generation and cooling methods may be implemented.


The physical separation distance between the external magnet 270 and the internal magnet 215 is advantageously determined to provide a magnetic field of sufficient strength to rotate the magnet 215 and move fluid into or out of the pump 210. For example, in an embodiment, the external magnet 270 may be located within approximately 5-10 centimeters of the internal magnet 215. In other embodiments, where stronger or weaker magnets are used, the operational distance between the two magnets may be selected from the range of approximately 1-15 centimeters. It should be understood that any type of magnet that facilitates magnetic coupling of the external magnet 270 to the internal magnet 215 in order to move fluid into or out of the pump 210 is contemplated within the scope of the present invention.


In accordance with various embodiments, the pump 210 disclosed herein provides advantages over other existing pumps for gastric banding systems that utilize inductive powering to drive pumps to fill and drain a gastric band. Such existing systems require internal electrical power to drive these internal pumps (e.g., piezoelectric pumps), and these pumps may be subject to low flow rates. With internal electrical power, the pumps may heat up more and dissipate more heat within the patient. In an embodiment of the present invention, inductive powering is not required to power the pump 210, because the internal magnet 215 and the external magnet 270 are utilized to drive the pump 210. Thus, the high power portion of a previous implantable pump system is moved to the outside of the patient's body, which reduces heating of the patient's tissue.


Embodiments of the present invention are more compact and efficient than existing gastric banding systems that use non-invasive adjustment methods. For example, the implantable device 210 may have a smaller overall size as compared to implementations using other internally powered pump methods, because the implantable device 210 does not need to accommodate space for an internal motor.


Turning now to FIG. 3, one embodiment of a pump 310 includes internal magnet 315 connected to drive shaft 320 and a slidable seal 345 disposed between a reservoir 340 and a piston 330. The drive shaft 320 is connected to header 327. The seal 345 facilitates hermetically sealing the reservoir 340 such that the fluid does not leak from the reservoir 340. The seal 345 maintains a sufficient contact with a housing 325 of the pump 310 in order to prevent leakage of the fluid from the reservoir 340 into the pump 310. This contact creates friction with the housing 325 which results in a resistance to movement of the piston 330 within the pump 310. Thus, sufficient force may need to be applied to move the piston 330 and the seal 345 in order to modify the amount of fluid in the reservoir 340.


In an embodiment, and with reference to FIG. 4, the fluid within the reservoir 440 may be housed within a pouch 422 or other flexible enclosure. The pouch 422 is coupled to the gastric band via tubing to facilitate inflating or deflating an inflatable portion of the gastric band. The piston 430 acts on the pouch to facilitate driving the fluid from or drawing fluid into the pouch 422. Utilizing a pouch to house the fluid reduces the need to create a seal between the piston 430 and a housing 425 of the pump 410 or the reservoir 440. Where no seal is positioned between the piston 430 and the housing 425 or the reservoir 440, a greater separation distance may exist between the piston 430 and the housing 425 such that the piston 430 may move more freely within the pump 410. In this embodiment, less friction exists between the piston 430 and the housing 425, resulting in less force being utilized to move the piston 430. Pump 410 includes internal magnet 415 connected via drive shaft 420 to header 427.


With reference again to FIG. 1, a method for adjusting the inflatable portion 103 of the gastric band 105 comprises positioning the external controller 150 proximate to or within an operating distance of a patient, the skin 109 of the patient, and/or the implantable pump 110. The external magnet 170 in the external controller 150 generates a magnetic field, and the magnetic field couples the internal magnet 115 to the external magnet 170.


As the external magnet 170 moves in a first direction (for example, rotational or linear), the internal magnet 115 also moves in the first direction. As the external magnet 170 moves in a second direction (for example, rotational or linear), the internal magnet 115 also moves in the second direction. When the internal magnet 115 moves in the first direction, the piston 130 facilitates moving a first portion of the fluid from the reservoir 140 into the inflatable portion 103 of the gastric band 105. When the internal magnet 115 moves in the second direction, the piston 130 facilitates moving a second portion of the fluid from the inflatable portion 103 of the gastric band into the reservoir 140.


Unless otherwise indicated, all numerical parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the present invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the,” and similar referents used in the context of describing the present invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the present invention and does not pose a limitation on the scope of the present invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the present invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


In closing, it is to be understood that the embodiments of the present invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the present invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. A system for adjusting a gastric band for treatment of obesity having an inflatable portion, the system comprising: a non-implantable magnet configured to produce a magnetic field;a non-implantable motor, coupled to the non-implantable magnet, wherein said non-implantable motor is configured to move the non-implantable magnet in a rotational direction; and an implantable device comprising: a reservoir containing a fluid and coupled to the inflatable portion of the gastric band;a magnet magnetically coupled to the non-implantable magnet, wherein the magnet is configured to rotate in response to the non-implantable magnet rotating; anda piston coupled to the magnet, wherein the piston is configured to move in response to the magnet rotating,wherein said piston is configured to apply pressure on the fluid in said reservoir and cause a portion of the fluid in the reservoir to move into the inflatable portion of the gastric band, thereby providing the system for adjusting the gastric band for the treatment of obesity.
  • 2. The system of claim 1 wherein the implantable device further comprises a screw drive coupled between the magnet and the piston for moving the piston.
  • 3. The system of claim 1 wherein the piston is positioned adjacent to the reservoir and decreases a volume of the reservoir by moving the portion of the fluid to the inflatable portion of the gastric band.
  • 4. The system of claim 1 wherein the implantable device further comprises a seal disposed between the piston and the reservoir.
  • 5. The system of claim 1 wherein the reservoir in the implantable device comprises a flexible pouch for containing the fluid.
  • 6. The system of claim 5 wherein the pouch is coupled to the gastric band via tubing that carries the fluid from the pouch to the gastric band.
  • 7. The system of claim 1 wherein the non-implantable magnet rotates in a first direction causing the magnet to rotate in the first direction to move the portion of the fluid out of the reservoir into the gastric band.
  • 8. The system of claim 7 wherein the non-implantable magnet rotates in a second direction causing the magnet to rotate in the second direction to move a draining portion of the fluid out of the gastric band into the reservoir.
  • 9. The system of claim 8 wherein the first direction is clockwise and the second direction is counter-clockwise.
  • 10. The system of claim 1 wherein the magnet is magnetically coupled to the non-implantable magnet through the skin of a patient.
  • 11. The system of claim 1 further comprising a flow meter coupled between the reservoir and the gastric band to measure the amount of the fluid moving into or out of the inflatable portion of the gastric band.
  • 12. The system of claim 1 wherein the fluid is an incompressible fluid.
  • 13. The system of claim 1 further comprising an access port fluidly coupled between the reservoir and the inflatable portion of the gastric band for filling the inflatable portion of the gastric band via a subcutaneous injection.
  • 14. The system of claim 1 wherein the fluid is selected from a group consisting of a drug, a saline solution, and combinations thereof.
  • 15. The system of claim 1 further comprising a slidable seal connected to the piston, wherein the slidable seal maintains a seal with a housing of the implantable device as the piston moves within the implantable device.
  • 16. The system of claim 1 wherein the piston does not include a seal.
  • 17. A system for adjusting a gastric band for treatment of obesity having an inflatable portion, the system comprising: a non-implantable magnet configured to produce a magnetic field;a non-implantable motor, coupled to the non-implantable magnet, wherein said non-implantable motor is configured for moving the non-implantable magnet in a rotational direction; andan implantable device comprising: a volumetrically adjustable reservoir containing a fluid andcoupled to the inflatable portion of the gastric band;a magnet magnetically coupled to the non-implantable magnet, wherein the magnet is configured to rotate in response to the non-implantable magnet rotating; anda piston coupled to the magnet, wherein the piston is configured to move in response to the magnet rotation,wherein movement of said piston is configured to adjust the volume of the reservoir and displace a portion of the fluid in the reservoir to the inflatable portion of the gastric band.
  • 18. The system according to claim 1, wherein the non-implantable magnet, the magnet of the implantable device, and the piston are coaxially aligned.
US Referenced Citations (319)
Number Name Date Kind
2163048 McKee Jun 1939 A
3667081 Burger Jun 1972 A
3840018 Heifetz Oct 1974 A
4118805 Reimels Oct 1978 A
4157713 Clarey Jun 1979 A
4340083 Cummins Jul 1982 A
4406656 Hattler et al. Sep 1983 A
4450375 Siegal May 1984 A
4592339 Kuzmak Jun 1986 A
4592355 Antebi Jun 1986 A
4601713 Fuqua Jul 1986 A
4671351 Rappe Jun 1987 A
4696288 Kuzmak Sep 1987 A
4760837 Petit Aug 1988 A
4881939 Newman Nov 1989 A
4883467 Franetzki Nov 1989 A
4944659 Labbe Jul 1990 A
5045060 Melsky et al. Sep 1991 A
5074868 Kuzmak Dec 1991 A
5089019 Grandjean Feb 1992 A
5120313 Elftman Jun 1992 A
5160338 Vincent Nov 1992 A
5226429 Kuzmak Jul 1993 A
5259399 Brown Nov 1993 A
5326349 Baraff Jul 1994 A
5343894 Frisch et al. Sep 1994 A
5360445 Goldowsky Nov 1994 A
5449368 Kuzmak Sep 1995 A
5458568 Racchini et al. Oct 1995 A
5496312 Klicek Mar 1996 A
5535752 Halperin Jul 1996 A
5554113 Novak Sep 1996 A
5562714 Grevious Oct 1996 A
5601604 Vincent Feb 1997 A
5658298 Vincent et al. Aug 1997 A
5676162 Larson, Jr. Oct 1997 A
5733257 Sternby Mar 1998 A
5748200 Funahashi May 1998 A
5759015 Van Lintel et al. Jun 1998 A
5766232 Grevious Jun 1998 A
5807311 Palestrant Sep 1998 A
5861014 Familoni Jan 1999 A
RE36176 Kuzmak Mar 1999 E
5910149 Kuzmak Jun 1999 A
5938669 Klaiber et al. Aug 1999 A
6024340 Lazarus et al. Feb 2000 A
6024704 Meador Feb 2000 A
6042345 Bishop et al. Mar 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6102678 Peclat Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6164933 Tani et al. Dec 2000 A
6210347 Forsell Apr 2001 B1
6221024 Miesel Apr 2001 B1
6306088 Krausman et al. Oct 2001 B1
6327503 Familoni Dec 2001 B1
6409656 Sangouard et al. Jun 2002 B1
6417750 Sohn Jul 2002 B1
6432040 Meah Aug 2002 B1
6439539 Powell Aug 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6450987 Kramer Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6454785 De Hoyas Garza Sep 2002 B2
6460543 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6511490 Robert Jan 2003 B2
6527701 Sayet et al. Mar 2003 B1
6547801 Dargent et al. Apr 2003 B1
6579301 Bales et al. Jun 2003 B1
6676674 Dudai Jan 2004 B1
6681135 Davis et al. Jan 2004 B1
6685668 Cho et al. Feb 2004 B1
6691047 Fredricks Feb 2004 B1
6715731 Post et al. Apr 2004 B1
6729600 Mattes et al. May 2004 B2
6754527 Stroebel et al. Jun 2004 B2
6811136 Eberhardt et al. Nov 2004 B2
6820651 Seuret et al. Nov 2004 B2
6834201 Gillies Dec 2004 B2
6871090 He Mar 2005 B1
6889086 Mass et al. May 2005 B2
6940467 Fischer Sep 2005 B2
6966875 Longobardi Nov 2005 B1
7017583 Forsell Mar 2006 B2
7017883 Bayer et al. Mar 2006 B2
7021147 Subramanian Apr 2006 B1
7037344 Kagan et al. May 2006 B2
7040349 Moler et al. May 2006 B2
7048519 Fong et al. May 2006 B2
7058434 Wang Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7066486 Birk Jun 2006 B2
7118526 Egle Oct 2006 B2
7128750 Stergiopulos Oct 2006 B1
7191007 Desai Mar 2007 B2
7198250 East Apr 2007 B2
7204821 Clare et al. Apr 2007 B1
7206637 Salo Apr 2007 B2
7238191 Bachmann Jul 2007 B2
7282023 Frering Oct 2007 B2
7284966 Xu et al. Oct 2007 B2
7288064 Boustani et al. Oct 2007 B2
7310557 Maschino et al. Dec 2007 B2
7311503 Van Lintel et al. Dec 2007 B2
7311716 Byrum Dec 2007 B2
7311717 Egle Dec 2007 B2
7314443 Jordan et al. Jan 2008 B2
7338433 Coe Mar 2008 B2
7351198 Byrum Apr 2008 B2
7351240 Hassler Apr 2008 B2
7353747 Swayze et al. Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7366571 Armstrong Apr 2008 B2
7367340 Nelson May 2008 B2
7367937 Jambor May 2008 B2
7374565 Hassler, Jr. May 2008 B2
7390294 Hassler Jun 2008 B2
7396353 Lorenzen Jul 2008 B2
7416528 Crawford et al. Aug 2008 B2
7481763 Hassler Jan 2009 B2
7500944 Byrum Mar 2009 B2
7530943 Lechner May 2009 B2
7594885 Byrum Sep 2009 B2
7599743 Hassler Oct 2009 B2
7599744 Giordano Oct 2009 B2
7601162 Hassler, Jr. et al. Oct 2009 B2
7615001 Jambor Nov 2009 B2
7618365 Jambor Nov 2009 B2
7658196 Ferreri Feb 2010 B2
7699770 Hassler Apr 2010 B2
7727141 Hassler, Jr. et al. Jun 2010 B2
7758493 Gingras Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7771439 Griffiths Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7775966 Dlugos et al. Aug 2010 B2
7794386 Brooks Sep 2010 B2
7811298 Birk Oct 2010 B2
7844342 Dlugos et al. Nov 2010 B2
20010011543 Forsell Aug 2001 A1
20020072780 Foley Jun 2002 A1
20020091395 Gabbay Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020139208 Yatskov Oct 2002 A1
20020193679 Malave et al. Dec 2002 A1
20020198548 Robert Dec 2002 A1
20030019498 Forsell Jan 2003 A1
20030045775 Forsell Mar 2003 A1
20030055311 Neukermans et al. Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030073880 Polsky et al. Apr 2003 A1
20030158569 Wazne Aug 2003 A1
20030191433 Prentiss Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20040000843 East Jan 2004 A1
20040044332 Stergiopulos Mar 2004 A1
20040059393 Policker et al. Mar 2004 A1
20040133219 Forsell Jul 2004 A1
20040147816 Policker et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040162595 Foley Aug 2004 A1
20040215159 Forsell Oct 2004 A1
20040230137 Mouton Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20040260319 Egle Dec 2004 A1
20040267288 Byrum Dec 2004 A1
20040267291 Byrum et al. Dec 2004 A1
20040267292 Byrum Dec 2004 A1
20040267293 Byrum et al. Dec 2004 A1
20040267377 Egle Dec 2004 A1
20050002984 Byrum Jan 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050070937 Jambor Mar 2005 A1
20050104457 Jordan et al. May 2005 A1
20050119672 Benchetrit Jun 2005 A1
20050119674 Gingras Jun 2005 A1
20050131383 Chen et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050143765 Bachmann et al. Jun 2005 A1
20050143766 Bachmann et al. Jun 2005 A1
20050183730 Byrum Aug 2005 A1
20050192531 Birk Sep 2005 A1
20050192601 Demarais Sep 2005 A1
20050192614 Binmoeller Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050228415 Gertner Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050244288 O'Neill Nov 2005 A1
20050250979 Coe Nov 2005 A1
20050251181 Bachmann Nov 2005 A1
20050251182 Bachmann Nov 2005 A1
20050267406 Hassler Dec 2005 A1
20050267500 Hassler et al. Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283041 Egle Dec 2005 A1
20050288739 Hassler Dec 2005 A1
20050288740 Hassler Dec 2005 A1
20060041183 Massen et al. Feb 2006 A1
20060074439 Garner et al. Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060161186 Hassler et al. Jul 2006 A1
20060173238 Starkebaum Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060178555 Bortolotti Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060189887 Hassler Aug 2006 A1
20060189888 Hassler Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060197412 Rasmussen Sep 2006 A1
20060199997 Hassler Sep 2006 A1
20060211912 Dlugos Sep 2006 A1
20060211913 Dlugos Sep 2006 A1
20060211914 Hassler Sep 2006 A1
20060212053 Gertner Sep 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060247724 Gerber et al. Nov 2006 A1
20060252982 Hassler, Jr. et al. Nov 2006 A1
20060264699 Gertner Nov 2006 A1
20060276812 Hill et al. Dec 2006 A1
20070015954 Dlugos Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070016262 Gross et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070078476 Hull et al. Apr 2007 A1
20070125826 Shelton Jun 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070185462 Byrum Aug 2007 A1
20070218083 Brooks Sep 2007 A1
20070232848 Forsell Oct 2007 A1
20070235083 Dlugos Oct 2007 A1
20070250085 Bachmann et al. Oct 2007 A1
20070250086 Wiley Oct 2007 A1
20070255336 Herbert et al. Nov 2007 A1
20070265598 Karasik Nov 2007 A1
20070265645 Birk et al. Nov 2007 A1
20080009680 Hassler Jan 2008 A1
20080015406 Dlugos Jan 2008 A1
20080027469 Bachmann Jan 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080108862 Jordan et al. May 2008 A1
20080166028 Turek et al. Jul 2008 A1
20080221598 Dlugos Sep 2008 A1
20080249806 Dlugos Oct 2008 A1
20080250340 Dlugos Oct 2008 A1
20080250341 Dlugos Oct 2008 A1
20080255403 Voegele et al. Oct 2008 A1
20080255414 Voegele et al. Oct 2008 A1
20080255425 Voegele et al. Oct 2008 A1
20080255459 Voegele et al. Oct 2008 A1
20080255537 Voegele et al. Oct 2008 A1
20080287969 Tsonton et al. Nov 2008 A1
20080287974 Widenhouse et al. Nov 2008 A1
20080287976 Weaner et al. Nov 2008 A1
20080319435 Rioux et al. Dec 2008 A1
20090054914 Lechner Feb 2009 A1
20090062825 Pool et al. Mar 2009 A1
20090062826 Steffen Mar 2009 A1
20090082793 Birk Mar 2009 A1
20090118572 Lechner May 2009 A1
20090157106 Marcotte Jun 2009 A1
20090157107 Kierath et al. Jun 2009 A1
20090157113 Marcotte et al. Jun 2009 A1
20090171375 Coe et al. Jul 2009 A1
20090171378 Coe et al. Jul 2009 A1
20090171379 Coe et al. Jul 2009 A1
20090192404 Ortiz Jul 2009 A1
20090192415 Ortiz et al. Jul 2009 A1
20090192533 Dlugos, Jr. et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090192541 Ortiz et al. Jul 2009 A1
20090198261 Schweikert Aug 2009 A1
20090202387 Dlugos, Jr. et al. Aug 2009 A1
20090204131 Ortiz Aug 2009 A1
20090204132 Ortiz Aug 2009 A1
20090204141 Dlugos, Jr. et al. Aug 2009 A1
20090204179 Dlugos, Jr. et al. Aug 2009 A1
20090209995 Byrum et al. Aug 2009 A1
20090216255 Coe et al. Aug 2009 A1
20090222031 Axelsson Sep 2009 A1
20090222065 Dlugos, Jr. et al. Sep 2009 A1
20090228072 Coe et al. Sep 2009 A1
20090270904 Birk et al. Oct 2009 A1
20090306462 Lechner Dec 2009 A1
20090312785 Stone et al. Dec 2009 A1
20100010291 Birk Jan 2010 A1
20100087843 Bertolote et al. Apr 2010 A1
20100099945 Birk et al. Apr 2010 A1
20100100079 Berkcan Apr 2010 A1
20100152532 Marcotte Jun 2010 A1
20100185049 Birk et al. Jul 2010 A1
20100191271 Lau et al. Jul 2010 A1
20100228080 Tavori et al. Sep 2010 A1
20100249803 Griffiths Sep 2010 A1
20100280310 Raven Nov 2010 A1
20100305397 Birk et al. Dec 2010 A1
20100324358 Birk et al. Dec 2010 A1
20100324359 Birk Dec 2010 A1
Foreign Referenced Citations (56)
Number Date Country
1250382 Apr 2000 CN
1367670 Sep 2002 CN
4225524 Feb 1994 DE
10020688 Dec 2000 DE
0119596 Sep 1984 EP
0230747 Aug 1987 EP
0611561 Aug 1994 EP
0695558 Feb 1996 EP
0867808 Nov 1998 EP
1072282 Jan 2001 EP
1396242 Mar 2004 EP
1396243 Mar 2004 EP
1491167 Dec 2004 EP
1547549 Jun 2005 EP
1600183 Nov 2005 EP
1602346 Dec 2005 EP
1704833 Sep 2006 EP
1719480 Nov 2006 EP
1754890 Nov 2006 EP
1736123 Dec 2006 EP
2074970 Jul 2009 EP
2074971 Jul 2009 EP
2087862 Aug 2009 EP
2095796 Sep 2009 EP
2095798 Sep 2009 EP
2797181 Feb 2001 FR
2823663 Oct 2002 FR
2855744 Dec 2004 FR
2921822 Apr 2009 FR
2005-334658 Dec 2005 JP
WO 8911701 Nov 1989 WO
WO 0009047 Feb 2000 WO
WO 0009048 Feb 2000 WO
WO 0009049 Feb 2000 WO
WO 0015158 Mar 2000 WO
WO 0066196 Nov 2000 WO
WO 0110359 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0147575 Jul 2001 WO
WO 0149245 Jul 2001 WO
WO 0170131 Sep 2001 WO
WO 0226317 Apr 2002 WO
WO 02053093 Jul 2002 WO
WO 02065948 Aug 2002 WO
WO 03077191 Sep 2003 WO
WO 03105732 Dec 2003 WO
WO 2004014245 Feb 2004 WO
WO 2004019671 Mar 2004 WO
WO 2005007232 Jan 2005 WO
WO 2005009305 Feb 2005 WO
WO 2005087147 Sep 2005 WO
WO 2005094447 Oct 2005 WO
WO 2006083885 Aug 2006 WO
WO 2006108203 Oct 2006 WO
WO 2008109300 Sep 2008 WO
WO 2009132127 Oct 2009 WO
Non-Patent Literature Citations (5)
Entry
Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow,” New Ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; accepted Jul. 22, 2002.
“Innovative medical devices and implants,” LGSP Medical futures, p. 5.
Corno et al.; “FloWatchTM in clipped and inclipped position,” Interact Cardio Vase Thorac Surg 2002; 1:46-49.
BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub. Aug. 28, 2003 pp. 1-115.
Iverson et al.; “Recent Advances in Microscale Pumping Technologies: A Review and Evaluation”; Microfluid Nanofluid; vol. 5; pp. 145-174; Feb. 19, 2008.
Related Publications (1)
Number Date Country
20110301408 A1 Dec 2011 US