The present invention generally relates to an in-vivo device and more specifically to a magnets and sensing coils assembly for a maneuverable in-vivo device.
In-vivo measuring systems are known in the art. Some in-vivo devices/systems, which traverse the gastrointestinal (“GI”) system, may include an imaging sensor, or imager, for imaging (e.g., capturing images of) the interior of the GI system. An in-vivo device may include one or more imagers. Other in-vivo devices may alternatively or additionally include a medication container and means for administering medication in the GI system. Other in-vivo devices may include means for performing surgical operations in vivo.
Autonomous in-vivo devices are devices that traverse the GI system by being pushed through the GI system by peristaltic force exerted by the digestive system. Autonomous in-vivo devices may also spasmodically move in the intestinal tract in ‘fits and starts’. Moving a device in vivo by using a peristaltic force has drawbacks. For example, the in-vivo device may get stuck somewhere in the GI system for an unknown period of time; the device may capture images in one direction while a nearby area, which may be clinically more interesting, is not imaged sufficiently or at all.
In addition, due to the length of the intestinal tract (several meters), it takes an in-vivo device several hours to traverse the entire GI system. In order to minimize discomfort to a patient and to allow her/him to have as normal life as possible during that time, the patient is asked to wear a data recorder for recording the images captured in vivo, in order for them to be analyzed at a later stage (e.g., after the in-vivo device is finally pushed out of the GI). When a physician reviews the images, or a selection thereof, s/he cannot be certain that all the clinically interesting, or intended, areas of the GI system were imaged. In general, the shorter the time an in-vivo device stays in the GI system, the better (e.g., to reduce discomfort to the patient).
Due to the anatomically-inhomogeneous nature of the GI system—it has anatomically distinct sections such as the small bowel and the colon—and/or to different susceptibility of its various sections to diseases, indiscriminately handling large number of images and frames by the in-vivo device is oftentimes superfluous. In part, this is because relatively less susceptible areas of the intestinal tract are overly imaged. More susceptible areas of the intestinal tract, on the other hand, may be imaged sparingly. The number of images captured from susceptible areas of the intestinal tract may be smaller than clinically desired. It may often be desirable to examine only one specific part of the GI tract, for example, the small bowel (“SB”), the colon, gastric regions, or the esophagus.
While moving an in-vivo device through the GI is beneficial, there are some drawbacks associated with autonomous in-vivo devices in the GI tract. It would be beneficial to have a full control over such movement, including maneuvering the in-vivo device to a desired location and/or orientation and/or angular position or state in the GI system, and maintaining the location/orientation/angular position or state for as long as required or needed.
It would, therefore, be beneficial to be able to provide an in-vivo device that would be controllably maneuverable to a desired location and orientation, for example, in the GI system.
An in-vivo device includes a magnetic steering unit (“MSU”) to facilitate maneuvering of the in-vivo device by an externally generated electromagnetic field. The MSU may include a permanent magnets assembly (“PMA”) for interacting with the magnetic field to thereby produce a propelling magnetic force and/or a repelling magnetic force and/or a rotational force, for steering and rotating the in-vivo device. The PMA may include one permanent magnet, or a set of permanent magnets. A permanent magnet may be a ring, or it may be annular or ring-like shaped. The MSU may also include a magnets carrying assembly (“MCA”) that is designed to hold, accommodate, carry or support the permanent magnet or magnets. The MCA may also be designed such that an electromagnetic field may induce eddy currents on the MCA that are sufficient to generate the required repelling force. That is, the MCA may be designed to generate eddy currents as a result of an applied electromagnetic field.
The in-vivo device may also include a multilayered imaging and sensing printed circuit board (“MISP”). The MISP may include circuitry for capturing images, for example, of the GI system, and for transmitting images to an external data recorder. The MISP may also include a sensing coil assembly (“SCA”) for sensing electromagnetic fields in order to facilitate sensing, or determination, of a current location and/or current orientation and/or angular position or state of the in-vivo device. The SCA, which may be part of the MSU, may include one or more (e.g., two, three, etc.) electromagnetic field sensors (e.g., sensing coils) that may be disposed, for example, on one or more printed circuit boards (PCBs). The SCA may include a magnetic field sensing (“MFS”) section that may have embedded or formed therein some of the electromagnetic field sensing coils; other one or more electromagnetic field sensing coils may be included or formed in other PCB sections that may be structurally separated from the MFS section.
A transmitter transmitting the images, or a separate transmitter that may be mounted, for example, on, or be part of, the MISP or SCA, may transmit data that represents location and/or orientation and/or angular position of the in-vivo device to an external system (e.g., to an external maneuvering system) in order to enable the external system to generate a steering magnetic field to move the in-vivo device from a current location/orientation/angular position to a target (e.g., next required or desired) location/orientation/angular position, or to keep the in-vivo device in a certain or given location and/or orientation and/or angular position for as long as required.
In some embodiments, there may be full or some degree of structural and cylindrical/annular overlapping between the MFS section, when folded to a cylindrical shape, and the PMA. For example, the MFS section and the PMA may overlap fully (100%), or partly (less than 100%, e.g., 60%, 30%, etc.). In another embodiment, there may be no overlapping (0% overlapping) between the MFS section and the PMA.
Various exemplary embodiments are illustrated in the accompanying figures with the intent that these examples not be restrictive. It will be appreciated that for simplicity and clarity of the illustration, elements shown in the figures referenced below are not necessarily drawn to scale. Also, where considered appropriate, reference numerals may be repeated among the figures to indicate like, corresponding or analogous elements. Of the accompanying figures:
The description that follows provides various details of exemplary embodiments. However, this description is not intended to limit the scope of the claims but instead to explain various principles of the invention and the manner of practicing it.
In general, when an autonomous in-vivo device traverses the GI system, the faster the in-vivo device moves through a particular section of the GI system, the more pictures are required to be transmitted from the in-vivo device per unit of time in order to maintain a reasonable distance between GI sites for which successive pictures are taken. That is, if the in-vivo device is at rest, the pictures capturing rate, or image frames generation and/or transmission rate can be made relatively low without risking losing clinical information, and if it moves along the GI system, the pictures/frames generation/transmission rate should be higher in order to take approximately the same number of pictures per unit length. Therefore, some in-vivo imaging systems use a movement estimator for assessing the movement of in-vivo devices in order to enable the imaging systems to deduce the required image capturing rate. For example, in order not to waste physical space in the in-vivo device on a dedicated movement sensing device (e.g., accelerometer) and on the circuitry required to operate it, images captured by the in-vivo device are used to provide the movement indications. However, having full control over the location, orientation and angular position of an in-vivo device in the GI system renders the above-mentioned, and similar, frame rate changing solutions unnecessary, and, in general, such control has many advantages. By “orientation of the in-vivo device” is meant the spatial direction of the longitudinal axis of the in-vivo device, and changing the angular position or state of the in-vivo device from one angular position or state to another may be obtained by rotating the in-vivo device about its longitudinal axis or about any other axis of the in-vivo device.
The system may also include a magnetic maneuvering unit (“MMU”) 140 for generating the magnetic fields that induce the location/orientation/angular position signals in imaging device 110, for interpreting the corresponding location/orientation/angular position data transmitted from imaging device 110, and for generating a magnetic field to steer imaging device 110 to a desired location/orientation/angular position and, if desired or required, for generating the magnetic fields that induce electrical power in imaging device 110.
MMU 140 may include a device displacement module (“DDM”) 150 for translating an intended (e.g., next) location and/or orientation and/or angular position of in-vivo device 110 into a magnetic steering force to position imaging device 110 in the next desired position and/or orientation and/or angular position. MMU 140 may also include AC/DC power amplifiers 160 for generating the electrical signals 162 required to generate the three types of magnetic fields (one for magnetically inducing location and/or orientation and/or angular position signals, the other for generating the steering/rotational force, and the third for transmitting energy). MMU 140 may also include AC coils and DC coils 170 for generating the required magnetic fields from electrical signals 162. MMU 140 may include fiducial electromagnetic sensors 180 for producing an output signal (e.g., current or voltage) that represents or embodies a reference coordinates system relative to which the position and/or orientation of in-vivo device 110 may be sensed, determined, or changed.
Device displacement module (DDM) 150 may include sensors interpreter 152 for interpreting location signals and orientation signals originating from the magnetic steering unit (MSU) of in-vivo imaging device 110 and signals originating from fiducial sensors 180. DDM 150 may also include a location/direction regulator 154 for outputting a regulating signal to AC/DC power amplifiers 160 to generate magnetic fields that correct an ‘error’ in the location, and/or an error in the orientation, of in-vivo device 110. By “error in the location of in-vivo device 110” is meant a difference between a currently sensed location of in-vivo device 110 and a next location of the in-vivo device. By “error in the orientation of in-vivo device 110” is meant a difference between a currently sensed orientation of in-vivo device 110 and a next orientation of the in-vivo device. Data representing or related to the currently sensed location and/or orientation of in-vivo device 100 is shown at 124, and it may be provided to DDM 150, for example from data recorder 120. Data 132 representing or regarding the next location and/or next orientation of the in-vivo device may be provided to DDM 150, for example from a user-operable joystick connected to, or that is part of, user workstation 130.
After in-vivo imaging device 110 is swallowed, or otherwise ingested, it may start capturing images of the GI system, generate an image frame for each captured image, and transmit 112 the image frames to data recorder 120. In order for magnetic maneuvering unit (MMU) 140 to guide and control in-vivo device 110 in the GI system the location and orientation of the device has to be known in real-time. In order to know that, workstation 150 outputs a command 158 to AC/DC power amplifiers 160 to activate/operate coils 170 that generate electromagnetic field 172 to induce electromagnetic signals in device 110 (and, optionally, also in fiducial sensors 180), that indicate, or facilitate sensing of, the current location of in-vivo device 110. The magnetic steering unit (MSU) of in-vivo imaging device 110 may use an on-board sensing coil assembly to sense electromagnetic field 172, and may return a feedback signal, or feedback data, to MMU 140 (e.g., through data recorder 120), as described below. The on-board sensing coil assembly (SCA) of in-vivo device 110 may include three mutually perpendicular, or orthogonal, electromagnetic sensing coils for sensing electromagnetic field 172.
In-vivo device 110 is configured, among other things, to transmit 112 data, which is referred to herein as “location data”, “orientation data”, or “angular position data” (depending on the context) that represent the output signals of the sensing coil assembly (e.g., the sensors' readout), to data recorder 120. In other words, the signals output by the SCA, which may indicate the location and/or orientation and/or angular position of the in-vivo device, may be digitally represented by corresponding data. In one embodiment, in-vivo device 110 may transmit image frames with the location/orientation/angular position data embedded in them, or in selected image frames. In another embodiment in-vivo device 110 may transmit the location/orientation/angular position data independently of the image frames, for example by using a separate or dedicated transmitter and/or a separate communication channel.
Data recorder 120 may relay the location/orientation/angular position data to sensors interpreter 152 of workstation 150. Fiducial sensors 180, which also sense electromagnetic field 172, may be attached to the patient, and/or to a bed on which the patient lies surrounded by coils 170 that generate electromagnetic field 172. The output of fiducial sensors 180 may be also transferred to workstation 150, and location/direction regulator 154 may deduce the location/orientation/angular position of in-vivo device 110 from the location/orientation/angular position data originating from the in-vivo device, for example, relative to a reference coordinates system that may be represented by, or embodied in, the output signal(s) of fiducial sensors 180. Location/direction regulator 154 may also use the data originated from user workstation 130 (e.g., data 132) originated from the in-vivo device to calculate a corrective signal and to output a corresponding command to AC/DC power amplifiers to change electromagnetic field 172 such that in-vivo device 110 would be steered/maneuvered to the intended location and/or orientation. Workstation 150 may transfer various types of data 142 to user workstation 130 for display, etc., for example location data; orientation data; force that the in-vivo imaging device exerts or applies on a tissue wall of the GI system, etc. User workstation 130 may associate images that it receives 122 from data recorder 120, with the various types of data 142.
An in-vivo imaging device may have one or more imagers. By way of example, imaging device 110 include one imager; e.g., imager 212 (numbers of imagers other than one or two may be used, with suitable modifications to the methods discussed herein). In-vivo imaging device 110 also includes a light/illumination source 214, a frame generator 220, a controller 230, a storage unit 240, a transceiver 250, and a power source 203 for powering them. Power source 203 may include a charge storing device (e.g., one or more batteries) with electrical circuit that jointly facilitates transfer of electrical power from an external apparatus to the in-vivo device through electromagnetic induction. Controller 230, among other things, controllably operates illumination source 214 to illuminate areas traversed by in-vivo device 110, and coordinates or schedules the images capturing timing of imager 212. Imaging device 110 may also include a sensing coil assembly (SCA) 210. Controller 230 may coordinate or schedule the reading of the output of sensing coil assembly 210 and temporarily store captured images and related image frames in storage unit 240. Controller 230 may also perform various calculations and store calculation results in storage unit 240.
At the time of or shortly after in-vivo imaging device 110 is swallowed, or after some predetermined delay (e.g., 2 minutes), imager 212 may start capturing images of areas of the GI system. Because natural light does not enter the intestinal tract, imager 212 does not require a light shutter, as opposed to ‘regular’ (i.e., non-swallowable) imagers. The function of the light shutter is, therefore, implemented by the darkness inside the intestinal tract and by intermittently illuminating the FOV of imager 212. Typically, the exposure time of imager 212 is 2-3 milliseconds. Imager 212 includes an image sensor that may be, or include, an array of photo sensor elements (e.g., pixels) such as 256×256, 320×320, 1 Mega pixel or any other suitable array. Imager 212 outputs image data 213 by using a pixel format corresponding to the used pixels. For convenience, pixels are normally arranged in a regular two-dimensional grid/array. By using this kind of arrangement, many common operations can be implemented by uniformly applying the same operation to each pixel independently. Each image data represents a captured image and, optionally, additional selected portions thereof.
Frames generator 220 receives image data 213 and uses the image data to produce an image frame (“frame” for short) for the pertinent captured image. A frame typically includes a header field that contains information and/or metadata related to the frame itself (e.g., information identifying the frame, the serial number of the frame, the time the frame, the bit-wise length of the frame, etc.). A frame may also include an uncompressed version of the image data and/or a compressed version thereof, and a decimated image. The header may also include additional information, for example readout of sensing coil assembly 210 or readout of any additional sensor integrated into device 110.
Controller 230 may operate illumination source 214 to illuminate, for example, four times per second to enable capturing four images per second, and transceiver 250 to concurrently transmit corresponding frames at the same rate. Controller 230 may operate illumination source 214 to capture more images per second, for example seventeen images or more than seventeen images per second, and transceiver 250 to concurrently transmit corresponding frames at the same rate. Controller 230 may operate sensing coil assembly 210 directly or through another (e.g., slave) controller, and write a corresponding sensing data (e.g., the sensing coils readout) into the corresponding frame; e.g., into a frame that is to be transmitted immediately after each sensing of the magnetic field. After frames generator 220 produces a frame for a currently captured image and writes localization data into it, controller 230 wirelessly communicates 242 the frame to data recorder 120 by using transceiver 250. Data recorder 120 may be part of the magnetic maneuvering unit (MMU) 140 or a stand alone unit that is located close enough to the person in order to facilitate receiving and processing of the transmitted frames by data recorder 120.
Data recorder 120 may include a transceiver 244, a frame parser 270, and a processor 290 for managing transceiver 244 and frame parser 270. Data recorder 120 may include additional components (e.g., USB interface, Secure Digital (“SD”) card driver/interface, controllers, etc.), elements or units for communicating with (e.g., transferring frames, data, etc. to) both the regulator 154 of MMU 140 and the processing/displaying system that are configured to process the images captured, and the localization information sensed, by in-vivo device 110, and related data. In one embodiment transceiver 244 receives a frame corresponding to a particular captured image, and frame parser 270 parses the frame to extract the various data entities contained therein (e.g., image data, decimated image associated with, or representing the particular captured image, etc.). In another embodiment, some frames, which are referred to herein as “localization frames”, may be dedicated to carrying or transferring localization data, meaning that such frames may include localization data and, optionally, metadata related to the localization data, but not image data. Using localization frames in addition to image frames that may include both image data and localization data enables reading the localization data (e.g., the output of the sensing coils assembly 210) at a rate that is higher than the images capturing rate. For example, n (n=1, 2, 3, . . . ) localization frames may be transmitted (e.g., by being inserted) between two consecutive image frames, where, in this case, by “image frame” is meant a frame that includes image data and localization data.
The in-vivo imaging system of
In some embodiments, data representing the output of sensing coils assembly 210 may be transmitted to data recorder 120 by using image frames, and optionally by using also dedicated frames. The data representing the output of sensing coils assembly (SCA) 210 is (also) referred to herein as “localization data” or “sensing data”. In other embodiments, in-vivo device 110 may use a dedicated narrow-bandwidth telemetry channel to transmit the localization data to data recorder 120. The bit rate of the telemetry channel may be a few hundreds of Kilo bits per second (KBPS) (e.g., between 50 KBPS and 500 KBPS). In order to facilitate the dedicated narrow-bandwidth telemetry channel, transceiver 250 of in-vivo device 110 may include an additional transmitter which is not shown in
MISP 300 may include 1-layer portions or sections even though it is generally referred to as a ‘multilayered’ PCB. PCB section 340 may include three rigid sections, designated as 302, 304 and 306, that may be multilayered, and two flexible sections, designated as 394 and 396, that may also be multilayered. Flexible section 394 may connect rigid sections/portions 304 and 306 and be partly sandwiched between layers of these sections/portions. Section 396 may connect rigid sections 302 and 304 and be partly sandwiched between layers of these sections.
Referring to
Sections 304 and 306 may respectively hold, include, or accommodate electrical springs 390 and 392. Section 340 is shown in
Turning again to
Reference numeral 308 designates a flexible multilayered PCB dielectric substrate that holds, includes, or accommodates sensing coils 310 and 320. Each PCB layer of flexible multilayered PCB substrate 308 may hold, include, or accommodate some of the coil turns of sensing coils 310 and/or some of the coil turns of sensing coils 320. Example layers of a flexible multilayered PCB substrate are shown in
Nt=n×L=30×4=120 [1]
where n is the number of coil turns per layer and L is the number of layers of multilayered rigid section 302.
Also assume that the maximum magnetic field, Bmax, applied to sensing coil 330 is 400 Gauss, and the magnetic field is sinusoidally oscillating at 4 KHz.
The maximum voltage that a sensing coil outputs when placed in a magnetic field may be calculated by using formula [2]:
where B(t) is the magnetic field (vector), in Tesla, applied on the sensing coil; A is the coil's area in square meter [m2]; and {circumflex over (n)} is the coil direction (it is a unit vector that has no physical units)—i.e., it is a direction normal to the coil's area.
Given the above-mentioned specifics of sensing coil 330 and using formula [2], the theoretical maximum voltage that coil 330 would output is:
|VMAX|=0.04 [Gauss]*2π4,000 [Hz]*1*38*120*10−6=4.58 [V] [3]
Nt=20×4(layers)×2(opposing sides)=160 [4]
Also assume that the maximum magnetic field, Bmax, applied to sensing coils 310, 320 is 400 Gauss, and the magnetic field is sinusoidally oscillating at 4 KHz.
Given the above-mentioned specifics of sensing coils 310 and 320, and using formula [2] above, the theoretical maximum voltage that each of coils 310 and 320 would output is:
|VMAX|=0.04 [Gauss]*2π4,000 [Hz]*1*32*160*10−6=5.15 [V] [3]
Since section 350, with the coil turns on it, is folded to form a cylindrical structure, a correction factor may be used to compensate for the deviation from the plane of the coil turns. The maximum voltage that each of coils 310 and 320 would output after factoring in the curvature of section 350 is:
|VMAX|=5.15*2√{square root over (2)}/π=4.6 [V] [6]
Another factor that reduces the voltage induced in coils 310 and 320, and therefore is to be taken into account, is the eddy current that each coil turn develops as a result of the external AC magnetic. An advantage of the external AC magnetic field is that it induces eddy currents for repelling and restraining the in-vivo device while the device is maneuvered. However, the same AC magnetic field also induces eddy currents in the coils' turns that are harmful because these currents attenuate the voltage induced in the coils' turns. Therefore, equations 3 and 5 are required to be modified to accommodate for the attenuation caused by the eddy current. The attenuation factor was empirically found to be between 2 to 8.
When the sensing coils assembly (e.g., MFS section 400) is connected to a voltmeter and subjected to a magnetic field, the voltage at the output of the sensing coils assembly can be accurately determined and, there from, the intensity of the magnetic field. Comparison, by the magnetic maneuvering unit (MMU) 140, between the calculated magnetic field and a known map of the magnetic field can be used to calculate the location and orientation of the device. Alternatively, a sensing coils assembly similar to MFS section 400 may be connected to a low impedance device, such as rechargeable batteries or capacitor(s) in order to activate or charge it. An electrical current induced in the sensing coils may be used to charge the batteries or the capacitor and, in doing so, to ‘harvest’ power from external coils 170. Alternatively, a separate coil may circumferentially be disposed on the magnets carrying assembly (MCA) or on one of the permanent magnets that is disposed on the MCA, which is dedicated to picking up energy from an external AC magnetic field.
An external DC magnetic field would force permanent magnets PM1, PM2, and PM3, and therefore in-vivo device 600, to move in a desired direction, for example in the ‘Z’ direction, which may be the direction coinciding with the longitudinal axis 640 of in-vivo device 600, or to apply a torque to rotate in-vivo device 600 to a desired orientation. Variable AC and DC magnetic fields generated externally to the patient (e.g., by magnetic maneuvering unit (MMU) 140) may provide the magnetic forces and rotational torques required to move in-vivo device 600, and to tilt and rotate it within the GI system, based on commands issued by an operator of the magnetic maneuvering system.
Referring to
The permanent magnets shown in
An in-vivo device such as the one disclosed herein may be useful in promoting medical diagnostic procedures or other procedural operations that require or can use in vivo steering of an in-vivo device, for example through the GI system. An in-vivo device (e.g., in-vivo device 600) may be provided with at least two permanent magnetic rings (which are also referred to herein as “permanent annular magnets”), or disks or plates, each of which may have anisotropic magnetic properties.
When an AC magnetic field is applied to tubular object 710, annular disc 720 and disc 730, eddy currents flow on the surface of these objects. A slit 712 disconnects the electrical continuity of these elements in order to reduce parasitic currents. Without slit 712, the eddy currents induced by the external AC magnetic filed may induce adversary eddy currents that may degrade the efficiency of MCA 700 as it is levitated, or otherwise maneuvered, under the pertinent laws of physics (e.g., Lenz's Law).
More than one slit may be used:
In general, MCA 700 may serve three purposes: (1) holding or accommodating the (annular, ring or ring like) permanent magnets (e.g., PM1, PM2, PM3 of
Turning again to
An in-vivo device may be maneuvered by electromagnetic repulsion-levitation interaction between external static and time varying magnetic fields that may be generated, for example, by external AC/DC coils 170, and any of the elements shown in
The primary PCB branch may include PCB portions 810, 820 and 860, a PCB portion 814 that connects portions 810 and 820, and a PCB portion 862 that connects portions 820 and 860. A first secondary PCB branch may include PCB portions 820, 830, 840 and 850, a PCB portion 832 that connects PCB portions 830 and 820, a PCB portion 852 that connects PCB portions 850 and 820, and, similarly, a PCB portion that connects PCB portions 840 and 820. A second secondary PCB branch may include PCB portions 860, 870, 880, a PCB portion that connects PCB portions 860 and 870, and a PCB portion that connects PCB portions 870 and 880. The tertiary PCB branch includes PCB portions 880, 884, and 890.
Some portions of MISP 800 may be common to two or more PCB branches: PCB portion 820 is common to the primary PCB branch and the left secondary branch; PCB portion 860 is common to the primary PCB branch and the right secondary branch; and PCB portion 880 is common to the right PCB branch and the tertiary branch. The common PCB portions of MISP 800 may be thought of as ‘PCB hubs’, or PCB intersection hubs/points, and the PCB branches of MISP 800 may be regarded as being functionally interconnected via the intersection hubs.
Each PCB portion of MISP 800 may hold, include, or accommodate an optical and/or electrical component of the in-vivo device. For example, PCB portion 810 may hold, include, or accommodate an imager, as shown at 812; PCB portion 820 may hold, include, or accommodate a crystal oscillator, as shown at 822; PCB portion 830 may hold, include, or accommodate a first spring coil, as shown at 834; PCB portion 840 may hold, include, or accommodate an RF communication antenna, as shown at 842; PCB portion 850 may hold, include, or accommodate a light emitted diode (“LED”) ring, as shown at 842 (the LED ring is shown including four LEDs, but it may include less than four LEDs or more than four LEDs); PCB portion 860 may hold, include, or accommodate a switch, as shown at 862; PCB portion 870 may hold, include, or accommodate a second spring coil, as shown at 872; PCB portion 880 may hold, include, or accommodate a microcontroller, as shown at 882; PCB portion 884 may hold, include, or accommodate X-Y sensing coils (the sensing coils are not shown in
MISP 800 may be fully flexible or partly rigid and partly flexible (i.e., it may be rigid-flex, meaning that it may include flexible portions and rigid portions). For example, each of MISP portions 810, 820, 830, 840, 850, 860, 870, 880, and 890, may be rigid or flexible. MISP portion 884 may be flexible to enable folding it into a cylindrical shape. Each of the connection portions of MISP 800 may be flexible. Each portion of MISP 800 may have n layers (n=1, 2, 3, . . . , ), and the various circuit components mounted on the various layers may be electrically interconnected through micro vias. MISP 800 is shown contained in housing 888 of the in-vivo imaging device.
Since magnets carrier assembly (MCA) 700 is made of electrically conducting material(s), it may shield the sensing coils of the MISP and, therefore, degrade its performance. Therefore, as shown in
One embodiment of the invention includes a swallowable capsule or a swallowable in-vivo device including an MSU maneuverable by an externally generated electromagnetic field. The MSU may include a PMA which interacts with the magnetic field to produce a force such as propelling force and/or a repelling force and/or a rotational force, for maneuvering/steering and/or rotating the in-vivo device. The PMA may include at least one permanent magnet, and an MCA to hold, or accommodate, the at least one permanent magnet, said MCA designed to induce eddy currents as a result of an applied electromagnetic field. The capsule or device may include an SCA for sensing electromagnetic fields in order to facilitate sensing of a current location and/or current orientation and/or current angular position of the in-vivo device. The SCA may include electromagnetic field sensing coils, for example disposed on one or more foldable printed circuit boards sections.
The examples described above (for example in connection with
As shown in
The MSU may include a permanent magnets assembly (PMA) for steering in-vivo device 1300. The PMA may include a magnets carrying assembly (MCA) and one or more permanent magnets that may be held in, included in, or accommodated by the MCA. The MCA may be identical or similar to, and it may function in the same or similar manner as, for example, MCA 700 of
Tubular object 1390 and four annular conductive discs 1392, 1394, 1396, and 1396 circumferentially form three open annular channels on the periphery of conductive tubular object 1390. The three open annular channels formed by the example conducting tubular object and the example four annular conductive discs are shown accommodating permanent annular magnets 1384, 1386, and 1386. The number of annular open channels may be three, less than three, or more than three, and the number of annular conductive discs may change accordingly. An annular open channel may include one or more permanent magnet(s), and the width of the annular open channel may change accordingly. By way of example, each annular open channel in
In-vivo device 1300 may also include a multilayered imaging and sensing PCB (MISP) for sensing electromagnetic fields by which current location and/or current orientation and/or current angular position of the in-vivo device may be determined. The MISP may include, among other things, an SCA, for sensing electromagnetic fields, and a transmitter for transmitting data, which may correspond, for example, to or represent one or more sensed electromagnetic fields, to an external data recorder or maneuvering system. Turning back to
Rigid PCB sections, for example rigid PCB sections of the MISP, may be structurally and electrically interconnected by one or more flexible PCB sections. A PCB section may be multilayered, where layers thereof may be electrically interconnected through vias. The entire, part, or most of the MISP may be flexible, while the other sections or parts of the MISP may be rigid. Electrical components (e.g., image sensor(s), ASIC, transmitter, illumination sources, controller, etc.) may be mounted on various PCB sections of the MISP. For example, illumination sources 1332 and 1334 are mounted on PCB section 1330 of the MISP; an image sensor 1342 and ASIC 1344 are mounted on PCB section 1340 of the MISP, a radio frequency (“RF”) operated switch 1352 and a conductive spring coil 1354 are mounted on PCB section 1350 of the MISP; various electrical components are generally shown, at 1362, mounted on PCB section 1360 of the MISP; additional electrical components (e.g., a controller 1376) are generally shown mounted on PCB section 1370 of the MISP.
MFS section 1374 may include (for example it may have mounted thereon, or embedded in, incorporated or formed therein) a set of electromagnetic sensing coils. PCB section 1372 may also include (for example it may have mounted thereon, or embedded in, incorporated or formed therein) an electromagnetic sensing coil that may functionally be part, or an extension, of MFS section 1374. Signals that are induced in the electromagnetic sensing coils of MFS section 1374 and PCB section 1372 by timely generated/transmitted sensing electromagnetic fields facilitate determination of the current location and/or current orientation and/or current angular position of the in-vivo device. Such determination may be made internally, for example, by controller 1376 of in-vivo device 1300 and communicated to an external system, or externally, for example by transmitting, from the in-vivo device to an external system, data that may represent the sensing coils' output in order for the external system to deduce the in-vivo device's current location and/or orientation and/or angular position from that data.
Magnetic field sensing (MFS) section 1374 is shown folded in
In-vivo device 1300 also includes a power source that may include one or more batteries. By way of example, the power source of in-vivo device 1300 may include two batteries: battery 1380 and battery 1382. Batteries 1380 and 1382 may be rechargeable, for example they may be recharged by harvesting energy wirelessly; e.g., by exploiting electromagnetic radiation. Battery 1380 may be held in place between battery 1382 and PCB section 1350 by conductive spring coil 1354.
The length, L, of in-vivo device 1300 may be, for example, about 36 millimeters (e.g., 36.3 millimeters); the diameter, D, of in-vivo device 1300 may be, for example, about 13 millimeters (e.g., 13.4 millimeters). In-vivo device 1300 may have other lengths (e.g., 33 millimeters) and other diameters (e.g., 12 millimeters). Reference numeral 1378 designates a flexible PCB section of the in-vivo device's MISP that connects PCB section 1370 to PCB section 1372.
MISP 1500 includes a primary PCB section 1520. Primary PCB section 1520 may include PCB sections 1330, 1340, 1350, 1360, and 1370, and the PCB sections that connect them. PCB sections 1330, 1340, 1350, 1360, and 1370 are lined up side by side, in a row. PCB section 1330, which may include the illumination source(s) (as shown in
MSF section 1374 may hold, include, or accommodate X-Y sensing coils (the sensing coils are not shown in
MFS section 1374 and PCB section 1372 make up, or form, SCA 1530. Trailing PCB section 1370, which is structurally and functionally connected to MFS section 1374 and to PCB section 1372 (via PCB section 1379 and PCB section 1378, respectively), may be regarded as a structural and functional PCB junction, or an intersection hub, that interconnects primary PCB section 1520 and SCA 1530.
In accordance with
The MSIP may further include a sensing coils assembly (SCA) that may include a magnetic field sensing (MFS) section (e.g., MSF section 1374) and a PCB section (e.g., second PCB section 1372), the MFS section and the second PCB section may be connected via, or to, the (junction-like) second/trailing PCB section. The MSF section may include sensing coils for sensing electromagnetic fields in two axes of the X-Y-Z coordinates system (e.g., X and Y axes), and the PCB section/portion may include a sensing coil for sensing an electromagnetic field in a third axis (e.g., Z axis). The sensing coil that senses the electromagnetic field in the third axis and the PCB portion on which it is mounted or formed may be regarded as part of the MSF section.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article, depending on the context. By way of example, depending on the context, “an element” can mean one element or more than one element. The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”. The terms “or” and “and” are used herein to mean, and are used interchangeably with, the term “and/or,” unless context clearly indicates otherwise. The term “such as” is used herein to mean, and is used interchangeably, with the phrase “such as but not limited to”.
Having thus described exemplary embodiments of the invention, it will be apparent to those skilled in the art that modifications of the disclosed embodiments will be within the scope of the invention. Alternative embodiments may, accordingly, include more modules, fewer modules and/or functionally equivalent modules. The present disclosure is relevant to various types of in-vivo devices (e.g., in-vivo devices with one or more imagers, in-vivo devices with no imagers at all, etc.), and to various types of electromagnetic field sensors (e.g., various types of magnetometers). Hence the scope of the claims that follow is not limited by the disclosure herein.
The present application is a continuation of U.S. patent application Ser. No. 13/314,273, entitled “MAGNETICALLY MANEUVERABLE IN-VIVO DEVICE”, filed on Dec. 8, 2011 and published as US Patent Application Publication No. US 2012/0149981, which in turn claims the benefit of prior U.S. Provisional Patent Application No. 61/420,937, entitled “MAGNETICALLY MANEUVERABLE IN-VIVO DEVICE”, filed on Dec. 8, 2010, and U.S. Provisional Patent Application No. 61/491,383, entitled “MAGNETICALLY MANEUVERABLE IN-VIVO DEVICE”, filed on May 31, 2011, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61420937 | Dec 2010 | US | |
61491383 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13314273 | Dec 2011 | US |
Child | 13966526 | US |