The field of the invention is electronic instrument triggers and more particularly to triggers for use with cymbals and percussion instruments.
The background description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
In the past few decades, drum triggers have increasingly been used with acoustic drums for live performances and studio recordings. In many instances, drum triggers can overcome potential problems with using microphones and can allow a drummer to have more control over the sound of the drum. In effect, the addition of a drum trigger to an acoustic drum converts the acoustic drum to an electric drum pad.
The '570 patent is directed to a new and improved drum trigger that addresses the problems associated with the prior art as discussed in the Background of that application.
In addition to drum instruments, drummers use a variety of cymbal and related instruments that also require triggering in the context of a complete electronic drum kit solution. Prior attempts to trigger cymbals suffer due to poor mechanisms and manners of attaching the trigger device to the cymbal. Often these devices suffer from ineffective sensitivity due to mounting method used or to failure of the mounting method and loss of triggering altogether or need to re-attach trigger to the cymbal. Repeated failures are not only undesired but also cause the devices to degrade over time requiring replacement thus adding to cost.
U.S. Pat. App. Publication 2012/0118130, ELECTRONIC CYMBAL ASSEMBLY WITH MODULAR SELF-DAMPENING TRIGGERING SYSTEM, (Field) discloses a “choke system to stop triggering . . . basically as an on and off switch” for use with a hi-hat type cymbal instrument wherein “when one hits the choke it will trigger a sound that is sent to the sound module, so that a computer associated with the sound module will basically tell the sound system to shut off” The Field set up “includes a trigger system that uses half of the surface area of the cymbal and is attached by nuts and bolts.” A complicated variable resistor riding in a sleeve co-axially with the plunger and clutch mechanism of the hi-hat is required to accomplish the triggering of the Field system.
U.S. Pat. No. 7,323,632, PERCUSSION TRANSDUCER, (Wachter) discloses use of a center-axis piezo transducer mounted between the center mounting hole of a cymbal and a washer along a cymbal mount spindle. The '632 patent specifically teaches away from a non-center-axis located transducer of
Thus, there is a need for improved cymbal triggers and chokes associated with full and enjoyable use of cymbal triggers.
The present invention provides apparatus, systems, and methods in which a drum trigger has a first member, which may be a securing device, and a second member, which may be a trigger, which go on either side of a cymbal. The securing device can magnetically couple to the trigger, such that the cymbal surface is interposed between the securing device and the trigger. This configuration allows the trigger to non-concentrically attach directly to the cymbal without modifying or damaging the cymbal with without disassembly and without the need for nuts and bolts. The choke of the present invention is attached partially about the circumference of a portion of the cymbal and provides an electrical means for interrupting or choking the sound associated with the trigger device based on the signal communicated to the sound module. The choke may be used on either a plastic cymbal, such as typically used for practice or for e-drum kit set up and may also be used with traditional metallic cymbals.
The trigger securing device magnets are preferably of the rare-earth element type, such as neodymium magnets. The drum trigger further comprises a sound-receiving element, such as a piezoelectric transducer, which translates the vibrations of the cymbal when played into a digital or analog electrical signal such as by a sound module commonly associated with electronic drum equipment. The sound-receiving element, (e.g. piezoelectric transducer) is electrically coupled to an analog or digital sound management system. In some embodiments, the digital sound management system is a drum sound module, and the piezoelectric transducer is connected to the drum sound module via a TRS jack.
The cymbal trigger and choke assembly of the present invention is advantageous over prior art cymbal trigger devices because it is more accurate, more durable, and easier to use than the prior art trigger devices. The cymbal trigger of the present invention is magnetically secured to the cymbal. This enables the trigger to move with the vibrations of the cymbal on which it is disposed while capturing the exact vibrations and tone of the instrument while avoiding “bounce” or double triggering or cross-triggering.
In this manner the present invention provides the following exemplary advantages over the prior art: Instantly provides dampening for quiet play consistent with electronic cymbals; No alteration to cymbals; Provides muting ability/retro fit e-cymbals without capability; With mute/dampener our trigger can be used as single source for typical trigger setup on drum kit.
In a first exemplary embodiment, the present invention provides A choke and trigger apparatus, the trigger being magnetically mounted to a cymbal or cymbal stand and used to generate a signal derived from a vibration detected upon a user operating a cymbal, the choke and trigger apparatus comprising: a trigger adapted to be removably mounted onto a cymbal or cymbal stand and comprising: a housing; a magnet disposed and secured within the housing and adapted to removably secure the trigger to the cymbal or cymbal stand; a piezo-electric transducer having an electrical output and being disposed within the housing, the piezo-electric transducer being essentially electrically and physically isolated from the magnet and adapted to generate an electrical signal in response to a detected mechanical vibration associated with operation of the cymbal; a choke adapted to be mounted onto the cymbal or cymbal stand and to sense a touch of a hand for interrupting a signal associated with the electrical signal, the choke comprising: a sensor disposed on the cymbal and adapted to sense the touch of a user operating the cymbal; means to cause an electrical response to the sensed touching.
In addition the invention may be further characterized as follows: comprising a securing device, the securing device comprising a second housing and a second magnet disposed within the second housing, whereby with the trigger disposed opposite the securing device the respective magnets are attracted to each other with the cymbal disposed between the trigger and the securing device; further adapted to deliver the electrical signal to an input of an electronic drum module, the electronic drum module being adapted to process the trigger electrical signal and produce an audio signal representative of a sound associated with operation of a musical instrument; further comprising an electrical combination device adapted to be electrically connected to the trigger and to the choke and to generate an output representing the trigger electrical signal as unchoked and as choked; wherein the trigger magnet is a type of rare earth magnet; further comprising an electrical lead having a tip-ring-sleeve (TRS) jack, XLR connector, or other suitable connector with a termination adapted to operatively connect to an electronic module; and wherein the choke comprises a Force-Sensing Resistor sensor.
In order to facilitate a full understanding of the present invention, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present invention, but are intended to be exemplary and for reference.
The present invention will now be described in more detail with reference to exemplary embodiments as shown in the accompanying drawings. While the present invention is described herein with reference to the exemplary embodiments, it should be understood that the present invention is not limited to such exemplary embodiments. Those possessing ordinary skill in the art and having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other applications for use of the invention, which are fully contemplated herein as within the scope of the present invention as disclosed and claimed herein, and with respect to which the present invention could be of significant utility.
The following discussion provides example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
In some embodiments, the numbers expressing quantities used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, and unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints and open-ended ranges should be interpreted to include only commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.
With reference to
The housing body 110 of the trigger 100 may be substantially cylindrical, cuboid, or any other suitable shape. The top 116 of the housing may not have opening 112 and may instead be flat and covered in a buffer layer composed of silicone, foam, foam-rubber, or other suitable material. In a preferred embodiment, the silicone buffer layer 130 and silicone buffer layer 140 will comprise a thin layer of silicone secured in the housing body 110 by an adhesive such as an epoxy. However, the silicone buffer layer 130 and silicone buffer layer 140 may also be secured directly to the magnet 120 and piezoelectric transducer 140 respectively. The silicone buffer layer 130 is adapted to provide a physical and electrical barrier between the magnet 120 and piezoelectric transducer 140, and may comprise any other suitable material such as rubber or foam. The silicone buffer layer 150 is adapted to provide a non-skid and impact resistant layer on the bottom 118 of the trigger housing 110, and may comprise any other suitable material such as rubber or foam. The silicone buffer layer 150 keeps the trigger 100 from sliding or shifting from its position even when the trigger 100 is subjected to intense vibrations. Grommet 160 is adapted to fit within the opening 112 on the top 116 of the housing 110, and may comprise a material such as rubber, silicone rubber, or similar suitable elastic material. The grommet 160 may have an opening and may be adapted to fit on and/or receive a lug, screw, or other similar protrusion. The magnet 120 in the trigger 100 may be a neodymium or similar rare earth magnet, which are strong permanent magnets made from alloys of rare earth elements, with suitable Gaussian pull strength, e.g. at least 2500 Gauss. The magnet 120 may comprise the following technical specifications: 20 mm diameter×5 mm thick (0.79″ diameter×0.20″ thick); material: Neodymium (NdFeB); grade: N48; coating: Nickel (Ni); magnetization: through thickness; and pull force: 19.68 pounds. The magnet 120 is adapted to releaseably and magnetically secure the trigger 100 to a ferrous or magnetic structure such as in the securing device 200. However, in some embodiments the magnet 120 may simply be a magnetically attractive plate or disk instead of a magnet and may be attracted to a magnet 220 in the securing device, or vice versa.
The securing device 200 comprises a housing 210 having an opening adapted to receive a magnet 220. Securing device 200 may also be a magnet 220 without housing 210 and having a coating such as a rubberized coating or an impact-resistant gel coating, such as plastic, plastic blend, rubber, rubber blend, or other suitable impact-resistant material. Similarly, the magnet 120 in the trigger 100 may also have a coating such as a rubberized coating or an impact-resistant gel coating, such as plastic, plastic blend, rubber, rubber blend, or other suitable impact-resistant material. The securing device 200 may also have an additional buffer layer on the bottom of the securing device 200 that may be comprised of silicone, rubber, or other suitable material. If used, this layer would aid in keeping the securing device in place and in magnetic attraction with the trigger 100.
The piezoelectric transducer 140 may also be any suitable sound-receiving unit capable of translating a mechanical signal (e.g. vibration of the drumhead) into an electrical (analog or digital) sound signal. The piezoelectric transducer 140 may have the following technical specifications: plate diameter: 27 mm (1.06 inches); element diameter: 20 mm (0.787 inches); plate thickness: 0.54 mm (0.021 inches); lead length: ˜50 mm (1.96 inches); plate material: brass; resonant frequency (kHz): 4.6+/−0.5 kHz; resonant impedance (ohm): 300 maximum; and capacitance (nF): 20.0+/−30 % [1 kHz].
In one embodiment, the transducer 140 may instead be a force sensing resistor (“FSR”) capable of producing differing voltages as force is applied to the sensor. Many modules, such as drum module 300 shown in
The use of rare earth magnets on the top in the securing device 200 and bottom in the trigger 100 of a drumhead provides a superior ability to capture and transfer vibrations from the playing surface to a piezoelectric transducer 140 regardless of the size of the drum. The strength of the magnets 120 and 220 also provides a dampening effect that makes it ideal for both electronic and hybrid drums with no permanent alterations to the drum. Additionally, by being magnetically attached, the trigger 100 may vibrate along with the surface or instrument on which it is attached without affecting the sound, tone, or timbre of the instrument. Floating also enables the trigger 100 to be far more sensitive than traditional drum triggers. Being magnetically attachable also enables the trigger 100 to be placed anywhere desired by the musician or user. Additionally, because the trigger 100 may be disposed within a drum or other instrument, the trigger is not likely to be damaged from being struck or impacted in normal use or operation as the only electronic components are inside the instrument out of harm's way.
The use of the trigger 100 provides increased frequency response and reduces the likelihood of double triggering, especially when used with a musical instrument. Trigger 100 records a clearer, more defined initial strike and has a more consistent waveform tapering after the initial strike. The waveform length is shorter resulting in a shorter decay time. This increases a module's, such as module 300 shown in
With reference now to
A drum module 300 may have a display 310, set of controls 320, a set of inputs 330, and a set of outputs 340. The trigger 100 is adapted to connect to the module 300 by way of the electronic lead 170 to an input 330. Configuring the drum module is performed by manipulating the inputs 320 and using the display 310 to view the current configuration and options for the module 310. The module 300 may be connected to additional equipment such as speakers, computers, amplifiers, and additional electronic modules by way of outputs 340 which may comprise universal serial bus (USB) ports, TRS receptacles, XLR female receptacles, RJ-45 jacks, or other suitable connections.
In typical operation, a mechanical signal, e.g. a strike of a drum head or drum shell or cymbal, is translated by the piezoelectric transducer 140 in the trigger 100 into an electrical signal. This electrical signal may comprise a level which may fall on a range of 127 or more levels. This signal is received by the module 300 and the module 300 determines how to interpret the signal. For example, if the trigger 100 is disposed on a drum, and the signal is an electrical representation of the strike of a drum or a cymbal, the module 300 may determine which sound from a library of sounds to output to the outputs 340. The module 300 may also make this determination based on a set of settings used to configure the module. The set of settings may be selected from a library of configurations or settings stored in or loaded onto the module 300. The module 300 may be manipulated by the inputs 320 to fine tune the module to the particular implementation of the trigger 100. These fine tunings may be used to employ a plurality of triggers 100 on a single instrument. The trigger 100 is adapted to be used with a plurality of other triggers 100 to create a set of “zones” on an instrument, e.g. a drum. The trigger 100 does not receive cross-talk interference from other triggers like trigger 100 used on the same instrument, and when used as a set of triggers 100, does not suffer from “hot-spotting” which is the higher sensitivity of particular areas on an instrument such as a drum.
With reference now to
With reference now to
With reference now to
With reference now to
With respect to
With reference now to
With reference now to
The choke assembly described above can be used in connection with the trigger embodiments of
With reference now to
With reference now to
The cymbal choke assembly described above can be included to the embodiments described in
With reference now to
While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concept described. In implementation, the inventive concepts may be automatically or semi-automatically, i.e., with some degree of human intervention, performed. Also, the present invention is not to be limited in scope by the specific embodiments described herein. It is fully contemplated that other various embodiments of and modifications to the present invention, in addition to those described herein, will become apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the following appended claims. Further, although the present invention has been described herein in the context of particular embodiments and implementations and applications and in particular environments, those of ordinary skill in the art will appreciate that its usefulness is not limited thereto and that the present invention can be beneficially applied in any number of ways and environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present invention as disclosed herein.
The present application claims benefit of priority to U.S. Provisional Patent Application 62/295,483, entitled MAGNETICALLY SECURED CYMBAL TRIGGER AND CHOKE ASSEMBLY (Suitor), filed Feb. 15, 2016, and to U.S. Utility Patent Application Ser. 14/988,570, entitled MAGNETICALLY SECURED INSTRUMENT TRIGGER (Suitor), filed Jan. 5, 2016 (the “'570 patent”), both of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62295483 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14988570 | Jan 2016 | US |
Child | 15433990 | US |