The disclosure herein relates generally to magnetic technologies. More specifically, but by way of example only, certain portions of the disclosure relate to production of magnetic structures. Yet more specifically, but by way of example but not limitation, certain portions of the disclosure relate to magnetic structures having tailored magnetic field characteristics attained by magnetically printing magnetic pixels (or maxels) onto magnetizable material.
In one aspect, an example embodiment is directed to a method for printing maxels that may comprise: causing at least one magnetizable material and at least one magnetic print head to move relative to each other; and printing at least one maxel into the at least one magnetizable material using the at least one magnetic print head to produce at least one printed maxel at a surface of the at least one magnetizable material, the at least one printed maxel associated with a first polarity and a second polarity, wherein the first polarity associated with the at least one printed maxel is exposed at the surface of the at least one magnetizable material, but the second polarity associated with the at least one printed maxel is not exposed at the surface of the at least one magnetizable material.
In another aspect, an example embodiment is directed to an apparatus for printing maxels into magnetizable material, wherein the apparatus may comprise: at least one magnetic print head; circuitry for causing at least one magnetizable material and the at least one magnetic print head to move relative to each other; and circuitry for printing at least one maxel into the at least one magnetizable material using the at least one magnetic print head to produce at least one printed maxel at a surface of the at least one magnetizable material, the at least one printed maxel associated with a first polarity and a second polarity, wherein the first polarity associated with the at least one printed maxel is exposed at the surface of the at least one magnetizable material, but the second polarity associated with the at least one printed maxel is not exposed at the surface of the at least one magnetizable material.
In yet another aspect, an example embodiment is directed to an article of manufacture that may comprise: at least one magnetizable material including a surface, the at least one magnetizable material including multiple printed maxels that are printed into the at least one magnetizable material at the surface, the multiple printed maxels including a first printed maxel and a second printed maxel, wherein the second printed maxel at least partially overlaps the first printed maxel.
Additional aspects of example inventive embodiments are set forth, in part, in the detailed description, figures and any claims which follow, and in part will be derived from the detailed description, or can be learned by practice of described embodiments. It is to be understood that both the foregoing general description and the following detailed description comprise examples and are explanatory only and are not restrictive of claimed subject matter.
A more complete understanding of described embodiments may be obtained by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
Certain described embodiments may relate, by way of example but not limitation, to systems and/or apparatuses for producing magnetic structures, methods for producing magnetic structures, magnetic structures produced via magnetic printing, combinations thereof, and so forth.
Example realizations for such embodiments may be facilitated, at least in part, by the use of an emerging, revolutionary technology that may be termed correlated magnetics. This revolutionary technology referred to herein as correlated magnetics was first fully described and enabled in the co-assigned U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A second generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 7,868,721 issued on Jan. 11, 2011, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A third generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. patent application Ser. No. 12/476,952 filed on Jun. 2, 2009, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. Another technology known as correlated inductance, which is related to correlated magnetics, has been described and enabled in the co-assigned U.S. patent application Ser. No. 12/322,561 filed on Feb. 4, 2009, and entitled “A System and Method for Producing an Electric Pulse”. The contents of this document are hereby incorporated by reference.
Material presented herein may relate to and/or be implemented in conjunction with multilevel correlated magnetic systems and methods for producing a multilevel correlated magnetic system such as described in U.S. Pat. No. 7,982,568 issued Jul. 19, 2011 which is all incorporated herein by reference in its entirety. Material presented herein may relate to and/or be implemented in conjunction with energy generation systems and methods such as described in U.S. patent application Ser. No. 13/184,543 filed Jul. 17, 2011, which is all incorporated herein by reference in its entirety. Such systems and methods described in U.S. Pat. No. 7,681,256 issued Mar. 23, 2010, U.S. Pat. No. 7,750,781 issued Jul. 6, 2010, U.S. Pat. No. 7,755,462 issued Jul. 13, 2010, U.S. Pat. No. 7,812,698 issued Oct. 12, 2010, U.S. Pat. Nos. 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006 issued Oct. 19, 2010, U.S. Pat. No. 7,821,367 issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083 issued Nov. 2, 2011, U.S. Pat. No. 7,834,729 issued Nov. 16, 2011, U.S. Pat. No. 7,839,247 issued Nov. 23, 2010, U.S. Pat. Nos. 7,843,295, 7,843,296, and 7,843,297 issued Nov. 30, 2010, U.S. Pat. No. 7,893,803 issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712 issued Jun. 7, 2011, U.S. Pat. Nos. 7,958,575, 7,961,068 and 7,961,069 issued Jun. 14, 2011, U.S. Pat. No. 7,963,818 issued Jun. 21, 2011, and U.S. Pat. Nos. 8,015,752 and 8,016,330 issued Sep. 13, 2011 are all incorporated by reference herein in their entirety.
The number of dimensions to which coding may be applied to design correlated magnetic structures is quite high, which provides a correlated magnetic structure designer many degrees of freedom. By way of example but not limitation, a designer may use coding to vary magnetic source size, shape, polarity, field strength, location relative to other sources, any combination thereof, and so forth. These aspects may be varied in one, two, or three-dimensional space. Furthermore, if using e.g. electromagnets or electro-permanent magnets, a designer may change source characteristics in a temporal dimension using e.g. a control system. Various techniques may also be applied to achieve multi-level magnetism control. For example, interaction between two structures may be made to vary in at least partial dependence on their separation distance. The number of combinations is practically unlimited.
Certain described embodiments may pertain to producing magnetic structures having tailored magnetic field characteristics by magnetically printing magnetic pixels (or maxels) onto magnetizable material. Production of magnetic structures that include maxels may be enabled, for example, by a magnetizer that functions as a magnetic printer. For certain example implementations, a magnetic printer may cause a magnetizable material to move relative to a location of a print head (or vice versa) so that maxels may be printed in a prescribed pattern. Characteristics of a magnetic print head may be established to produce a specific shape or size of maxel, for instance, given a prescribed magnetization voltage and corresponding current for a given magnetizable material, wherein characteristics of the given magnetizable material may be taken into account as part of a printing process.
A magnetic printer may be configured to magnetize in a direction that is perpendicular to a magnetization surface, or a magnetic printer may alternatively be configured to magnetize in a direction that is not perpendicular to a magnetization surface. Example embodiments for a magnetic print head are described herein below with particular reference to
A first example described embodiment may involve mapping a pattern to a surface of a magnetizable material and magnetically printing maxels based at least partly on the pattern. A second example described embodiment may involve amplitude modulation of a group of maxels to achieve composite magnetic characteristics that meet one or more criteria, such as a Gauss limit at some measurement location relative to a surface of a magnetized material. A third example described embodiment may involve presenting an image of magnetic fields that are produced by printed maxels that correspond to a pattern. These and other example embodiments, as well as combinations thereof, are described further herein below.
Specifically, the illustrated alternating code ‘+1, −1, +1, −1’ 110 may correspond to a polarity pattern of ‘+−+−’, which is shown in
As described above,
In an example implementation, a colored ‘etch-a-sketch’ like device may be realized using e.g. a soft ferrite material with electromagnetic solenoid brushes with different thicknesses. Pulse width control may provide intensity control for the brushes. Color mixing or half-toning may be achieved via ramp control of a solenoid. In an example implementation, use of electromagnetic arrays and/or by controlling magnetic dichroic effects, new types of television screens or other display screens (e.g., for computing, telecommunications, entertainment, etc. devices) may be produced.
In an example implementation, magnetizable paint having photonic crystals may be applied to an object (e.g., a T-shirt) that is placed over an electromagnetic array. Array elements of the electromagnetic array may be programmed to produce certain colors so as to effectively ‘screen print’ multiple colors in one application.
In an example implementation, a badge or other e.g. identification-related device having magnetic paint may be magnetized with a pattern that may then be optically recognized by a camera or other optical recognition device such as an infrared device. For example, a security guard may magnetize a pattern onto a badge when a person enters a facility, and then thereafter the person's badge may be recognized. The pattern may be randomized such that the badge may be changed how ever often it is desirable to change it. The pattern may, for example, be a reprogrammable multi-dimensional bar code.
In an example implementation, a tag comprising a layer of magnetizable material and having a coating of magnetic paint comprising photonic crystals may be used to provide information about an object via visualization of magnetic fields produced by magnetically printing maxels and varying their characteristics in multiple dimensions (e.g., x, y, color, etc.). A badge or a tag may comprise an electromagnetic array wherein information conveyed by visualization of magnetic fields may be changed over time, such as is described above with respect to signage. Additionally or alternatively, light sources may be controlled to cause different magnetic field attributes to appear or be enhanced.
In certain example embodiments, various reverse magnetization techniques may be employed to overwrite at least one printed maxel or a portion of a printed maxel, to lower the amplitude of a maxel (e.g., without changing its polarity), some combination thereof, and so forth. Similarly, various techniques may be used to demagnetize at least one maxel or a portion of a maxel, such as heating a location of a maxel with a laser to demagnetize that location.
In certain example embodiments, a magnetic printer may be configured to “over-magnetize” a maxel such that material forming the maxel becomes substantially fully saturated at a location of the maxel and such that additional magnetization beyond what it takes to saturate that location causes the maxel to expand in diameter. As such, a diameter of a maxel may be controllable. If preventing or at least retarding over-magnetization is desired, additional magnetizable material (e.g., a second piece of “sacrificial” material) may be placed beneath a given magnetizable material when printing a maxel onto the given magnetizable material such that all or at least some of the potential additional saturation spreads into the additional magnetizable material instead of expanding a diameter of the maxel being printed into the given magnetizable material.
In certain example embodiments, a magnetic printer may print maxels in a manner that is analogous to that of or having capabilities that are analogous to those of a dot matrix printer. Because of such analogous manners and/or capabilities, because of an ability to amplitude modulate printing of maxels, because a designer may overlap different sizes or shapes of maxels of the same or opposite polarity, and/or because a designer may take into account material saturation characteristics, a magnetizable material may be considered similar to a canvas, and a magnetic printer may be considered similar to a paint brush. Similarly, maxels may be considered as being analogous to pixels of a liquid crystal display (LCD) or other pixel-based display technology. As such, certain graphical techniques, computerized graphics software, strategies, combinations thereof, etc. may be applied to software and/or control systems that enable a magnetic graphical artist to design magnetic patterns and/or control magnetic printing of magnetizable material to produce desired patterns. Example of graphical techniques, computerized graphics software, strategies, etc. may include, but are not limited to, 3D modeling software; strategies to select a region or fill a selected region with a selected pattern; application of color palettes; use of predefined objects (e.g., squares, circles, fonts, stamps, etc.); implementation of shading; combinations thereof; and so forth.
In certain example embodiments, an automated and/or iterative measurement and/or redesign process may be implemented so that magnetic fields may be precisely prescribed. For example, a ‘getting warmer—getting colder’ algorithm may be used to systematically and precisely tailor magnetic fields to one or more desired field characteristics.
In certain example embodiments, any kind of image may be magnetically rendered in accordance with certain principles described herein. Images may include, but are not limited to, text, drawings, photographs, combinations thereof, and so forth. Company, school, or sport team logos may be rendered, for instance. As such, magnetic memorabilia may be produced in accordance with certain principles described herein. Additionally or alternatively, various other uses for magnetic imaging may be implemented, such as jewelry, awards, coinage, artwork, combinations thereof, and so forth. In example implementations, magnetic printing may be used for encrypting information in which a predetermined bias field is to be applied to decrypt the information.
Additionally or alternatively, letters may be formed from or otherwise include maxels printed at different locations (e.g., filling an inside of letters, filling outside of letters, along a boundary of letters, just inside or just outside a boundary of letters, or any combination thereof, etc.).
In certain example implementations, complementary magnetically printed patterns may be used as a form of verification or authentication. Additionally or alternatively, complementary magnetically printed patterns may be used for keying locks or for identifying that two objects belong together. Structures having complementary magnetically printed patterns may generally represent togetherness or “a match”—“his and hers” complementary magnetic structures may be created, for example.
For certain example embodiments, information may be conveyed by magnetically printing maxels into magnetic structures with the maxels representing the information. Spatial force functions of the maxels may be measured to recapture the information, and the measurements may be presented to present the information. Thus, magnetic field measurements may be used to determine information conveyed by magnetically printing maxels into magnetic structures. In certain example implementations, images or other information may be created or encoded by varying maxel properties. Examples of maxel properties that may be varied may include, but are not limited to: (1) polarity, which provides two states that enable digital encoding or analog two-color images; (2) field direction; (3) field strength (e.g., 100 volt maxel=binary 00, 150 volt maxel=01, 200 volt maxel=10, 250 volt maxel=11); (4) density, where spacing may convey digital or analog information; (5) phase (e.g., an offset from a regular grid position); (6) relative placement or location (e.g., of individual or sets of maxels); (7) any combination thereof; and so forth.
In certain example implementations, images or other information may be reconstructed using a magneto-optical effect. A surface of a diamagnetic, paramagnetic, ferromagnetic, etc. liquid may be used as a reflector of a high-intensity light source if, for example, a magnetic structure is immersed below the surface of the liquid. The light source may be projected onto a screen for viewing. This may, however, produce a distorted image of a magnetic field of a magnetic structure. Because some reconstruction methods naturally differentiate an image (e.g., a 2D high-pass filter) or distort it in other ways, one may compensate for a given distortion method. By way of example but not limitation, an image may be intentionally preprocessed (e.g., using a compensating filter) to affect (e.g., control, alleviate, ameliorate, any combination thereof, etc.) any undesired ‘filtering’ effect of a reconstruction. Other signal processing, such as deconvolution or channel coding (e.g., compression, forward error correction (FEC), combinations thereof, etc.) may be applied to maxel data. Some types of signal processing, such as convolution and/or deconvolution, may be used to implement encryption. Furthermore, amplitude modulation may be used and/or a bias frequency arithmetically added in manner(s) analogous to that of analog magnetic tape recorders to take advantage of reconstruction methods that are non-linear.
For certain example embodiments of flow diagram 1300, at operation 1302, a magnetizable material may be provided. At operation 1304, a coordinate system for a surface of the magnetizable material may be established. At operation 1306, based at least partially on at least one pattern, coordinates of maxels to print into the surface of the magnetizable material may be defined. At operation 1308, maxels may be magnetically printed at defined coordinates based, at least in part, coordinate system established for the surface of the magnetizable material. At operation 1310, a magnetic field pattern corresponding to the printed maxels may be presented.
For certain example embodiments of flow diagram 1400, operations 1302 and 1304 may be at least similar to the operations 1302 and 1304 of flow diagram 1300 of
For certain example embodiments of flow diagram 1420, at operation 1422, at least one criterion for at least one magnetic field characteristic for a maxel pattern may be established. A magnetic field characteristic may, by way of example but not limitation, correspond to a field measurement by a field sensor, a force measurement by a force sensor, any combination thereof, and so forth. At operation 1424, one or more current printer parameters for printing the maxel pattern may be established. By way of example only, a printer parameter may correspond to voltage setting(s) that determine an amount of voltage used to charge capacitor(s) of a magnetic printer used to print each maxel that is to form a maxel pattern. At operation 1426, a maxel pattern in accordance with the one or more current printer parameters may be printed. For example, a maxel pattern in accordance with the one or more current printer parameters may be printed based, at least in part, on the maxel pattern. At operation 1428, at least one magnetic field characteristic of the printed maxel pattern may be measured.
At operation 1430, it may be determined if the at least one established criterion has been met. Such a determination may be based at least partly on, for example, at least one comparison between the at least one measured magnetic field characteristic and the at least one established criterion for a magnetic field characteristic. At least one established criterion may be met, by way of example but not limitation, if the at least one measured magnetic field characteristics is equal to (or exceeds, or falls under, etc.) the at least one established criterion for a magnetic field characteristic, if such a criterion is matched by a measured characteristic, if such a criterion is matched by a measured characteristic to a stipulated degree, if such a criterion is matched by a measured characteristic to a stipulated degree within a preset time period, if such a criterion is approached and then other iterations diverge from an approaching measured value, any combination thereof, and so forth. If the at least one established criterion has been met, then the current printer parameters may be considered appropriate for printing the maxel pattern. At operation 1434, the method may be stopped. Additionally and/or alternatively, the current printer parameter(s) may be used to print the maxel pattern on a magnetizable material one or more times. If, on the other hand, the at least one established criterion has not been met (as determined at operation 1430), then at operation 1432 current printer parameters for printing the maxel pattern may be adjusted based, at least in part, on the at least one measured magnetic field characteristic. After one or more current printer parameter adjustments, the method of flow diagram 1420 may continue with operation 1426. Thus, operations 1426-1432 may be repeated until current printer parameters result in a printed maxel pattern having at least one measured magnetic field characteristic that meets the at least one established criterion for a magnetic field characteristic for a maxel pattern.
For an adjustment stage (e.g., of operation 1432), one skilled in the art will understand that varying printer parameters may involve any one or more of many different types of search algorithms. By way of example only, parameters corresponding to a given maxel or maxel pattern may be varied systematically to find one or more printer parameter settings that most closely match or that match to a stipulated degree or precision at least one established criterion. Print settings for multiple maxels of a maxel pattern may be varied one maxel at a time or by multiple maxels each time. It should be understood that because maxels can affect each other, a given search algorithm may iterate repeatedly without converging on printer parameter(s) that completely match a given criterion, but at least one established criterion may nevertheless be considered to have been met as described above. Additionally or alternatively, measured data may be deconvolved to produce clearer output that may be used as part of a search process.
An example implementation of a method comporting with flow diagram 1420 is described below by way of clarification but not limitation. It may be desired to print a maxel pattern comprising N maxels having N different maxel coordinates within a coordinate system mapped to a surface of a magnetizable material. An example established criterion may require that each of the N maxels have a corresponding one of N magnetic field strengths measured substantially close to the surface of the magnetizable material above each of the N different maxel coordinates, where the N magnetic field strengths are selected to produce a desired magnetic image. The N maxels may or may not overlap, and the maxel coordinates may be uniform or may be non-uniform. Thus, some maxels may overlap when printed, depending on a design of a maxel pattern. After printing, certain overlapping maxels may have different field strengths that involve varying printer parameters to achieve. By systematically varying printer parameters, an appropriate set of printer parameters may be determined that result in a maxel pattern printed into a magnetizable material meeting the established criterion.
As illustrated, maxels 108a-108d may have a substantially round or circular shape from a surface perspective of a top view of
For certain example embodiments, a sacrificial material may be placed or otherwise located in proximity with a magnetizable material that is to receive one or more maxels. A sacrificial material may be considered proximate or in proximity to, by way of example but not limitation, if it is in contact with the magnetizable material, if it is sufficiently close to absorb at least a portion of magnetization from a maxel being printed, if it is sufficiently close to affect at least a portion of a magnetization of a maxel being printed, some combination thereof, and so forth.
Generally, a sacrificial material may be manufactured to be magnetized in any direction relative to magnetizable material into which a maxel is being printed whereby a shape of the resulting printed maxel may depend at least in part on a printing direction versus one or more directions that the two magnetizable materials 1502 and 1504 are manufactured to be magnetized. A sacrificial material may be capable of being sacrificed after one or more maxels have been printed. By way of example only, a sacrificial material may be removed from proximity with a magnetizable material into which maxels have been printed and then discarded, used for other purposes, reused, re-magnetized, any combination thereof, and so forth.
For certain example embodiments, a determined maxel size, spacing, and/or density, etc. may be ascertained for a given magnetizable material having a given thickness in order to meet one or more criteria. Examples of criteria may include, but are not limited to, a maximum tensile force strength, a maximum shear force strength, or some combination thereof, etc. between two complementary magnetic structures, between a magnetic structure and a metal surface, or between other structures. Maxel size and/or shape may be affected by various techniques as described herein. However, for a given print head having one or more certain print head characteristics (e.g., a number of turns, a hole size, etc.), a diameter and/or a depth of a maxel may be controlled by controlling an amount of voltage used to charge capacitor(s) of a magnetic printer prior to printing a given maxel (or, e.g., by an amount of time a voltage is applied to capacitor(s)). By increasing a charging voltage, a current passing through a print head may be increased, which may increase a strength of a magnetic field produced by a print head as it prints a maxel into a magnetizable material.
For certain example embodiments of flow diagram 1800, at operation 1802, one or more magnetizable materials each having at least one material grade, at least one thickness, and/or at least one magnetically printable surface area may be provided. At operation 1804, a test pattern of one or more maxels may be printed into at least one surface of the one or more magnetizable materials. At operation 1806, a voltage for charging capacitor(s) used to print the one or more maxels that results in the one or more maxels meeting one or more criteria may be determined. At operation 1808, a maxel density that meets one or more criteria may be determined. Determination(s) corresponding to operation 1806 and/or 1808 may be performed, for example, iteratively with measuring and comparing operations between successive iterations. The one or more criteria may comprise, by way of example but not limitation, a maximum peak force per unit area ratio, wherein the peak force may correspond to a tensile force, a shear force, some combination thereof, and so forth.
In certain example embodiments, for a given magnetizable material, one or more maxel printing parameters may be ascertained relative to one or more criteria by varying e.g. one parameter while keeping one or more other parameters constant. For example, for a given material grade, print area surface, material thickness, and/or printing configuration (e.g., in which a printing configuration may include, but is not limited to, a print head hole size, a print voltage level, combinations thereof, etc.), a maxel density may be varied to meet one or more criteria. Additionally and/or alternatively, a print voltage level may be varied while one or more other parameters are maintained constant. In additional and/or alternative example embodiments, two or more printing parameters may be varied simultaneously while one or more other parameters are kept constant.
Magnetic printers having one or more example print heads, which may also be referred to as an inductor coil, are described in U.S. patent application Ser. No. 12/476,952 (filed 2 Jun. 2009), which is entitled “A Field Emission System and Method” and which is hereby incorporated by reference herein. Example alternative print head designs are described in U.S. patent application Ser. No. 12/895,589 (filed 30 Sep. 2010), which is entitled “System and Method for Energy Generation” and is hereby incorporated by reference herein. Other example alternative print head designs are described herein below with particular reference to
For example implementations, a diameter of one or more of the layers of a print head, which may be a shape other than round (e.g., oval, rectangular, elliptical, triangular, hexagonal, etc.), may be selected to be large enough to handle a load of a current passing through the print head layers and also large enough to substantially ensure no appreciable reverse magnetic field is produced near a hole where the print head produces a maxel. Although a hole is also shown to comprise a substantially circular or round shape, this is by way of example only. The hole may alternatively comprise other shapes as described previously with regard to maxel shapes, including but not limited to, oval, rectangular, elliptical, triangular, hexagonal, and so forth. Moreover, a size of the hole may correspond to a desired maxel resolution, whereby a given print head may have a different sized hole so as to print different sized maxels. Example diameter sizes of holes of print heads may include, but are not limited to, 0.7 mm to 4 mm. However, diameter sizes of holes may alternatively be smaller or larger, depending on design and/or application.
For an example assembly procedure, prior to attaching the two layers 1902 and 1906 that are electrically conductive, an insulating material (e.g., Kapton) may be placed on top of the outer layer 1902 (and/or beneath the inner layer 1906) so as to insulate one layer from the other. After welding, the insulating material may be cut away or otherwise removed from the weld joint 1910, which enables the two conductor portions to be electrically attached thereby producing one and one-half turns of an inductor coil. Alternatively, an insulating material may be preformed to be placed against a given layer (e.g., outer or inner) such that it insulates the given layer from an adjoining layer except for a portion corresponding to the weld joint between the two adjoining layers. During an example operation, an insulating material may prevent current from passing between the layers except at the weld joint thereby resulting in each adjoining layer acting as three-quarters of a turn of an inductor coil (e.g., of a print head) if using example layer designs as illustrated in
As shown in
For certain example embodiments, a magnetizing field created by a magnetic print head may be constrained to a geometry at or around a point of contact with a material to be magnetized in order to produce a maxel that is sharply defined to a desired degree. Two principles may be considered if realizing a magnetic circuit and/or a magnetic printing head in one or more of certain example implementations as described herein. First, magnetizable materials may acquire their “permanent” magnetic polarization rapidly, for example, in microseconds or even nanoseconds for some materials. Second, Lenz's Law indicates that conductors may exclude rapidly changing magnetic fields; in other words, rapidly changing magnetic fields may not penetrate a good conductor by a depth termed its “skin depth”. At least partly because of these two principles, for an example implementation, a magnetizing circuit used with a print head as described herein may create a large current pulse of 0.8 milliseconds duration that has a bandwidth of about 1250 KHz, which yields a calculated skin depth of about 0.6 millimeters (mm). As is described above, print heads may be designed to produce differently-sized maxels having different maxel widths (e.g., widths of 4 mm, 3 mm, 2 mm, 1 mm, etc., but a maxel width may alternatively be greater than 4 mm or smaller than 1 mm).
In an example implementation, a print head as described above may have a hole in its approximate center or centroid about 1 mm in diameter and with a thickness of a print head assembly of about 1 mm. Thus, during a printing of a maxel, a majority of field lines are forced to traverse the hole rather than permeate through the plates or layers (e.g., which may comprise copper or another material as described herein above) that form the print head assembly. This combination of magnetization pulse characteristics and print head geometry may create a magnetizing field having a high magnetic flux density in and/or near the 1 mm hole in the print head and a low magnetic flux elsewhere to thereby generate or otherwise produce a sharply defined maxel having approximately a 1 mm diameter. Certain example values (e.g., time, bandwidth, distance, etc.) are given above by way of example only; other values may alternatively be used.
For certain example embodiments, at least part of a maxel having a first polarity may be purposely overwritten by printing a maxel of a second (e.g., opposite) polarity. In an example implementation, a maxel having a first polarity may be purposefully completely, or at least substantially completely, overwritten by printing a maxel of a second (e.g., opposite) polarity.
For certain example embodiments, one or more maxel parameters may be dithered. In an example implementation, dithering may be performed randomly based at least partly on a variable number, for example a pseudo random number. Dithering may be additionally and/or alternatively performed in accordance with a code. Dithering may be used, for example, to reduce periodicity in a structure. However, dithering may be performed for other reasons, for example whereby a predetermined dithering pattern is used that may be subtracted out of or otherwise mathematically removed from a measured result. In example implementations, a uniform grid spacing may be provided for a maxel pattern, but an actual location of each maxel may be dithered such that their spacing is no longer uniform. Dithering may additionally and/or alternatively be applied to other maxel properties (e.g., maxel field strength amplitude), maxel printing parameters, combinations thereof, and so forth.
For certain example embodiments, magnetic printer 2100 may be capable of causing magnetic print head 2104 to move relative to magnetizable structure 1502. For example, movement handler 2102 may be capable of moving magnetic print head 2104 around magnetizable structure 1502, which may remain fixed. However, movement handler 2102 may alternatively be capable of moving magnetizable structure 1502 while magnetic print head 2104 remains fixed. Furthermore, movement handler 2102 may be capable of moving both magnetizable structure 1502 and magnetic print head 2104 in order to print maxels 106, 108 at desired locations. Movement handler 2102 may include, by way of example but not limitation, one or more of supporting structures, motors, gears, belts, conveyor belts, fasteners, circuitry to control movement, any combinations thereof, and so forth.
Example embodiments for magnetic print heads 2104 are described herein as print head 1916 (above with particular reference to
More specifically, flow diagram 2150 depicts an example patterned magnetic structure manufacturing method. A patterned magnetic structure may comprise multiple different magnetic polarities on a single side. A patterned magnetic structure may include magnetic sources that alternate, that are randomized, that have predefined codes, that have correlative codes, some combination thereof, and so forth. The magnetic sources may be discrete ones that are combined/amalgamated to form at least part of a magnetic structure (e.g., that have one or more maxels printed on discrete magnetic sources before, during, or after a combination/amalgamation), may be integrated ones that are printed onto a magnetizable material to create a patterned magnetic structure, some combination thereof, and so forth. For certain example embodiments, at a operation 2152, a pattern corresponding to a desired force function (or image) may be determined. A desired force function may comprise, for example, a spatial force function, an electromotive force function, a force function that provides for many different transitions between positive and negative polarities (and vice versa) with respect to a proximate coil that is in motion relative thereto, some combination thereof, and so forth.
At operation 2154, a magnetizable material may be provided to a magnetizing apparatus (e.g., to a magnetic printer 2100). At operation 2156, a magnetizer (e.g., a magnetic print head 2104) of the magnetizing apparatus and/or the magnetizable material (e.g., magnetizable structure 1502) to be magnetized may be moved so that a desired location on the magnetizable material can be magnetized in accordance with the determined pattern. At operation 2158, a desired source location on the magnetizable material may be magnetized such that the source has a desired polarity, field amplitude (or strength), shape, and/or size (e.g., area on the magnetizable material), or some combination thereof, etc. as defined by the pattern to print a maxel into the magnetizable material. At operation 2160, it may be determined whether additional magnetic sources remain to be magnetized. If there are additional sources to be magnetized, then the flow diagram may return to operation 2156. Otherwise, at operation 2162, the magnetizable material (which is now magnetized in accordance with the determined pattern) may be removed from the magnetizing apparatus.
In accordance with one example implementation for creating a magnet having multiple magnet polarities on a single side, a magnetic structure may be produced by magnetizing one or more magnetic sources having a first polarity onto a side of a previously magnetized magnet having an opposite polarity. Alternatively, a magnetic printer may be used to re-magnetize a previously-magnetized material having one polarity per side (e.g., originally) and having multiple sources with multiple polarities per side (e.g., afterwards). For example, a checkerboard pattern (e.g., alternating polarity sources) may be magnetized onto an existing magnet such that the remainder of the magnet (e.g., the non re-magnetized portion) acts as a bias. In another example, a pattern (e.g., including a code, image, etc.) other than a checkerboard pattern may be used to magnetize an existing magnet such that the remainder of the magnet (e.g., the non re-magnetized portion) acts as a bias.
In accordance with other example approaches for forming magnetic structures, a containment vessel may act as a mold for receiving magnetizable material while in a moldable form. Such a containment vessel may serve both as a mold for shaping the material and also as a protective device to provide support to the resulting magnetic structure so as to retard breakage, deformation, etc. If the magnetizable material is to be sintered, the containment vessel may comprise a material, e.g., titanium, that can withstand the heat used to sinter the magnetizable material. Should a binder be used to produce the magnets with the mold/containment vessel, other forms of material, such as a hard plastic may be used for the mold/containment vessel. Generally, various types of molds may be used to contain magnetizable material and may be used later to support and protect the magnetic structure (e.g., with patterning) once the material it contains has been magnetized.
Although multiple example embodiments are illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that claimed subject matter is not limited to the disclosed embodiments, but is capable of numerous rearrangements, modifications, substitutions, etc. without departing from subject matter as set forth and defined by the following claims.
This patent application is a continuation of U.S. patent application Ser. No. 14/176,052, filed Feb. 8, 2014, now U.S. Pat. No. 8,816,805 (Aug. 26, 2014), which is a divisional of U.S. patent application Ser. No. 13/240,335, filed Sep. 22, 2011, now U.S. Pat. No. 8,648,681 (Feb. 11, 2014), which claims the benefit of U.S. Provisional Patent Application No. 61/403,814 (filed Sep. 22, 2010) and U.S. Provisional Patent Application No. 61/462,715 (filed Feb. 7, 2011), both of which are entitled “SYSTEM AND METHOD FOR PRODUCING MAGNETIC STRUCTURES”; U.S. Pat. No. 8,648,681 (Feb. 11, 2014) is a continuation-in-part of U.S. Nonprovisional patent application Ser. No. 12/476,952 (filed Jun. 2, 2009), now U.S. Pat. No. 8,179,219 (May 15, 2012), which is entitled “FIELD EMISSION SYSTEM AND METHOD”; U.S. Pat. No. 8,648,681 (Feb. 11, 2014) is also a continuation-in-part of U.S. Nonprovisional patent application Ser. No. 12/895,589 (filed Sep. 30, 2010), now U.S. Pat. No. 8,760,250 (Jun. 24, 2014), which is entitled “A SYSTEM AND METHOD FOR ENERGY GENERATION”, which claims the benefit of Provisional Patent Application Nos. 61/277,214 (filed Sep. 22, 2009), 61/277,900 (filed Sep. 30, 2009), 61/278,767 (filed Oct. 9, 2009), 61/279,094 (filed Oct. 16, 2009), 61/281,160 (filed Nov. 13, 2009), 61/283,780 (filed Dec. 9, 2009), 61/284,385 (filed Dec. 17, 2009) and 61/342,988 (filed Apr. 22, 2010), and which is a continuation-in-part of Nonprovisional patent application Ser. No. 12/885,450 (filed Sep. 18, 2010), now U.S. Pat. No. 7,982,568 (Jul. 19, 2011), and Ser. No. 12/476,952 (filed Jun. 2, 2009), now U.S. Pat. No. 8,179,219 (May 15, 2012), the U.S. Nonprovisional patent application Ser. No. 12/885,450 (filed Sep. 18, 2010) claims the benefit of Provisional Patent Application Nos. 61/277,214 (filed Sep. 22, 2009), 61/277,900 (filed Sep. 30, 2009), 61/278,767 (filed Oct. 9, 2009), 61/279,094 (filed Oct. 16, 2009), 61/281,160 (filed Nov. 13, 2009), 61/283,780 (filed Dec. 9, 2009), 61/284,385 (filed Dec. 17, 2009) and 61/342,988 (filed Apr. 22, 2010), and the U.S. Nonprovisional patent application Ser. No. 12/476,952 (filed Jun. 2, 2009), now U.S. Pat. No. 8,179,219 (May 15, 2012), is a continuation-in-part of Non-provisional application Ser. No. 12/322,561, filed Feb. 4, 2009, now U.S. Pat. No. 8,115,581 (Feb. 14, 2012), which is a continuation-in-part application of Non-provisional application Ser. No. 12/358,423, filed Jan. 23, 2009, now U.S. Pat. No. 7,868,721 (Jan. 11, 2011), which is a continuation-in-part application of Non-provisional application Ser. No. 12/123,718, filed May 20, 2008, now U.S. Pat. No. 7,800,471 (Sep. 21, 2010), which claims the benefit of U.S. Provisional Application Ser. No. 61/123,019, filed Apr. 4, 2008. The contents of the provisional patent applications and the nonprovisional patent applications that are identified above are hereby incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
93931 | Westcott | Aug 1869 | A |
342666 | Williams | May 1886 | A |
361248 | Winton | Apr 1887 | A |
400809 | Van Depoele | Apr 1889 | A |
405109 | Williams | May 1889 | A |
450543 | Van Depoele | Apr 1891 | A |
493858 | Edison | Mar 1893 | A |
675323 | Clark | May 1901 | A |
687292 | Armstrong | Nov 1901 | A |
996933 | Lindquist | Jul 1911 | A |
1024418 | Podlesak | Apr 1912 | A |
1081462 | Patton | Dec 1913 | A |
1171351 | Neuland | Feb 1916 | A |
1180489 | Geist | Apr 1916 | A |
1184056 | Deventer | May 1916 | A |
1236234 | Troje | Aug 1917 | A |
1252289 | Murray, Jr. | Jan 1918 | A |
1290190 | Herrick | Jan 1919 | A |
1301135 | Karasick | Apr 1919 | A |
1307342 | Brown | Jun 1919 | A |
1312546 | Karasick | Aug 1919 | A |
1323546 | Karasick | Aug 1919 | A |
1554236 | Simmons | Jan 1920 | A |
1343751 | Simmons | Jun 1920 | A |
1544010 | Jordan | Jun 1925 | A |
1554254 | Zbinden | Sep 1925 | A |
1624741 | Leppke et al. | Dec 1926 | A |
1784256 | Stout | Dec 1930 | A |
1785643 | Noack et al. | Dec 1930 | A |
1823326 | Legg | Sep 1931 | A |
1895129 | Jones | Jan 1933 | A |
1975175 | Scofield | Oct 1934 | A |
2048161 | Klaiber | Jul 1936 | A |
2058339 | Metzger | Oct 1936 | A |
2147482 | Butler | Dec 1936 | A |
2111643 | Salvatori | Mar 1938 | A |
2130213 | Wolf et al. | Sep 1938 | A |
2158132 | Legg | May 1939 | A |
2186074 | Koller | Jan 1940 | A |
2240035 | Catherall | Apr 1941 | A |
2243555 | Faus | May 1941 | A |
2245268 | Goss et al. | Jun 1941 | A |
2269149 | Edgar | Jan 1942 | A |
2286897 | Costa et al. | Jun 1942 | A |
2296754 | Wolf et al. | Sep 1942 | A |
2315045 | Breitenstein | Mar 1943 | A |
2316616 | Powell | Apr 1943 | A |
2327748 | Smith | Aug 1943 | A |
2337248 | Koller | Dec 1943 | A |
2337249 | Koller | Dec 1943 | A |
2362151 | Ostenberg | Nov 1944 | A |
2389298 | Ellis | Nov 1945 | A |
2401887 | Sheppard | Jun 1946 | A |
2409857 | Hines et al. | Oct 1946 | A |
2414653 | Lokholder | Jan 1947 | A |
2426322 | Pridham | Aug 1947 | A |
2438231 | Shultz | Mar 1948 | A |
2471634 | Vennice | May 1949 | A |
2472127 | Slason | Jun 1949 | A |
2475200 | Roys | Jul 1949 | A |
2475456 | Norlander | Jul 1949 | A |
2483895 | Fisher | Oct 1949 | A |
2508305 | Teetor | May 1950 | A |
2513226 | Wylie | Jun 1950 | A |
2514927 | Bernhard | Jul 1950 | A |
2520828 | Bertschi | Aug 1950 | A |
2540796 | Stanton | Feb 1951 | A |
2544077 | Gardner | Mar 1951 | A |
2565624 | Phelon | Aug 1951 | A |
2570625 | Zimmerman et al. | Oct 1951 | A |
2640955 | Fisher | Jun 1953 | A |
2690349 | Teetor | Sep 1954 | A |
2694164 | Geppelt | Nov 1954 | A |
2694613 | Williams | Nov 1954 | A |
2701158 | Schmitt | Feb 1955 | A |
2722617 | Cluwen et al. | Nov 1955 | A |
2740946 | Geneslay | Apr 1956 | A |
2770759 | Ahlgren | Nov 1956 | A |
2787719 | Thomas | Apr 1957 | A |
2820411 | Park | Jan 1958 | A |
2825863 | Krupen | Mar 1958 | A |
2837366 | Loeb | Jun 1958 | A |
2842688 | Martin | Jul 1958 | A |
2853331 | Teetor | Sep 1958 | A |
2888291 | Scott et al. | May 1959 | A |
2896991 | Martin, Jr. | Jul 1959 | A |
2900592 | Baruch | Aug 1959 | A |
2932545 | Foley | Apr 1960 | A |
2935352 | Heppner | May 1960 | A |
2935353 | Loeb | May 1960 | A |
2936437 | Fraser et al. | May 1960 | A |
2959747 | Challacombe et al. | Nov 1960 | A |
2962318 | Teetor | Nov 1960 | A |
3024374 | Stauder | Mar 1962 | A |
3055999 | Lucas | Sep 1962 | A |
3089986 | Gauthier | May 1963 | A |
3100292 | Warner, Jr. et al. | Aug 1963 | A |
3102205 | Combs | Aug 1963 | A |
3102314 | Alderfer | Sep 1963 | A |
3105153 | James, Jr. | Sep 1963 | A |
3149255 | Trench | Sep 1964 | A |
3151902 | Ahlgren | Oct 1964 | A |
3204995 | Teetor | Sep 1965 | A |
3208296 | Baermann | Sep 1965 | A |
3238399 | Johanees et al. | Mar 1966 | A |
3273104 | Krol | Sep 1966 | A |
3288511 | Tavano | Nov 1966 | A |
3301091 | Reese | Jan 1967 | A |
3351368 | Sweet | Nov 1967 | A |
3382386 | Schlaeppi | May 1968 | A |
3408104 | Raynes | Oct 1968 | A |
3414309 | Tresemer | Dec 1968 | A |
3425729 | Bisbing | Feb 1969 | A |
3468576 | Beyer et al. | Sep 1969 | A |
3474366 | Barney | Oct 1969 | A |
3496871 | Stengel | Feb 1970 | A |
3500090 | Baermann | Mar 1970 | A |
3521216 | Tolegian | Jul 1970 | A |
3645650 | Laing | Feb 1972 | A |
3668670 | Andersen | Jun 1972 | A |
3684992 | Huguet et al. | Aug 1972 | A |
3690393 | Guy | Sep 1972 | A |
3696251 | Last et al. | Oct 1972 | A |
3696258 | Anderson et al. | Oct 1972 | A |
3707924 | Barthalon et al. | Jan 1973 | A |
3790197 | Parker | Feb 1974 | A |
3791309 | Baermann | Feb 1974 | A |
3802034 | Bookless | Apr 1974 | A |
3803433 | Ingenito | Apr 1974 | A |
3808577 | Mathauser | Apr 1974 | A |
3836801 | Yamashita et al. | Sep 1974 | A |
3845430 | Petkewicz et al. | Oct 1974 | A |
3893059 | Nowak | Jul 1975 | A |
3976316 | Laby | Aug 1976 | A |
4079558 | Forham | Mar 1978 | A |
4114305 | Wohlert et al. | Sep 1978 | A |
4115040 | Knorr | Sep 1978 | A |
4117431 | Eicher | Sep 1978 | A |
4129187 | Wengryn et al. | Dec 1978 | A |
4129846 | Yablochnikov | Dec 1978 | A |
4140932 | Wohlert | Feb 1979 | A |
4209905 | Gillings | Jul 1980 | A |
4222489 | Hutter | Sep 1980 | A |
4232535 | Caldwell | Nov 1980 | A |
4296394 | Ragheb | Oct 1981 | A |
4340833 | Sudo et al. | Jul 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4363980 | Petersen | Dec 1982 | A |
4399595 | Yoon et al. | Aug 1983 | A |
4416127 | Gomez-Olea Naveda | Nov 1983 | A |
4421118 | Dow et al. | Dec 1983 | A |
4451811 | Hoffman | May 1984 | A |
4453294 | Morita | Jun 1984 | A |
4454426 | Benson | Jun 1984 | A |
4460855 | Kelly | Jul 1984 | A |
4500827 | Merritt et al. | Feb 1985 | A |
4517483 | Hucker et al. | May 1985 | A |
4535278 | Asakawa | Aug 1985 | A |
4547756 | Miller et al. | Oct 1985 | A |
4629131 | Podell | Dec 1986 | A |
4645283 | MacDonald et al. | Feb 1987 | A |
4649925 | Dow et al. | Mar 1987 | A |
4680494 | Grosjean | Jul 1987 | A |
381968 | Tesla | May 1988 | A |
4767378 | Obermann | Aug 1988 | A |
4785816 | Dow et al. | Nov 1988 | A |
4808955 | Godkin et al. | Feb 1989 | A |
4814654 | Gerfast | Mar 1989 | A |
4837539 | Baker | Jun 1989 | A |
4849749 | Fukamachi et al. | Jul 1989 | A |
4856631 | Okamoto et al. | Aug 1989 | A |
4912727 | Schubert | Mar 1990 | A |
4924123 | Hamajima et al. | May 1990 | A |
4941236 | Sherman et al. | Jul 1990 | A |
4956625 | Cardone et al. | Sep 1990 | A |
4980593 | Edmundson | Dec 1990 | A |
4993950 | Mensor, Jr. | Feb 1991 | A |
4996457 | Hawsey et al. | Feb 1991 | A |
5013949 | Mabe, Jr. | May 1991 | A |
5020625 | Yamauchi et al. | Jun 1991 | A |
5050276 | Pemberton | Sep 1991 | A |
5062855 | Rincoe | Nov 1991 | A |
5123843 | Van der Zel et al. | Jun 1992 | A |
5139383 | Polyak et al. | Aug 1992 | A |
5179307 | Porter | Jan 1993 | A |
5190325 | Doss-Desouza | Mar 1993 | A |
5302929 | Kovacs | Apr 1994 | A |
5309680 | Kiel | May 1994 | A |
5345207 | Gebele | Sep 1994 | A |
5347186 | Konotchick | Sep 1994 | A |
5349258 | Leupold et al. | Sep 1994 | A |
5367891 | Furuyama | Nov 1994 | A |
5383049 | Carr | Jan 1995 | A |
5394132 | Poil | Feb 1995 | A |
5396140 | Goldie et al. | Mar 1995 | A |
5425763 | Stemmann | Jun 1995 | A |
5434549 | Hirabayashi et al. | Jul 1995 | A |
5440997 | Crowley | Aug 1995 | A |
5452663 | Berdut | Sep 1995 | A |
5461386 | Knebelkamp | Oct 1995 | A |
5485435 | Matsuda et al. | Jan 1996 | A |
5492572 | Schroeder et al. | Feb 1996 | A |
5495221 | Post | Feb 1996 | A |
5512732 | Yagnik et al. | Apr 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5582522 | Johnson | Dec 1996 | A |
5604960 | Good | Feb 1997 | A |
5631093 | Perry et al. | May 1997 | A |
5631618 | Trumper et al. | May 1997 | A |
5633555 | Ackermann et al. | May 1997 | A |
5635889 | Stelter | Jun 1997 | A |
5637972 | Randall et al. | Jun 1997 | A |
5650681 | DeLerno | Jul 1997 | A |
5730155 | Allen | Mar 1998 | A |
5759054 | Spadafore | Jun 1998 | A |
5788493 | Tanaka et al. | Aug 1998 | A |
5789878 | Kroeker et al. | Aug 1998 | A |
5818132 | Konotchick | Oct 1998 | A |
5852393 | Reznik et al. | Dec 1998 | A |
5902185 | Kubiak et al. | May 1999 | A |
5921357 | Starkovich et al. | Jul 1999 | A |
5935155 | Humayun et al. | Aug 1999 | A |
5956778 | Godoy | Sep 1999 | A |
5975714 | Vetorino et al. | Nov 1999 | A |
5983406 | Meyerrose | Nov 1999 | A |
5988336 | Wendt et al. | Nov 1999 | A |
6000484 | Zoretich et al. | Dec 1999 | A |
6039759 | Carpentier et al. | Mar 2000 | A |
6040642 | Ishiyama | Mar 2000 | A |
6047456 | Yao et al. | Apr 2000 | A |
6072251 | Markle | Jun 2000 | A |
6074420 | Eaton | Jun 2000 | A |
6104108 | Hazelton et al. | Aug 2000 | A |
6115849 | Meyerrose | Sep 2000 | A |
6118271 | Ely et al. | Sep 2000 | A |
6120283 | Cousins | Sep 2000 | A |
6125955 | Zoretich et al. | Oct 2000 | A |
6142779 | Siegel et al. | Nov 2000 | A |
6157100 | Mielke | Dec 2000 | A |
6170131 | Shin | Jan 2001 | B1 |
6181110 | Lampis | Jan 2001 | B1 |
6187041 | Garonzik | Feb 2001 | B1 |
6188147 | Hazelton et al. | Feb 2001 | B1 |
6205012 | Lear | Mar 2001 | B1 |
6208489 | Marchon | Mar 2001 | B1 |
6210033 | Karkos, Jr. et al. | Apr 2001 | B1 |
6224374 | Mayo | May 2001 | B1 |
6234833 | Tsai et al. | May 2001 | B1 |
6273918 | Yuhasz et al. | Aug 2001 | B1 |
6275778 | Shimada et al. | Aug 2001 | B1 |
6285097 | Hazelton et al. | Sep 2001 | B1 |
6313551 | Hazelton | Nov 2001 | B1 |
6313552 | Boast | Nov 2001 | B1 |
6387096 | Hyde, Jr. | May 2002 | B1 |
6422533 | Harms | Jul 2002 | B1 |
6457179 | Prendergast | Oct 2002 | B1 |
6467326 | Garrigus | Oct 2002 | B1 |
6478681 | Overaker et al. | Nov 2002 | B1 |
6517560 | Toth et al. | Feb 2003 | B1 |
6540515 | Tanaka | Apr 2003 | B1 |
6561815 | Schmidt | May 2003 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6607304 | Lake et al. | Aug 2003 | B1 |
6608540 | Hones et al. | Aug 2003 | B1 |
6652278 | Honkura et al. | Nov 2003 | B2 |
6653919 | Shih-Chung et al. | Nov 2003 | B2 |
6720698 | Galbraith | Apr 2004 | B2 |
6747537 | Mosteller | Jun 2004 | B1 |
6768230 | Cheung et al. | Jul 2004 | B2 |
6821126 | Neidlein | Nov 2004 | B2 |
6841910 | Gery | Jan 2005 | B2 |
6842332 | Rubenson et al. | Jan 2005 | B1 |
6847134 | Frissen et al. | Jan 2005 | B2 |
6850139 | Dettmann et al. | Feb 2005 | B1 |
6862748 | Prendergast | Mar 2005 | B2 |
6913471 | Smith | Jul 2005 | B2 |
6927657 | Wu | Aug 2005 | B1 |
6936937 | Tu et al. | Aug 2005 | B2 |
6950279 | Sasaki et al. | Sep 2005 | B2 |
6952060 | Goldner et al. | Oct 2005 | B2 |
6954938 | Emberty et al. | Oct 2005 | B2 |
6954968 | Sitbon | Oct 2005 | B1 |
6971147 | Halstead | Dec 2005 | B2 |
7009874 | Deak | Mar 2006 | B2 |
7016492 | Pan et al. | Mar 2006 | B2 |
7031160 | Tillotson | Apr 2006 | B2 |
7033400 | Currier | Apr 2006 | B2 |
7065860 | Aoki et al. | Jun 2006 | B2 |
7066739 | McLeish | Jun 2006 | B2 |
7066778 | Kretzschmar | Jun 2006 | B2 |
7097461 | Neidlein | Aug 2006 | B2 |
7101374 | Hyde, Jr. | Sep 2006 | B2 |
7134452 | Hiroshi et al. | Nov 2006 | B2 |
7135792 | Devaney et al. | Nov 2006 | B2 |
7137727 | Joseph et al. | Nov 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7224252 | Meadow, Jr. et al. | May 2007 | B2 |
7264479 | Lee | Sep 2007 | B1 |
7276025 | Roberts et al. | Oct 2007 | B2 |
7309934 | Tu et al. | Dec 2007 | B2 |
7311526 | Rohrbach et al. | Dec 2007 | B2 |
7324320 | Maurer et al. | Jan 2008 | B2 |
7339790 | Baker et al. | Mar 2008 | B2 |
7344380 | Neidlein et al. | Mar 2008 | B2 |
7351066 | DiFonzo et al. | Apr 2008 | B2 |
7358724 | Taylor et al. | Apr 2008 | B2 |
7362018 | Kulogo et al. | Apr 2008 | B1 |
7364433 | Neidlein | Apr 2008 | B2 |
7381181 | Lau et al. | Jun 2008 | B2 |
7402175 | Azar | Jul 2008 | B2 |
7416414 | Bozzone et al. | Aug 2008 | B2 |
7438726 | Erb | Oct 2008 | B2 |
7444683 | Prendergast et al. | Nov 2008 | B2 |
7453341 | Hildenbrand | Nov 2008 | B1 |
7467948 | Lindberg et al. | Dec 2008 | B2 |
7498914 | Miyashita et al. | Mar 2009 | B2 |
7583500 | Ligtenberg et al. | Sep 2009 | B2 |
7628173 | Rosko et al. | Dec 2009 | B2 |
7637746 | Lindberg et al. | Dec 2009 | B2 |
7645143 | Rohrbach et al. | Jan 2010 | B2 |
7658613 | Griffin et al. | Feb 2010 | B1 |
7688036 | Yarger et al. | Mar 2010 | B2 |
7750524 | Sugimoto et al. | Jul 2010 | B2 |
7762817 | Ligtenberg et al. | Jul 2010 | B2 |
7775567 | Ligtenberg et al. | Aug 2010 | B2 |
7796002 | Hashimoto et al. | Sep 2010 | B2 |
7799281 | Cook et al. | Sep 2010 | B2 |
7808349 | Fullerton et al. | Oct 2010 | B2 |
7812697 | Fullerton et al. | Oct 2010 | B2 |
7817004 | Fullerton et al. | Oct 2010 | B2 |
7828556 | Rodrigues | Nov 2010 | B2 |
7832897 | Ku | Nov 2010 | B2 |
7837032 | Smeltzer | Nov 2010 | B2 |
7839246 | Fullerton et al. | Nov 2010 | B2 |
7843297 | Fullerton et al. | Nov 2010 | B2 |
7868721 | Fullerton et al. | Jan 2011 | B2 |
7871272 | Firman, II et al. | Jan 2011 | B2 |
7874856 | Schriefer et al. | Jan 2011 | B1 |
7901216 | Rohrbach et al. | Mar 2011 | B2 |
7903397 | McCoy | Mar 2011 | B2 |
7905626 | Shantha et al. | Mar 2011 | B2 |
7980268 | Rosko et al. | Jul 2011 | B2 |
7997906 | Ligenberg et al. | Aug 2011 | B2 |
8002585 | Zhou | Aug 2011 | B2 |
8004792 | Biskeborn et al. | Aug 2011 | B2 |
8009001 | Cleveland | Aug 2011 | B1 |
8050714 | Fadell et al. | Nov 2011 | B2 |
8078224 | Fadell et al. | Dec 2011 | B2 |
8078776 | Novotney et al. | Dec 2011 | B2 |
8087939 | Rohrbach et al. | Jan 2012 | B2 |
8138868 | Arnold | Mar 2012 | B2 |
8138869 | Lauder et al. | Mar 2012 | B1 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8143983 | Lauder et al. | Mar 2012 | B1 |
8165634 | Fadell et al. | Apr 2012 | B2 |
8177560 | Rohrbach et al. | May 2012 | B2 |
8187006 | Rudisill et al. | May 2012 | B2 |
8190205 | Fadell et al. | May 2012 | B2 |
8242868 | Lauder et al. | Aug 2012 | B2 |
8253518 | Lauder et al. | Aug 2012 | B2 |
8264310 | Lauder et al. | Sep 2012 | B2 |
8264314 | Sankar | Sep 2012 | B2 |
8271038 | Fadell et al. | Sep 2012 | B2 |
8271705 | Novotney et al. | Sep 2012 | B2 |
8297367 | Chen et al. | Oct 2012 | B2 |
8344836 | Lauder et al. | Jan 2013 | B2 |
8348678 | Hardisty et al. | Jan 2013 | B2 |
8354767 | Pennander et al. | Jan 2013 | B2 |
8390411 | Lauder et al. | Mar 2013 | B2 |
8390412 | Lauder et al. | Mar 2013 | B2 |
8390413 | Lauder et al. | Mar 2013 | B2 |
8395465 | Lauder et al. | Mar 2013 | B2 |
8398409 | Schmidt | Mar 2013 | B2 |
8435042 | Rohrbach et al. | May 2013 | B2 |
8454372 | Lee | Jun 2013 | B2 |
8467829 | Fadell et al. | Jun 2013 | B2 |
8497753 | DiFonzo et al. | Jul 2013 | B2 |
8514042 | Lauder et al. | Aug 2013 | B2 |
8535088 | Gao et al. | Sep 2013 | B2 |
8576031 | Lauder et al. | Nov 2013 | B2 |
8576034 | Bilbrey et al. | Nov 2013 | B2 |
8586410 | Arnold et al. | Nov 2013 | B2 |
8616362 | Browne et al. | Dec 2013 | B1 |
8648679 | Lauder et al. | Feb 2014 | B2 |
8665044 | Lauder et al. | Mar 2014 | B2 |
8665045 | Lauder et al. | Mar 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8702316 | DiFonzo et al. | Apr 2014 | B2 |
8734024 | Isenhour et al. | May 2014 | B2 |
8752200 | Varshavsky et al. | Jun 2014 | B2 |
8757893 | Isenhour et al. | Jun 2014 | B1 |
8770857 | DiFonzo et al. | Jul 2014 | B2 |
8774577 | Benjamin et al. | Jul 2014 | B2 |
8781273 | Benjamin et al. | Jul 2014 | B2 |
20020125977 | VanZoest | Sep 2002 | A1 |
20030170976 | Molla et al. | Sep 2003 | A1 |
20030179880 | Pan et al. | Sep 2003 | A1 |
20030187510 | Hyde | Oct 2003 | A1 |
20040003487 | Reiter | Jan 2004 | A1 |
20040155748 | Steingroever | Aug 2004 | A1 |
20040244636 | Meadow et al. | Dec 2004 | A1 |
20040251759 | Hirzel | Dec 2004 | A1 |
20050102802 | Sitbon et al. | May 2005 | A1 |
20050196484 | Khoshnevis | Sep 2005 | A1 |
20050231046 | Aoshima | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050263549 | Scheiner | Dec 2005 | A1 |
20060066428 | McCarthy et al. | Mar 2006 | A1 |
20060111191 | Wise | May 2006 | A1 |
20060189259 | Park et al. | Aug 2006 | A1 |
20060198047 | Xue et al. | Sep 2006 | A1 |
20060214756 | Elliott et al. | Sep 2006 | A1 |
20060290451 | Prendergast et al. | Dec 2006 | A1 |
20060293762 | Schulman et al. | Dec 2006 | A1 |
20070072476 | Milan | Mar 2007 | A1 |
20070075594 | Sadler | Apr 2007 | A1 |
20070103266 | Wang et al. | May 2007 | A1 |
20070138806 | Ligtenberg et al. | Jun 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070267929 | Pulnikov et al. | Nov 2007 | A1 |
20080139261 | Cho et al. | Jun 2008 | A1 |
20080181804 | Tanigawa et al. | Jul 2008 | A1 |
20080186683 | Ligtenberg et al. | Aug 2008 | A1 |
20080218299 | Arnold | Sep 2008 | A1 |
20080224806 | Ogden et al. | Sep 2008 | A1 |
20080272868 | Prendergast et al. | Nov 2008 | A1 |
20080282517 | Claro | Nov 2008 | A1 |
20090021333 | Fiedler | Jan 2009 | A1 |
20090058201 | Brennvall | Mar 2009 | A1 |
20090091195 | Hyde et al. | Apr 2009 | A1 |
20090146508 | Peng et al. | Jun 2009 | A1 |
20090209173 | Arledge et al. | Aug 2009 | A1 |
20090230786 | Liu | Sep 2009 | A1 |
20090250576 | Fullerton et al. | Oct 2009 | A1 |
20090251256 | Fullerton et al. | Oct 2009 | A1 |
20090254196 | Cox et al. | Oct 2009 | A1 |
20090278642 | Fullerton et al. | Nov 2009 | A1 |
20090289090 | Fullerton et al. | Nov 2009 | A1 |
20090289749 | Fullerton et al. | Nov 2009 | A1 |
20090292371 | Fullerton et al. | Nov 2009 | A1 |
20100033280 | Bird et al. | Feb 2010 | A1 |
20100084928 | Yoshida et al. | Apr 2010 | A1 |
20100126857 | Polwart et al. | May 2010 | A1 |
20100134916 | Kawabe | Jun 2010 | A1 |
20100167576 | Zhou | Jul 2010 | A1 |
20110026203 | Ligtenberg et al. | Feb 2011 | A1 |
20110051288 | Contreras | Mar 2011 | A1 |
20110210636 | Kuhlmann-Wilsdorf | Sep 2011 | A1 |
20110234344 | Fullerton et al. | Sep 2011 | A1 |
20110248806 | Michael | Oct 2011 | A1 |
20110279206 | Fullerton et al. | Nov 2011 | A1 |
20120007704 | Nerl | Jan 2012 | A1 |
20120085753 | Fitch et al. | Apr 2012 | A1 |
20120235519 | Dyer et al. | Sep 2012 | A1 |
20120262261 | Sarai | Oct 2012 | A1 |
20130001745 | Lehmann et al. | Jan 2013 | A1 |
20130186209 | Herbst | Jul 2013 | A1 |
20130186473 | Mankame et al. | Jul 2013 | A1 |
20130186807 | Browne et al. | Jul 2013 | A1 |
20130187538 | Herbst | Jul 2013 | A1 |
20130192860 | Puzio et al. | Aug 2013 | A1 |
20130207758 | Browne et al. | Aug 2013 | A1 |
20130252375 | Yi et al. | Sep 2013 | A1 |
20130256274 | Faulkner | Oct 2013 | A1 |
20130279060 | Nehl | Oct 2013 | A1 |
20130305705 | Ac et al. | Nov 2013 | A1 |
20130341137 | Mandame et al. | Dec 2013 | A1 |
20140044972 | Menassa et al. | Feb 2014 | A1 |
20140072261 | Isenhour et al. | Apr 2014 | A1 |
20140152252 | Wood et al. | Jun 2014 | A1 |
20140205235 | Benjamin et al. | Jul 2014 | A1 |
20140221741 | Wang et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1615573 | May 2005 | CN |
2938782 | Apr 1981 | DE |
0 345 554 | Dec 1989 | EP |
0 545 737 | Jun 1993 | EP |
823395 | Jan 1938 | FR |
1 495 677 | Dec 1977 | GB |
54-152200 | Nov 1979 | JP |
60-091011 | May 1985 | JP |
WO-0231945 | Apr 2002 | WO |
WO-2007081830 | Jul 2007 | WO |
WO-2009124030 | Oct 2009 | WO |
WO-2010141324 | Dec 2010 | WO |
Entry |
---|
Kim, Pill Soo, Kim, Yong, Field and Thermal Modeling of Magnetizing Fixture by Impulse, Power Electronics and Drive Systems, 2003. The fifth conference on, Dec. 2003,1301-1306. |
Comparison of Invention (U.S. Pat. No. 8,179,219 B2) with Dettmann (U.S. Pat. No. 6,850,139) and with Bitter Coil, in U.S. Pat. No. 8,179,219, no date. |
Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawings/aes.pdf, pp. 159-175, date unknown. |
BNS 33 Range, Magnetic safety sensors, Rectangular design, http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown. |
Series BNS-B20, Coded-Magnet Sensor Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2 pages, date unknown. |
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown. |
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages. |
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page. |
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages. |
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages. |
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages. |
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages. |
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page. |
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011,1 page. |
Pill-soo Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996. |
United States Office Action, dated Aug. 26, 2011, issued in counterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Mar. 12, 2012, issued in counterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Feb. 22, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
United States Office Action, dated Oct. 12, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
United States Office Action, dated Mar. 9, 2012, issued in counterpart U.S. Appl. No. 13/371,280. |
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/US2009/038925. |
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612. |
International Search Report and Written Opinion dated Jun. 1, 2009, issued in related International Application No. PCT/US2009/002027. |
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443. |
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410. |
Atallah, K., Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004. |
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-46. |
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-68. |
Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongear.com/pdf/product—sections/200—series—helical.pdf, referenced Jun. 2010. |
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17. |
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103. |
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06. |
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo. |
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ. |
Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com. |
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692. |
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego. |
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33. |
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010. |
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27. |
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013. |
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29. |
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28. |
Jørgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65. |
Jørgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5. |
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65. |
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-547. |
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105. |
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997. |
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99. |
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—magnetreater.htm, 2 pages. |
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010. |
Notice of Allowance issued in U.S. Appl. No. 13/471,189 dated Apr. 3, 2013. |
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52. |
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013. |
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013. |
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013. |
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28, 2012. |
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013. |
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013. |
C. Pompermaier, L. Sjoberg, and G. Nord, Design and Optimization of a Permanent Magnet Transverse Flux Machine, XXth International Conference on Electrical Machines, Sep. 2012, p. 606, IEEE Catalog No. CFP1290B-PRT, ISBN: 978-1-4673-0143-5. |
V. Rudnev, An Objective Assessment of Magnetic Flux Concentrators, HET Trating Progress, Nov./Dec. 2004, p. 19-23. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013. |
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20140354383 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61403814 | Sep 2010 | US | |
61462715 | Feb 2011 | US | |
61277214 | Sep 2009 | US | |
61277900 | Sep 2009 | US | |
61278767 | Oct 2009 | US | |
61279094 | Oct 2009 | US | |
61281160 | Nov 2009 | US | |
61283780 | Dec 2009 | US | |
61284385 | Dec 2009 | US | |
61342988 | Apr 2010 | US | |
61123019 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13240335 | Sep 2011 | US |
Child | 14176052 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14176052 | Feb 2014 | US |
Child | 14461368 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12895589 | Sep 2010 | US |
Child | 13240335 | US | |
Parent | 12885450 | Sep 2010 | US |
Child | 12895589 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12885450 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | Jun 2009 | US |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US |