The present invention relates generally to modulation, and more particularly to a magneto-optic optical modulator.
Telecommunications systems, cable television systems and data communication networks use optical networks to rapidly convey large amounts of information between remote points. In an optical network, information is conveyed in the form of optical signals through optical fibers. Optical fibers comprise thin strands of glass capable of transmitting the signals over long distances with very low loss.
Many electronics components depend at least in part on electric input for their operation. For example, capacitors, transistors, diodes, etc. are driven by the application of voltage and/or current. In contrast, few devices are driven by magnetic input. Some examples include induction coils and transformers. Some optical components used in optical networks depend at least in part on the application of an electromagnetic field and/or temperature for their operation. For example, many optical devices depend on a changing refractive index in response to an electric field and/or temperature. To date, the operation of optical devices based on the application of a magnetic field has been limited.
Optical networks often employ wavelength division multiplexing (WDM) or dense wavelength division multiplexing (DWDM) to increase transmission capacity. In WDM and DWDM networks, a number of optical channels are carried in each fiber at disparate wavelengths. Network capacity is based on the number of wavelengths, or channels, in each fiber and the bandwidth, or size of the channels. Multiplexing can be used to increase the data rate in comparison to single stream transmission or to maintain the data rate but reduce the bandwidth requirements. Polarization modulation provides a shift in polarization which can be used to multiplex two or more data streams.
In accordance with a particular embodiment of the present invention, a device for modulating an optical beam is provided. The device may include a substrate comprising a non-ferromagnetic material, a thin film comprising a ferromagnetic semiconductor material disposed on the substrate, an inducer, and an electrical input. The thin film may be disposed on the substrate such that at least part of an optical beam incident on the thin film at an angle reflects off of a surface of the thin film. The thin film may be responsive to a magnetic field applied to the thin film such that varying the magnetic field varies the polarization of the light beam reflected off of the surface of the thin film. The inducer may be configured to vary the magnetic field applied to the thin film between at least two values for the magnetic field. The electrical input to the inducer may represent a data stream with at least two discrete values.
In accordance with another particular embodiment of the present invention, a multiplexing system for use with an optical communications network is provided. The system may comprise a transponder configured to emit a first optical beam, a modulator, an inducer, and a combiner. The polarization and/or amplitude modulator may include a substrate and a thin film. The substrate may include a non-ferromagnetic material. The thin film may include a ferromagnetic semiconductor material disposed on the substrate. The thin film may be disposed on the substrate such that at least part of the first optical beam incident on the thin film at an angle reflects off of a surface of the thin film. The thin film may be responsive to a magnetic field applied to the thin film such that varying the magnetic field varies the polarization of the first optical beam reflecting of off the surface of the thin film. The inducer may be configured to vary the magnetic field applied to the polarization modulator so that the polarization of the first optical beam propagating through the thin film is changed to a selected polarity. The combiner may be configured to superimpose the optical beam onto a second optical beam having a different polarity from the selected polarity of the first optical beam.
In accordance with another particular embodiment of the present invention, a method for modulating an optical beam is provided. The method may include providing a substrate and a ferromagnetic semiconductor material formed on the substrate. The method may include emitting an optical beam onto the ferromagnetic semiconductor material such that the optical beam reflects off of a surface of the ferromagnetic semiconductor material. The method may include applying a magnetic field to the ferromagnetic semiconductor material to vary the polarization of the light beam to a desired polarization amount while the optical beam is reflected from the surface of the ferromagnetic semiconductor material.
The ability to rotate the polarization of a beam of light may be useful in advanced modulation formats used for multiplexing of optical communication signals. For example, a dual polarization (DP) multiplexed optical beam may carry two discrete signals. Each of the two signals is carried by a light beam with a distinct polarization. Because the polarizations are distinct, the content of the two signals does not interfere and the two signals remain coherent. When the DP optical beam is received, the two discrete signals can be separated based on their polarization before each signal is processed.
An optoelectronic module configured to modulate polarity may reduce the part count and complexity of a polarization modulator in comparison to other modulators. A polarization modulator with reduced size may allow the configuration of an overall system to be more compact. An optoelectronic polarization modulator may require reduced power consumption in comparison to other modulators. The teachings of the present disclosure may be implemented using semiconductor processing and techniques which may be simple in comparison to other modulators (e.g., some polarization modulators include quantum wells). A polarization modulator fabricated with semiconductor technology may offer reduced response times in comparison to other polarization modulators.
It will be understood that the various embodiments of the present invention may include some, all, or none of the enumerated technical advantages. In addition, other technical advantages of the present invention may be readily apparent to one skilled in the art from the figures, description and claims included herein.
Optical computation systems may be implemented in optical networks to facilitate multiplexing and/or increased spectral efficiency (for example, networks implementing wavelength division multiplexing (WDM), dense wavelength division multiplexing (DWDM), or any other suitable multiplexing technique). In a multiplexed signal, there may be two or more discrete data streams superimposed into a single beam of light Implementation of the teachings of the present disclosure may provide increased density for multiplexed systems.
For example, in a dual polarization (DP) multiplexed system, there are two separate and distinct data streams superimposed into a single beam of light. Before they are combined, each data stream is first encoded onto a beam of light using a modulation scheme (e.g., quadrature phase shift keyed modulation (QPSK). The two beams have distinct polarizations (e.g., perpendicular to one another). Because of the distinct polarizations, multiplexing the two beams into a single beam does not lead to interference between the signals. The resulting beam can later be separated into two separate beams after it is received, based on the respective polarization states.
An optical computation system taking advantage of the teachings of the present disclosure may make use of polarization modulation to carry data signals in the polarization state itself. A polarization modulator configured to provide two or more discrete polarization states may be used to indicate a data value for each state. For example, a x-axis polarization may indicate a “0” and a y-axis polarization may indicate a “1”. The details of a scheme to map polarization states to data values may be designed to take advantage of the teachings of the present disclosure.
Known solutions for changing the polarization of a light beam may include passing the light beam through one or more optical devices (e.g., polarization beam splitter and combiner, and/or a half-wave plate). These solutions require free space optical components which may not be fabricated into an integrated circuit using semiconductor technology. In addition, use of beam splitters and combiners may require high levels of power consumption. In contrast, a polarization modulator fabricated with semiconductor technology may provide more compact solutions, simpler fabrication, reduced power load, and/or faster response time than free space optic components. In particular, the present disclosure describes how ferromagnetic semiconductors may be used to construct optical polarization modulators.
In one embodiment, a diluted (III,Mn)V semiconductor may change its material properties when placed in a magnetic field. Detailed reviews of how optical properties may be modified by magnetic field have been presented in (1) P. Strange, [Relativistic Quantum Mechanics], Cambridge University Press, Cambridge, pp. 497-505 (1998), and (2) V. Antonov, A. Yaresko, B. Harmon, [Electronic Structure and Magneto-Optical Properties of Solids], Kluwer Academic Publishers (2004). In particular, the polarization of a light beam reflecting from the surface of a diluted (III,Mn)V semiconductor may shift based on the application of a magnetic field to the semiconductor 1, because the magnetic permeability (μ) and components of dielectric tensor (εij) of a ferromagnetic semiconductor may vary based at least on the strength of an electromagnetic field applied to the material.
Three polarization effects based on the application of a magnetic field are shown in
The Faraday effect, named after Michael Faraday, occurs in many optically transparent dielectric materials when strong magnetic fields are applied to the materials. The Faraday effect occurs because the speed of a light beam passing through the magnetized material depends on the polarization of the light beam. For example, in a ferromagnetic substance, the incident beam is decomposed into two circularly polarized beams which propagate at different speeds—also known as “circular birefringence.” When the two beams exit the substance, they re-combine. Because of the difference in propagation speed, however, there is an offset between the two components, which appears as a rotation of the angle of linear polarization of the resulting beam. The Voigt effect is usually used to describe this phenomenon when the substance is a vapor or a liquid. In either case, varying the strength of the applied magnetic field changes the amount by which the polarization of the transmitted beam is rotated.
Substrate 10 may be any appropriate non-ferromagnetic material. The appropriate selection of substrate 10 depends on the particular selection of a ferromagnetic semiconductor (e.g., based at least in part on the matching of lattice constants between the materials selected for thin film 20 and substrate 10). For example, silicon and/or gallium arsenide (GaAs) may provide an appropriate substrate for deposition of thin film 20. Silicon and gallium arsenide are used to make many semiconductor devices (e.g., infrared light emitting diodes (LED), laser diodes, solar cells, and/or microwave frequency integrated circuits).
Thin film 20 may include any appropriate ferromagnetic semiconductor. For example, use of a diluted (III,Mn)V semiconductor may provide the ability to manipulate light using the various effects described above in relation to
In some embodiments, the thickness of thin film 20 may be selected to avoid reducing the transparency of thin film 20 below an acceptable level. For example, thin film 20 may have a thickness in the range of 50 nanometers if it passes through thin film 20 only once. As shown in
Thin film 20 may be deposited on substrate 10 for several reasons. Because the thickness of thin film 20 may be in the range of 35-50 nanometers, a free-standing film may not be suitable. If a free-standing film is not suitable, substrate 10 may be included for structural support. As another example, the optical properties of thin film 20 and substrate 10 may include a high relative index contrast because thin film 20 is ferromagnetic and substrate 10 is not.
In an example embodiment, substrate 10 may include a combination of materials. For example, polarization modulator 5 may include thin film 20 including a 16 nm layer of InMnAs deposited on substrate 10 including 500 nm thick of AlSbAs, with a magnetization direction in plane with the surface of thin film 20. As another example, polarization modulator 5 may include thin film 20 including a 9 nm thick layer of InMnAs deposited on substrate 10 including 136 nm of AlSb, 400 nm of GaSb, and 300 nm of GaAs, with a magnetization direction perpendicular to the surface of thin film 20.
At the same time, the portions of light beam 30 transmitting through thin film 20 may have a shifting polarization. For example, arrows 46 show that the polarization of second portion 34 and third portion 36 rotates as light beam 30 passes through thin film 20. In the example shown, arrows 48 show that the polarization of light beam 38 has shifted 90 degrees to a horizontal polarization (negative x-polarization) from the original polarization of light beam 30. The particular polarization shift shown is representative only. The teachings of the present disclosure may be applied to select any particular polarization shift desired by varying the thickness of thin film 20 or the selection of material of thin film 20. The particular polarization shift as light beam 34 passes through thin film 20 depends on the strength and orientation of the magnetic field as described more fully above related to the Faraday and/or the Voigt effects.
Light beam 30 passing through thin film 20 of polarization modulator 5 and/or reflected from the first surface of thin film 20 will have a polarization dependent at least in part on the strength of the magnetic field applied to thin film 20 of polarization modulator 1. Changing the strength of the magnetic field changes the magnetic permeability of thin film 20. The corresponding change in permeability (μ) changes the rotation of the polarization of light beam 30. Use of the MOKE, Voigt, and/or Faraday effect may allow polarization modulator 5 to set the polarization of light beam 30 when it exits thin film 20.
In the embodiment shown in
Inductor 60 may be any inductive component or device configured to apply a magnetic field to thin film 20. For example, inductor 60 may include a conducting wire shaped as a coil. When a current is passed through the coil, a strong magnetic field is created inside the coil. When activated, inductor 60 applies a magnetic field, shown by the vector, B, in
Laser 62 may include any component or device configured to emit a coherent light beam for use in an optical communication network. For example, laser 62 may include continuous wave beam lasers, amplitude modulators, and/or phase modulators. Beam splitter 64 may include any component or device configured to split light beam 30 into at least two portions (e.g., 68a and 69a). Because the polarization of each beam of light may be independently modulated by the application of separate magnetic fields by inductors 60a and 60b, a single beam of light launched by laser 62 may be separated into two beams of light 68a and 69a with, for example, perpendicularly polarized states.
Each beam of light 68a and 69a may pass through a respective modulator 66a and 66b. The output of the modulators may include two beams of light 68b and 69b with perpendicular polarization states, independently modulated for use in data transmission. For example, modulators 66a and 66b may include quadrature phase shift key (QPSK) or double phase shift key (DPSK) modulation.
In contrast to other techniques for producing a DP multiplexed beam of light, DP multiplexer 2 may eliminate the need for polarization beam splitters. Elimination of PBS components may reduce the power draw of a DP multiplexer. In addition, making an optical device smaller may provide additional reductions in power draw and/or increased port density. The embodiment described above may provide a multiplexed light beam for use in 40G/100G transmission.
Although the present invention has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims. For example, polarization modulator 5 described herein may be incorporated with amplitude and phase modulators to provide additional modulation schemes (e.g., dual polarization quadrature phase shift keyed modulation (DP-QPSK)).
This application claims the benefit of U.S. Provisional Application No. 61/121,389 filed on Dec. 10, 2008, entitled “MAGNETO-OPTIC OPTICAL MODULATOR, which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61121389 | Dec 2008 | US |