This invention relates to a torque or force sensor based on a magnetised transducer element, to a magnetised transducer element and to a method of forming such an element. The invention also relates to a shaft assembly including plural transducer elements and to a torque sensor system incorporating such a shaft assembly.
The invention will be particularly described in relation to transducer elements which are of magnetoelastic material and which are circumferentially magnetised, that is are of an annular form, e.g. circular form, which is magnetised in a closed loop around the annulus. The prior art transducer elements of this type provide a zero output at zero applied torque which can present a problem in practical applications as will be explained below. However, the invention has wider application to other magnetic-based transducer elements which need not necessarily utilise the phenomenon of magnetoelasticity in generating a torque-dependent or force-dependent measurement flux. Examples of this more general class of elements are what will be called herein “longitudinal magnetisation” and “radially-spaced magnetisation”.
Longitudinal magnetisation provides an annulus of magnetisation, on a torque-transmitting shaft for example, in which the magnetisation extends in an axial direction at the surface over a defined length and acts to provide a closed loop of magnetic flux within the shaft. This may be visualised as a torus of magnetic flux. This torus of flux is distorted under torque to provide a torque-dependent tangential component of magnetic field, that is a component normal to the radial direction.
Radially-spaced magnetisation is particularly applicable to disc-like parts subject to torque about the disc axis. The disc-like part is of relatively short axial thickness and has two radially-spaced annular zones, e.g. circular in the most common form, which in the limit may be contiguous. The pair of spaced zones are each longitudinally magnetised in the axial direction or each circumferentially magnetised in a closed loop about the axis. In each case a torque-dependent field is generated in a direction which is circumferential to the two zones, that is a field component that is tangential or normal to the radial direction. Transducer elements based on longitudinal magnetisation and radially-spaced magnetisations also provide an output measuring field which is zero at zero applied torque.
Longitudinal magnetisation and radially-spaced magnetisations are described further below. As already indicated, the present invention will be described particularly with reference to the known art of circumferential magnetisation transducer technology as applied to the measurement of torque.
Transducers of the circumferentially magnetised type are disclosed in related U.S. Pat. Nos. 5,351,555 and 5,465,627 (Garshelis, assigned to Magnetoelastic Devices, Inc.) and in U.S. Pat. No. 5,520,059 (Garshelis, assigned to Magnetoelastic Devices, Inc.). These patents describe torque sensing arrangements for a rotating shaft in which a transducer ring or torus is secured to the shaft to rotate therewith and to have the torque developed in the shaft transmitted into the transducer ring. The ring is of a magnetoelastic material circumferentially magnetised and the flux emanating from the ring due to the stress of the ring under torque is detected by a non-contacting sensor system as a measure of the torque.
Another proposal is described in corresponding PCT application PCT/GB99/00736 filed 11th Mar. 1999, published under the number WO99/56099 on 4 Nov. 1999.
In this proposal a shaft of a material capable of exhibiting magnetoelastic material has a portion of it directly magnetised to support a circumferential magnetic field about the shaft axis, an approach which is contrary to the thinking in the prior art. The magnetised portion of the shaft acts directly as the torque transducer element.
To illustrate the operation of a magnetoelastic torque transducer as represented by the above two proposals reference may be made to
In
In
Another proposal to enhance the emanation of magnetic flux from the transducer element is to provide the transducer element portion 12″ shaft 10″ with an integral annular section 16 of raised profile as shown in
Referring to
The problem posed to some users of magnetoelastic torque transducer elements of the circumferential magnetic field kind discussed above is that at zero torque in the shaft, the magnetic field output from the transducer element is zero. Outputs at or around the zero region are liable to be masked by noise. Another related problem with circumferential magnetisation is calibrating the transfer function of a transducer, particular in checking the long term calibration where a stored magnetic field may change, usually (weaken) over the long term. A means of checking calibration without a lengthy procedure is a desirable feature. The zero output at zero torque is also a problem with transducers employing longitudinal magnetisation and radially-spaced magnetisation. Longitudinal magnetisation has a detectable axial fringe field at zero torque upon which calibration can be based.
The present invention enables the provision of a real measurable output at zero torque with a range of linear measurement of magnetic field output against applied torque. The solution proposed by the present invention is to induce the circumferential field in the transducer element when the element is subject to a torque, a concept that will be referred to as pre-torquing. This is in contrast to prior proposals in which the establishing of the circumferential field in the transducer element is done without torque in the element. This pre-torquing of the transducer element during magnetisation may be also called processing torque.
Yet another aspect of the invention is a method of forming a transducer element in a portion of a shaft as set forth in claim 11.
A further aspect of the invention is a shaft assembly having two axially-displaced transducer elements as set forth in claim 14 and a still further aspect lies in a torque sensor system as set forth in each of claims 18 to 21.
The invention and its practice will be further described with reference to
a, 1b and 1c show examples of prior proposals for transducer elements magnetised to have a circumferential field,
a and 2b show an example of the emanated magnetic field for the transducer element of
a to 5d show response curves relating to different directions of pre-torquing and circumferential magnetisation;
a illustrates the toroidal form of magnetic flux in the longitudinal magnetised zone;
b illustrates the toroidal form of magnetic flux established by a two-step magnetisation process;
a and 11b illustrate the generation of a torque-dependent magnetic field vector component with a longitudinally magnetised transducer element in the absence of pre-torquing in accord with the invention, with the element under zero torque and under torque respectively and
a and 12b show a torque-transmitting, disc to which the invention is applicable,
Referring to
a indicates the directions of pre-torque To and circumferential magnetisation Mc about the axis. The example shown has both of them clockwise. From
When the circumferential field Mc is induced in the presence of torque To, this sets up the condition at which zero external field is produced by the transducer element. When the pre-torque is relaxed so that the shaft returns to a zero torque state, the circumferential field is skewed to a certain extent resulting in its opposite sides becoming polarised as shown in
The full line A in
It is to be understood that for different materials, the sign of Mo and the slope may be reversed. However, the outcome is still four responses of the kind shown. These may be combined for plural transducer elements as will now be described. It will also be appreciated that any response can effectively be inverted by the processing of the electrical signals obtained from the magnetic field sensor.
It will be appreciated that the requirements for measurement of torques in shafts depend on the circumstances in which the shaft is used. For example, it may always rotate in a single direction or it may be required to rotate bi-directionally. Torque sensors may also be applied in circumstances where one end of the shaft is fixed and the other end is subject to some applied torque to be measured.
It is an important facet of the present proposals to apply the pre-torquing concept to obtain advantageous results from shafts having multiple axially displaced transducer elements.
One form of magnetic field sensor arrangement, using saturable inductor sensing elements, and signal conditioning circuitry for generating the output indication signal is that disclosed in published PCT application PCT/GB98/01357, publication number WO98/52063.
a shows output responses, M v T, for the two transducer elements 32, 34 being magnetised and pre-torqued in accordance with conditions 5c) and 5b—opposite polarity circumferential fields of equal strength and equal but opposite pre-torques. There will always be an output from one transducer element even when the other is in the zero output region. This avoids having to make use of a single low output signal whose signal-to-noise ratio (SNR) may be poor.
c and 6d are similar to the conditions of
Another important use of these multiple field arrangements as the basis of an automatic gain control or calibration for a torque sensor system. Take, for example, the situation of
This compensation procedure can be applied where the two fields are not equal in strength but more computation will be required.
In order to better explain the application of automatic gain control or compensation, reference is made to
Referring to
In one of the sensors, 38, the input signal is inverted so that the buffer amplifiers produce output signals V1 and −V2 for further processing. The response curves at this point are now equivalent to
In the main signal path 70, the voltages V1 and −V2 are applied to inputs of respective summing amplifiers 72 and 74 of equal (unity) gain. Each amplifier has a second input receiving a signal whose derivation is described below. The output of amplifiers 72 and 74 are applied as inputs to an output summing amplifier 76 to provide the output Vo. Amplifier 76 is a gain controlled amplifier having an input 78 for receiving a gain control signal from the gain control path 80.
The automatic gain control (AGC) loop includes a difference amplifier 82 to which the voltages V1 and −V2 are applied to thereby obtain a reference signal which is a sum signal (V1+V2) providing, in the ideal case, a constant value signal across the torque range equivalent to Ms in
The output of difference amplifier is divided-by-2 at 86 and the output is passed directly to a second input of amplifier 72 and via an inverter 88 to a second input of amplifier 74 to re-enter the main signal path.
The operation of the circuit 40 is as follows.
The signals applied to the two inputs of amplifier 72 are V1 and a signal derived from the summation of V1 and V2 in the AGC loop 80. The signals applied to the two inputs of amplifier 74 are −V2 and the same second signal as applied to amplifier 72, but inverted. The signals applied to the inputs of amplifier 76 from amplifiers 72 and 74 are summed subject to a gain control to provide an output
Vo=k (V1−V2).
It is worth noting here that the sensor devices 60 and 62 were so arranged that any induced signal components, such as from the earth's magnetic field were in the same sense with respect to V1 and V2 so that these components will be cancelled from the final output.
The sensor circuits 36, 38 and the processing circuit 40 are initially set up so that the output Vo represents the desired dashed line response of
It will be understood that the compensation techniques discussed above could be implemented in software. For example, the sensor output signals V1 and V2 may be digitised and the functions of the signal processing circuit 40 implemented on the digitised signals using software routines.
One of the potential problems with circumferential magnetic fields, such as 32 and 34, is that they may weaken over time. Thus for the same torque values, lesser values of V1 and V2 will be obtained. The initialising procedure may make use of the magnetisation established under the pre-torque values (
The system can compensate for the effect of temperature changes on the basic sensor sensitivity. It can compensate for changes in the distance between the magnetic field sensor and the shaft as the shaft rotates. Generally, aging effects, e.g. leaching away of the transducer region fields will be compensated to maintain the initial torque sensitivity.
Reverting to the magnetising arrangement indicated at 24 in
The practice of the invention has so far been described with reference to circumferential magnetisation. Embodiments will now be described which utilise the above-mentioned longitudinal and radially spaced magnetisation, assuming transducer elements of ferromagnetic material.
Longitudinal Magnetisation Embodiments
The nature of longitudinal magnetisation has been outlined above. The techniques taught above for a circumferentially magnetised transducer element are also applicable to a longitudinally magnetised transducer element or a pair of such elements.
The toroidal flux concept can be enhanced as is shown in
Turning to the practical utilisation of the resultant transducer element, reference is made to
b shows the effect of putting the shaft, and thus transducer element portion 152, under torque in one direction about the axis of shaft 110. The longitudinal field in zone 154 is skewed as shown by the arrows (the skew is exaggerated for clarity of illustration). The external fringing field is likewise skewed or deflected as represented by magnetic vector Mf′ (
The solution adopted is the same as for circumferential magnetisation, namely that of pre-torquing the shaft portion 152 while establishing the magnetisation of it so that on allowing the shaft to relax to zero torque, the quiescent field is skewed with a detectable Ms component. This technique can be extended to more than two longitudinally magnetized regions as taught above in respect of circumferentially magnetised regions.
Radially-Spaced Magnetisation
The principles given above can be applied to radially-spaced magnetisations which find particular, though not exclusive, application in torque transmitting discs.
a and 12b show a face view and an axial section of a disc 210 which is mounted on a shaft 220 for rotation about its axis A-A and carries, for example, a gearing 224 at its outer periphery for enabling transmission of torque through the disc. Also shown is the provision of a magnet system comprising magnets 216 and 218 on opposite sides of the disc to establish two magnetised zones 212 and 214. Each zone is established as an annulus about the axis A-A, as by rotating the disc between the magnets. Each zone is longitudinally magnetised in that the magnetisation extends in the axial direction and the two zones 212 and 214 have opposite polarities of magnetisation. The two magnetised zones provide a transducer element 222 (the magnets 216, 218 being removed) which from face 211, say, appears as in the segment of the disc shown in
a also shows sensors 228a-228d for detecting the circumferential component Ms and sensor 226a-226b for detecting the radial component Mr used as a reference.
In the absence of torque the circumferential fields in regions 354 and 356 will be trapped within the annular regions. However, under torque the fields become skewed in the manner well-known with prior art circumferential transducers, e.g. Garshelis U.S. Pat. Nos. 5,351,555, 5,520,059 and 5,465,627. The consequence is that at face 358 the regions 354 and 356 develop magnetic poles of opposite polarity. The polarity is dependent on the direction of torque.
A radial measurement field Ms is generated externally of the surface 358 between regions 354 and 356, the radial magnetic flux being a function of torque. The radial flux can be sensed by sensors disposed as for the radial (reference) flux in
The above modification also suffers from having a zero field ms at zero torque unless the circumferential fields are established in regions 354 and 356 by pre-torquing the disc while establishing the fields in accord with the teaching given above.
Number | Date | Country | Kind |
---|---|---|---|
9906735 | Mar 1999 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB00/01103 | 3/23/2000 | WO | 00 | 1/24/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/57150 | 9/28/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4697460 | Sugiyama et al. | Oct 1987 | A |
4896544 | Garshelis | Jan 1990 | A |
4907462 | Obama et al. | Mar 1990 | A |
4920809 | Yoshimura et al. | May 1990 | A |
5195377 | Garshelis | Mar 1993 | A |
5351555 | Garshelis | Oct 1994 | A |
5412999 | Vigmostad et al. | May 1995 | A |
5465627 | Garshelis | Nov 1995 | A |
5520059 | Garshelis | May 1996 | A |
6047605 | Garshelis | Apr 2000 | A |
6260423 | Garshelis | Jul 2001 | B1 |
6330833 | Opie et al. | Dec 2001 | B1 |
Number | Date | Country |
---|---|---|
3437379 | Apr 1985 | DE |
WO 9956099 | Nov 1999 | WO |