The present invention relates generally to the field of medical devices and in particular to a device and method for magnetizing a tissue-penetrating medical tool.
Unless explicitly indicated herein, the materials described in this section are not admitted to be prior art.
There are numerous medical procedures that involve the insertion of a medical tool or instrument, such as a needle, cannula, catheter or stylet, into a subject's body, e.g. minimally-invasive surgical procedures, local anaesthesia, detection of bio-electrical signals, electrical stimulation for diagnosis or treatment, vascular access, fine needle aspiration, musculoskeletal injections and so on. In such procedures it is generally necessary to guide the medical tool properly to the desired position in the subject's body and it can also be beneficial to monitor or track the medical tool position to ensure that it remains at the desired location. In general it is very difficult for the user to determine the exact position of the tip of the medical tool and thus to be sure whether it is in the desired place, for example adjacent a nerve, or whether it has undesirably penetrated something else, for example a blood vessel.
It has been proposed to use x-ray techniques for needle guidance by providing the clinician with an x-ray image of the needle in the body. However in view of the risks associated with exposure to electromagnetic radiation, it is not possible to provide continuous guidance during insertion of the medical tool and so a series of snapshots are relied upon, which does not give optimal guidance.
More recently the use of ultrasound imaging to guide needle and catheterisation procedures has been proposed. Ultrasound imaging is advantageous compared to x-ray techniques because of the lack of exposure to electromagnetic radiation, and ultrasound probes are easily manipulable to image many different parts of the body. However ultrasound imaging has two main challenges: firstly that the interpretation of ultrasound images is rather difficult, and secondly that needles do not show-up particularly reliably or visibly in the ultrasound image.
As to the problem of needle visibility, the ultrasound image acquisition plane is thin—of the order of 1 mm thick, and so if the needle is out of that plane it will not be imaged. Further, even when the needle is in the imaging plane, because the echogenicity of standard needles is poor at high angles of incidence, the needle may not be particularly visible. It has been proposed to produce echogenic needles which make the needle more visible to ultrasound imaging devices. However these only help when the needle is well-aligned with the imaging plane. Similarly techniques for image processing and ultrasound beam steering help only when the needle is well-aligned with the imaging plane and do not work well for angles of incidence greater than 45 degrees.
Various needle tracking technologies have been proposed based either on a needle guide fitted to an ultrasound probe, e.g. U.S. Pat. No. 6,690,159 B2 or WO-A-2012/040077, or based on the transmission and reception of electromagnetic information, e.g. US-A-2007-027390), but these have functional and accuracy limitations which means that the needle tip position is not exactly known in every clinical circumstance. Typical accuracies are of the order of 2 mm, which can mean the difference between the needle tip being inside or outside a nerve. Further they often require the use of heavily modified or new equipment which is unwelcome to clinicians and to institutions with relatively rigid purchasing regimes.
Most often, therefore, practitioners rely on their skill and experience to judge where the tip of the medical instrument is as it is inserted. They may rely on sound, the touch and feel of the physical resistance to the medical tool and sudden changes in resistance, and changes in resistance to the injection of air or fluids. Developing this level of skill and experience is time-consuming and difficult and as there is an anatomical variation from patient to patient, the procedures inevitably entail some risks.
More recently it has been proposed to utilise magnetic tracking of a needle or other tissue-penetrating tool using a magnetometric detector attached to a freehand ultrasound probe and using a magnetised tissue-penetrating tool. Such a technique is described in our co-pending International patent application no. PCT/EP2011/065420. In this system a standard freehand ultrasound probe has a magnetometric detector attached to it, the detector comprising an array of magnetometric sensors. The sensors detect the magnetic field from the magnetised tissue-penetrating medical tool and send their readings of the magnetic field to a base station. The base station includes a data processor for calculating from the measurements the relative position and orientation of the tissue-penetrating medical tool relative to the ultrasound probe. The base station can supply this calculated position and orientation to the ultrasound imaging system so that the tissue-penetrating medical tool can be displayed on the ultrasound image of the subject's anatomy.
The system is advantageous in that it allows the operator to see both the ultrasound imaged anatomy and the magnetically detected tissue-penetrating medical tool on the same image. This enables greater accuracy in the procedure. Further, the attachment of a magnetometric detector to the ultrasound probe does not alter the feel of the ultrasound probe significantly, and it remains, therefore, familiar to the practitioner. Similarly the magnetization of the tissue-penetrating medical tool does not alter its physical characteristics, again, preserving the familiarity and experience of the clinician. The system is also simple and cheap compared to optical or electromagnetic tracking technologies and because the ultrasound probe can be manipulated freely, the ease-of-use of the freehand ultrasound system is preserved.
The system requires, however, that the tissue-penetrating medical tool is reliably and consistently magnetised.
Accordingly the present invention provides a device and method for magnetising a tissue-penetrating medical tool. In particular at least part of the tissue-penetrating medical tool is magnetically saturated by the magnetization device and method. The device and method preserve the sterility of the tool while reliably magnetising the tool to the extent necessary. The device and method may also be adapted to magnetise a defined length of the tissue-penetrating medical tool.
In more detail one embodiment of the invention provides a device for magnetizing a tissue-penetrating medical tool comprising a tool-receiving space for receiving at least part of the tissue-penetrating medical tool; a magnetic flux generator generating a magnetic field, the magnetic field having a magnetization region for magnetically-saturating the part of the tissue-penetrating medical tool which is in said tool-receiving space, the magnetic flux in the magnetization region being oriented in a direction substantially parallel to a longitudinal axis of the tissue-penetrating medical tool.
Another aspect of the invention provides a method of magnetising a tissue-penetrating medical tool comprising: positioning at least part of the tissue-penetrating medical tool in a tool-receiving space; generating a magnetic field in said tool-receiving space to magnetically-saturate the part of the tissue-penetrating medical tool which is in said tool-receiving space, the magnetic flux in the magnetization region being oriented in a direction substantially parallel to a longitudinal axis of the tissue-penetrating medical tool.
Preferably the tool receiving space is adapted to permit movement of the tissue-penetrating medical tool in a movement direction parallel to the longitudinal axis of the tissue-penetrating medical tool. Preferably the tool-receiving space is adapted to admit a predefined length of the tissue-penetrating medical tool, and more preferably to allow it to be moved into and out of the tool-receiving space in opposing movement directions. The tool-receiving space may have a longitudinal axis substantially parallel to the longitudinal axis of the tool and substantially parallel to the magnetic flux in the magnetisation region.
The magnetic flux generator may be provided on one side of the tool-receiving space. More preferably the magnetic flux generator is provided on two sides of the tool-receiving space. Alternatively the magnetic flux generator may surround the tool-receiving space, e.g. by having a cylindrical configuration.
The magnetic flux generator may comprise a stationary part and a movable part, the stationary part generating a magnetic field extending through the magnetization region and the moveable part being movable towards and away from the magnetization space so that its magnetic field is selectively applied to the magnetization region. The movable part of the magnetic flux generator may comprise a plurality of magnets positioned along a direction parallel to the longitudinal axis of the tissue-penetrating medical tool. The plurality of magnets may have alternating pole orientations. Preferably the plurality of magnets comprise a first set of magnets with alternating poles on one side of the magnetization region and a second set of magnets on the opposite side of the magnetization region, the second set of magnets having the same pole orientations as the first set.
Preferably the movable part of the magnetic flux generator is movable towards and away from the magnetization region in a direction transverse to the longitudinal axis of the tissue-penetrating medical tool.
The tool receiving space may be constituted by a longitudinally-extending space.
The magnetic flux generator may be a permanent magnet or electromagnet.
A conveyor belt may be provided to convey a tissue-penetrating medical tool through the magnetization region in the tool-receiving space. Where an electromagnetic and conveyor belt are used together, the electromagnetic may be controlled to vary the strength and/or direction of the magnetic flux in the magnetization region as the tissue-penetrating tool passes through the magnetization region. Preferably an optical sensor is provided to detect the position of the tissue-penetrating tool as it passes through the magnetization region.
The tool-receiving space may have one open end for receiving the tool and a closed end, the length of the tool-receiving space thus defining a length of tissue-penetrating medical tool which is within the magnetization region.
The tool-receiving space may comprise a sterile liner such as a disposable drape and/or disposable plastics tube. The disposable plastics tube may be a standard needle or cannula cover.
In one embodiment the device is sterile and, optionally, disposable.
The device is preferably hand-held and optionally is provided with a guard extending around the entrance to the tool-receiving space to protect the user's hand. The guard may be a plastics shroud or protective lip.
The tissue-penetrating medical tool can be a needle, cannula, stylet, or the like.
The invention will be further described by way of examples with reference to the accompanying drawings in which:
Advantages of this embodiment are that it is simple and easy to use and that the needle 5A can remain in its sterile package while being magnetised.
In the embodiment of
As with the first embodiment the magnetic flux generator generates a field which is sufficient to saturate the magnetic properties of the metallic tool 5A. The second embodiment has advantages over the first embodiment that a stronger magnetic field can be generated in the magnetization region which gives more consistent magnetization of the tool.
The magnetizer device also includes a sterile plastics tube 34, which can be the same type of tube as commonly used as a disposable needle cover, and, in addition, a flexible sterile drape 33 may be provided which covers the magnetic flux generator and extends into the tool-receiving space before the plastics tube 34 is inserted into it. The plastics tube 34 preferably has a bottom wall 35 which forms a dosed end of the tool-receiving space 11.
In use, the tissue-penetrating medical tool 5A is passed into the plastics tube 34 until its tip touches the bottom wall 35. This defines a length of the tool which is in the magnetization region 12. After a few seconds the tool is removed and the part of the tool which was in the magnetization region will have been magnetised. As with the embodiments above the magnetic flux generator 30, 32 generates a sufficient strength of magnetic field to saturate the magnetic material of the tool.
The third embodiment has advantages that a strong magnetic field can be generated in the magnetization region and because a defined length of the tool is magnetised, better tracking results can be achieved by the magnetic tracking system.
The magnetic flux generator 50, 51 can be a permanent magnet or magnets which are small and thus of low cost. The device may, therefore, be completely sterile and completely disposable. As with the previous embodiments the magnetic flux generator 50, 51 generates a magnetic field which is strong enough to saturate the magnetic properties of the tool 5A.
The embodiment of
Although the additional magnet 60 is illustrated as applied to the third embodiment of the invention, it will be appreciated that it can be added to the first, second, fourth or fifth embodiments in just the same way.
The reason for including the alternately oriented magnets 71 to 76 is to introduce multiple poles into the tissue-penetrating medical tool 5A and thus effectively “code” the tool so that it can be recognised and identified by the magnetic tracking system. Thus to use the magnetizer device the exemplified needle 5A is passed into the tube 34 until its tip touches the closed bottom 35. After a few second the movable magnets 71 to 76 are moved back and forth once, or more than once, as indicated by the arrows and the needle is then removed from the tube 34. Only the length of the needle which has been in the magnetization region 12 will be magnetised and multiple poles will have been introduced into the needle.
Although the modification of
As with the previous embodiment the electromagnet 80 is controlled to generate a magnetic field which is strong enough to saturate the magnetic properties of the needle.
The embodiment of
In a variation of the
The magnetizer embodiments of
The magnetizer embodiments of
| Number | Name | Date | Kind |
|---|---|---|---|
| 4317078 | Weed | Feb 1982 | A |
| 4508119 | Tukamoto | Apr 1985 | A |
| 5042486 | Pfeiler | Aug 1991 | A |
| 5055813 | Johnson | Oct 1991 | A |
| 5425382 | Golden | Jun 1995 | A |
| 5622169 | Golden | Apr 1997 | A |
| 5744953 | Hansen | Apr 1998 | A |
| 5767669 | Hansen | Jun 1998 | A |
| 5831260 | Hansen | Nov 1998 | A |
| 5833608 | Acker | Nov 1998 | A |
| 5879297 | Haynor | Mar 1999 | A |
| 5902238 | Golden | May 1999 | A |
| 5941889 | Cermak | Aug 1999 | A |
| 5944023 | Johnson | Aug 1999 | A |
| 5953683 | Hansen | Sep 1999 | A |
| 6073043 | Schneider | Jun 2000 | A |
| 6172499 | Ashe | Jan 2001 | B1 |
| 6216028 | Haynor | Apr 2001 | B1 |
| 6233476 | Strommer | May 2001 | B1 |
| 6246231 | Ashe | Jun 2001 | B1 |
| 6246898 | Vesely | Jun 2001 | B1 |
| 6248074 | Ohno | Jun 2001 | B1 |
| 6263230 | Haynor et al. | Jul 2001 | B1 |
| 6266551 | Osadchy | Jul 2001 | B1 |
| 6310532 | Santa Cruz et al. | Oct 2001 | B1 |
| 6361499 | Bates | Mar 2002 | B1 |
| 6368280 | Cermak | Apr 2002 | B1 |
| 6379307 | Filly | Apr 2002 | B1 |
| 6427079 | Schneider | Jul 2002 | B1 |
| 6438401 | Cheng | Aug 2002 | B1 |
| 6528991 | Ashe | Mar 2003 | B2 |
| 6542766 | Hall | Apr 2003 | B2 |
| 6546279 | Bova | Apr 2003 | B1 |
| 6587709 | Solf | Jul 2003 | B2 |
| 6626832 | Paltieli | Sep 2003 | B1 |
| 6669635 | Kessman | Dec 2003 | B2 |
| 6678552 | Pearlman | Jan 2004 | B2 |
| 6690159 | Burreson et al. | Feb 2004 | B2 |
| 6690963 | Ben-Haim | Feb 2004 | B2 |
| 6716166 | Govari | Apr 2004 | B2 |
| 6733458 | Steins et al. | May 2004 | B1 |
| 6754596 | Ashe | Jun 2004 | B2 |
| 6774624 | Anderson | Aug 2004 | B2 |
| 6784660 | Ashe | Aug 2004 | B2 |
| 6785571 | Glossop | Aug 2004 | B2 |
| 6788967 | Ben-Haim | Sep 2004 | B2 |
| 6813512 | Aldefeld | Nov 2004 | B2 |
| 6834201 | Gillies | Dec 2004 | B2 |
| 6856823 | Ashe | Feb 2005 | B2 |
| 6895267 | Panescu | May 2005 | B2 |
| 6954128 | Humphries et al. | Oct 2005 | B2 |
| 6980921 | Anderson | Dec 2005 | B2 |
| 7020512 | Ritter | Mar 2006 | B2 |
| 7048745 | Tierney | May 2006 | B2 |
| 7090639 | Govari | Aug 2006 | B2 |
| 7197354 | Sobe | Mar 2007 | B2 |
| 7215990 | Feussner | May 2007 | B2 |
| 7274325 | Fattah | Sep 2007 | B2 |
| 7275008 | Plyvänäinen | Sep 2007 | B2 |
| 7324915 | Altmann | Jan 2008 | B2 |
| 7351205 | Szczech | Apr 2008 | B2 |
| 7373271 | Schneider | May 2008 | B1 |
| 7386339 | Strommer | Jun 2008 | B2 |
| 7471202 | Anderson | Dec 2008 | B2 |
| 7505810 | Harlev | Mar 2009 | B2 |
| 7517318 | Altmann | Apr 2009 | B2 |
| 7524320 | Tierney | Apr 2009 | B2 |
| 7551953 | Lardo | Jun 2009 | B2 |
| 7555330 | Gilboa | Jun 2009 | B2 |
| 7558616 | Govari | Jul 2009 | B2 |
| 7561051 | Kynor | Jul 2009 | B1 |
| 7573258 | Anderson | Aug 2009 | B2 |
| 7588541 | Floyd | Sep 2009 | B2 |
| 7603155 | Jensen | Oct 2009 | B2 |
| 7603160 | Suzuki | Oct 2009 | B2 |
| 7610078 | Willis | Oct 2009 | B2 |
| 7618374 | Barnes | Nov 2009 | B2 |
| 7636595 | Marquart | Dec 2009 | B2 |
| 7652259 | Kimchy | Jan 2010 | B2 |
| 7657298 | Moctezuma de la Barrera | Feb 2010 | B2 |
| 7660623 | Hunter | Feb 2010 | B2 |
| 7668583 | Fegert | Feb 2010 | B2 |
| 7671887 | Pescatore | Mar 2010 | B2 |
| 7697973 | Strommer | Apr 2010 | B2 |
| 7706860 | McGee | Apr 2010 | B2 |
| 7722565 | Wood | May 2010 | B2 |
| 7749168 | Maschke | Jul 2010 | B2 |
| 7769427 | Shachar | Aug 2010 | B2 |
| 7797032 | Martinelli | Sep 2010 | B2 |
| 7809421 | Govari | Oct 2010 | B1 |
| 7819810 | Stringer | Oct 2010 | B2 |
| 7822464 | Maschke | Oct 2010 | B2 |
| 7831096 | Williamson, Jr. | Nov 2010 | B2 |
| 7835785 | Scully | Nov 2010 | B2 |
| 7840251 | Glossop | Nov 2010 | B2 |
| 7840253 | Tremblay | Nov 2010 | B2 |
| 7840256 | Lakin | Nov 2010 | B2 |
| 7873401 | Shachar | Jan 2011 | B2 |
| 7881769 | Sobe | Feb 2011 | B2 |
| 7907989 | Borgert | Mar 2011 | B2 |
| 7909815 | Whitmore, III | Mar 2011 | B2 |
| 7926776 | Cermak | Apr 2011 | B2 |
| 7945309 | Govari | May 2011 | B2 |
| 7962196 | Tuma | Jun 2011 | B2 |
| 7966057 | Macaulay | Jun 2011 | B2 |
| 7971341 | Dukesherer | Jul 2011 | B2 |
| 7974680 | Govari | Jul 2011 | B2 |
| 7996059 | Porath | Aug 2011 | B2 |
| 8023712 | Ikuma | Sep 2011 | B2 |
| 8027714 | Shachar | Sep 2011 | B2 |
| 8041411 | Camus | Oct 2011 | B2 |
| 8041412 | Glossop | Oct 2011 | B2 |
| 8041413 | Barbagli | Oct 2011 | B2 |
| 8049503 | Kimura | Nov 2011 | B2 |
| 8060184 | Hastings | Nov 2011 | B2 |
| 8064985 | Peterson | Nov 2011 | B2 |
| 8068897 | Gazdzinski | Nov 2011 | B1 |
| 8073529 | Cermak | Dec 2011 | B2 |
| 8082022 | Moctezuma de la Barrera | Dec 2011 | B2 |
| 8086298 | Whitmore, III | Dec 2011 | B2 |
| 8088070 | Pelissier | Jan 2012 | B2 |
| 8090168 | Washburn | Jan 2012 | B2 |
| 8106905 | Markowitz | Jan 2012 | B2 |
| 8147408 | Bunce | Apr 2012 | B2 |
| 8162821 | Kawano | Apr 2012 | B2 |
| 8175680 | Panescu | May 2012 | B2 |
| 8216149 | Oonuki et al. | Jul 2012 | B2 |
| 8226562 | Pelissier | Jul 2012 | B2 |
| 8228028 | Schneider | Jul 2012 | B2 |
| 8506493 | Ostrovsky | Aug 2013 | B2 |
| 20030036695 | Govari | Feb 2003 | A1 |
| 20040047044 | Dalton | Mar 2004 | A1 |
| 20040051610 | Sajan | Mar 2004 | A1 |
| 20040106869 | Tepper | Jun 2004 | A1 |
| 20040147920 | Keidar | Jul 2004 | A1 |
| 20040171934 | Khan | Sep 2004 | A1 |
| 20050020919 | Stringer | Jan 2005 | A1 |
| 20050033315 | Hankins | Feb 2005 | A1 |
| 20050101876 | Pearlman | May 2005 | A1 |
| 20050107870 | Wang | May 2005 | A1 |
| 20050143648 | Minai | Jun 2005 | A1 |
| 20050197569 | McCombs | Sep 2005 | A1 |
| 20060061354 | Wallance | Mar 2006 | A1 |
| 20060072843 | Johnston | Apr 2006 | A1 |
| 20060241397 | Govari | Oct 2006 | A1 |
| 20060253107 | Hashimshony | Nov 2006 | A1 |
| 20070016013 | Camus | Jan 2007 | A1 |
| 20070027390 | Maschke et al. | Feb 2007 | A1 |
| 20070055468 | Pylvänäinen | Mar 2007 | A1 |
| 20070163367 | Sherman | Jul 2007 | A1 |
| 20070167801 | Webler | Jul 2007 | A1 |
| 20070185398 | Kimura | Aug 2007 | A1 |
| 20070276240 | Rosner | Nov 2007 | A1 |
| 20080033286 | Whitmore | Feb 2008 | A1 |
| 20080071172 | Bruck | Mar 2008 | A1 |
| 20080094057 | Ashe | Apr 2008 | A1 |
| 20080134727 | May | Jun 2008 | A1 |
| 20080146939 | McMorrow | Jun 2008 | A1 |
| 20080183071 | Strommer | Jul 2008 | A1 |
| 20080249395 | Shachar | Oct 2008 | A1 |
| 20080262338 | Paitel | Oct 2008 | A1 |
| 20090105581 | Widenhorn | Apr 2009 | A1 |
| 20090105584 | Jones | Apr 2009 | A1 |
| 20090105779 | Moore | Apr 2009 | A1 |
| 20090156926 | Messerly et al. | Jun 2009 | A1 |
| 20090228019 | Gross | Sep 2009 | A1 |
| 20090275833 | Ikeda | Nov 2009 | A1 |
| 20090287443 | Jascob | Nov 2009 | A1 |
| 20090299142 | Uchiyama | Dec 2009 | A1 |
| 20090299176 | Gleich | Dec 2009 | A1 |
| 20090312629 | Razzaque | Dec 2009 | A1 |
| 20090322323 | Brazdeikis | Dec 2009 | A1 |
| 20090326323 | Uchiyama | Dec 2009 | A1 |
| 20100049033 | Kawano | Feb 2010 | A1 |
| 20100049050 | Pelissier | Feb 2010 | A1 |
| 20100079158 | Bar-Tal | Apr 2010 | A1 |
| 20100121189 | Ma | May 2010 | A1 |
| 20100121190 | Pagoulatos | May 2010 | A1 |
| 20100137705 | Jensen | Jun 2010 | A1 |
| 20100156399 | Chiba | Jun 2010 | A1 |
| 20100174176 | Nagel | Jul 2010 | A1 |
| 20100191101 | Lichtenstein | Jul 2010 | A1 |
| 20100249576 | Askarinya et al. | Sep 2010 | A1 |
| 20100268072 | Hall | Oct 2010 | A1 |
| 20100312113 | Ogasawara | Dec 2010 | A1 |
| 20110021903 | Strommer | Jan 2011 | A1 |
| 20110028848 | Shaquer | Feb 2011 | A1 |
| 20110034806 | Hartov | Feb 2011 | A1 |
| 20110054293 | Markowitz | Mar 2011 | A1 |
| 20110060185 | Ikuma | Mar 2011 | A1 |
| 20110081063 | Leroy | Apr 2011 | A1 |
| 20110082366 | Scully | Apr 2011 | A1 |
| 20110118590 | Zhang | May 2011 | A1 |
| 20110137152 | Li | Jun 2011 | A1 |
| 20110137156 | Razzaque | Jun 2011 | A1 |
| 20110144476 | Jolesz | Jun 2011 | A1 |
| 20110144524 | Fish | Jun 2011 | A1 |
| 20110184690 | Iida | Jul 2011 | A1 |
| 20110224537 | Brunner | Sep 2011 | A1 |
| 20110230757 | Elgort | Sep 2011 | A1 |
| 20110237945 | Foroughi | Sep 2011 | A1 |
| 20110251607 | Kruecker | Oct 2011 | A1 |
| 20110282188 | Burnside | Nov 2011 | A1 |
| 20110295108 | Cox | Dec 2011 | A1 |
| 20110295110 | Manzke | Dec 2011 | A1 |
| 20120016316 | Zhuang | Jan 2012 | A1 |
| 20120071752 | Sewell | Mar 2012 | A1 |
| 20120108950 | He | May 2012 | A1 |
| 20120123243 | Hastings | May 2012 | A1 |
| 20120130229 | Zellers | May 2012 | A1 |
| 20120130230 | Eichler | May 2012 | A1 |
| 20120136251 | Kim | May 2012 | A1 |
| 20120143055 | Ng | Jun 2012 | A1 |
| 20120150022 | Bar-Tal | Jun 2012 | A1 |
| 20120197108 | Hartmann | Aug 2012 | A1 |
| 20120232380 | Pelissier | Sep 2012 | A1 |
| 20120259209 | Harhen | Oct 2012 | A1 |
| 20130225986 | Eggers | Aug 2013 | A1 |
| 20130296691 | Ashe | Nov 2013 | A1 |
| 20140002063 | Ashe | Jan 2014 | A1 |
| 20140046261 | Newman | Feb 2014 | A1 |
| 20140058221 | Old | Feb 2014 | A1 |
| 20140107475 | Cox | Apr 2014 | A1 |
| 20140228670 | Justis | Aug 2014 | A1 |
| 20140257080 | Dunbar | Sep 2014 | A1 |
| 20140257104 | Dunbar | Sep 2014 | A1 |
| 20140257746 | Dunbar | Sep 2014 | A1 |
| Number | Date | Country |
|---|---|---|
| 455499 | Feb 2010 | AT |
| 492214 | Jan 2011 | AT |
| 2 647 432 | Oct 2007 | CA |
| 2 659 586 | Dec 2007 | CA |
| 10 2008 013 611 | Sep 2009 | DE |
| 10 2010 046 948 | Dec 2011 | DE |
| 0 488 987 | Jun 1992 | EP |
| 0 747 016 | Dec 1996 | EP |
| 0 928 976 | Jul 1999 | EP |
| 1 212 001 | Jun 2002 | EP |
| 1 377 335 | Jan 2004 | EP |
| 1 504 713 | Feb 2005 | EP |
| 1 715 788 | Nov 2006 | EP |
| 1 727 478 | Dec 2006 | EP |
| 1 804 079 | Jul 2007 | EP |
| 1 898 775 | Mar 2008 | EP |
| 1 913 875 | Apr 2008 | EP |
| 2 445 669 | Jul 2008 | GB |
| 2005-312577 | Nov 2005 | JP |
| 9605768 | Feb 1996 | WO |
| 0063658 | Oct 2000 | WO |
| 0200093 | Jan 2002 | WO |
| 2006078677 | Jul 2006 | WO |
| 2006078678 | Jul 2006 | WO |
| 2006124192 | Nov 2006 | WO |
| 2007025081 | Mar 2007 | WO |
| 2008035271 | Mar 2008 | WO |
| 2008086832 | Jul 2008 | WO |
| 2009070616 | Jun 2009 | WO |
| 2009089280 | Jul 2009 | WO |
| 2010111435 | Sep 2010 | WO |
| 2010132985 | Nov 2010 | WO |
| 2011043874 | Apr 2011 | WO |
| 2011043875 | Apr 2011 | WO |
| 2011044273 | Apr 2011 | WO |
| 2011085034 | Jul 2011 | WO |
| 2011095924 | Aug 2011 | WO |
| 2011098926 | Aug 2011 | WO |
| 2011109249 | Sep 2011 | WO |
| 2011114259 | Sep 2011 | WO |
| 2011123661 | Oct 2011 | WO |
| 2011127191 | Oct 2011 | WO |
| 2011150376 | Dec 2011 | WO |
| 2012025854 | Mar 2012 | WO |
| 2012040077 | Mar 2012 | WO |
| 2012098483 | Jul 2012 | WO |
| 2013034175 | Mar 2013 | WO |
| 2014135592 | Sep 2014 | WO |
| Entry |
|---|
| Stolowitz Ford Cowger LLP, Listing of Related Cases (Updated); Portland, OR; Sep. 17, 2014; 1 pages. |
| Placidi, Giuseppe, et al.; “Review on Patents about Magnetic Localisation Systems for in vito Catheterizations”; INFM c/o Department of Health Sciences, University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy; Recent Patents on Biomedical Engineering 2009, 2, 58-64; Received: Dec. 24, 2008; Accepted: Jan. 9, 2009; Revised: Jan. 12, 2009; 8 pages. |
| Stolowitz Ford Cowger LLP, Listing of Related Cases; Portland, OR; Aug. 19, 2015; 1 page. |
| Dorveaux et al., “On-the-field Calibration of an Array of Sensors”, 2010 American Control Conference, Jun. 30-Jul. 2, 2010, Baltimore, MD, USA, 8 pages. |
| European Patent Office, “Internaional Search Report” for PCT/EP2011/065420, mailed Aug. 20, 2012, 5 pages. |
| Stolowitz Ford Cowger LLP, “Listing of Related Cases”, Feb. 5, 2014, 2 pages. |
| Number | Date | Country | |
|---|---|---|---|
| 20140253270 A1 | Sep 2014 | US |