This invention relates to magnetoelectric devices, particularly those incorporating magnetostrictive composite.
Common magnetic-field sensors for converting magnetic field to electric field signals include reluctance coils and Hall-effect devices. Reluctance coils generate an electric voltage proportional in magnitude to the time rate of change of magnetic flux coupling within the coils. To obtain an accurate measurement, a highly precise, low-noise, low-drift electronic integrator may be required to integrate the voltage signal induced across the coil. However, the lower the signal frequency (i.e., the lower the flux change rate), the longer the integration time is required, and below a certain signal frequency, the voltage signal disappears into the noise. Although Hall-effect devices do not suffer from these problems, they have limited sensitivities (i.e., 5–50 μV/Oe) and are always hampered by a noise-induced bandwidth limitation to about 30 kHz. In addition, they require a highly stable constant-current source to establish an accurate Hall voltage output.
Magnetoelectric devices have received continuous attention due to their distinct advantage of providing a relatively simple, cost-effective and reliable means for direct-conversion of magnetic fields to electric fields and vice versa. Magnetoelectric effect is defined as a variation of dielectric polarization in a material when subjected to an applied magnetic field, or an induced magnetization in response to an external electric field. In recent years, several bulk and laminate magnetoelectric two-phase materials have been created to overcome the drawbacks of low operational temperatures and low magnetoelectric effect in single-phase materials.
Bulk materials may be represented by sintered 0–3 composites of magnetostrictive ferrite (i.e., a metal-iron-oxide ceramic) particles [e.g., cobalt ferrite (CFO or CoFe2O4), nickel ferrite (NFO or NiFe2O4), copper ferrite (CuFe2O4), manganese chromium ferrite (MnFe2Cr0.2O4), cobalt zinc ferrite (CZFO), nickel zinc ferrite (NZFO), lithium zinc ferrite (LZFO), etc.] dispersed in a piezoelectric ceramic matrix [e.g., barium titanate (BaTiO3), lead zirconate titanate (PZT), etc.] (J. van den Boomgaard and R. A. J. Born, “A Sintered Magnetoelectric Composite Material BaTiO3—Ni(Co,Mn)Fe2O4”, J. Mater. Sci., vol. 13, pp. 1538–1548, 1978). While these sintered bulk materials generally show a higher magnetoelectric voltage coefficient (i.e., αE˜0.13 V/cm·Oe, where αE=dE/dH is the ratio of the change in electric field strength to the change in magnetic field strength) than single-phase materials (i.e., ˜0.02 V/cm·Oe for Cr2O3), they still have some crucial problems in reproducibility and reliability impeding their commercial viability. These problems include: 1) difficulties in machining and fabricating devices due to the brittleness of the materials; 2) difficulties in controlling the connectivity of the constituent phases; 3) chemical reaction between phases during high-temperature sintering; 4) dielectric breakdown through the low electrically resistant magnetostrictive phase during poling of the piezoelectric phase under a high electric poling field to induce an electric polarization; and 5) weak mechanical coupling between phases owing to processing-induced mechanical defects (i.e., pores, cracks, etc.).
Laminate materials may include bilayer, sandwich and multilayer structures of either magnetostrictive metal plates/disks [e.g., terbium-dysprosium-iron alloy (Terfenol-D), iron (Fe), cobalt (Co), nickel (Ni), etc.] or magnetostrictive ferrite plates/disks (e.g., CFO, NFO, CZFO, NZFO, LZFO, etc.) and piezoelectric ceramic plates/disks [e.g., BaTiO3, PZT, lead magnesium niobate-lead titanate (PMN-PT), lead zirconate niobate-lead titanate (PZN-PT), etc.] (W. N. Podney, “Composite Structured Piezomagnetometer”, U.S. Pat. No. 5,675,252, 7 Oct. 1997). Among these laminate structures, the ones incorporating Terfenol-D, a magnetostrictive rare-earth-based alloy of terbium (Tb), dysprosium (Dy) and iron (Fe), exhibit the greatest magnetoelectric voltage coefficient αE. This may be due to the giant magnetostrictive strain (i.e., ˜1200 ppm) produced by Terfenol-D in comparison with other magnetostrictive materials (i.e., only on an order of 10 ppm). An effective mechanical coupling between the magnetostrictive and piezoelectric phases related to simple structure and simple fabrication technique (i.e., bonding all well-prepared constituent layers together) plays another key factor to produce the high magnetoelectric voltage coefficient αE.
As the development of magnetoelectric materials so far relies on the use of metallic or ceramic magnetostrictive materials and ceramic piezoelectric materials as their constituent phases, this leads to three significant problems in the resulting magnetoelectric devices. The first is the limitation of the operational frequency to a few kilohertz due to the presence of eddy-current losses in the low electrically resistant metallic magnetostrictive phase (i.e., electrical resistivity ˜0.6 μΩ·m for Terfenol-D). The second is difficulties in machining and fabricating devices owing to the mechanical brittleness of the ceramic and some metallic (i.e., Terfenol-D, etc.) magnetostrictive phases as well as of the ceramic piezoelectric phase. The third is difficulties in tailoring and optimizing the properties (i.e., magnetoelectric voltage coefficient αE, operational frequency range, etc.) of the devices due to the limitation of the types of the constituent materials. Particularly, the problem arisen from eddy-current losses may have reduced the commercial and practical values of currently available magnetoelectric devices, since their operational frequencies (i.e., a few kilohertz only) are even lower than those of traditional Hall-effect devices (i.e., ˜30 kHz). This problem, together with that caused by limitation of materials' types, may have restricted the existing magnetoelectric devices to be only used as a low-frequency sensor or a low-frequency transducer.
Therefore, it is an object of this invention to provide a magnetoelectric device and magnetoelectric composite that may resolve at least a portion of the above problems. As a minimum, it is an object of this invention to provide the public with a useful choice.
Accordingly, this invention provides a magnetoelectric element including at least one set of alternative piezoelectric layer and magnetostrictive composite layer. The magnetostrictive composite layer includes at least one magnetostrictive material dispersed in first concentrated zones within a first polymer matrix, wherein all of said concentrated zones are orientated along a first direction.
Preferably, the magnetostrictive material is a rare-earth-based alloy. More preferably, the rare-earth-based alloy is selected from the group consisting of terbium-dysprosium-iron alloy (Terfenol-D), gallium-iron alloy (Gafenol), and samarium-dysprosium-iron alloy (Samfenol-D). The first polymer matrix is preferred to be made of a first polymer selected from the group consisting of thermosetting polymer and thermoplastic polymer.
Preferably, the piezoelectric layer is selected from the group consisting of piezoelectric polymer and piezoelectric composite.
Advantageously, the piezoelectric polymer is selected from the group consisting of polyvinylidene fluoride (PVDF) polymer and polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] copolymer.
Alternatively, the piezoelectric composite includes at least one piezoelectric material dispersed in second concentrated zones within a second polymer matrix, wherein all of said concentrated zones are orientated along a second direction. More preferably, the piezoelectric material is selected from the group consisting of barium titanate (BaTiO3), lead zirconate titanate (PZT), lead magnesium niobate-lead titanate (PMN-PT) and lead zirconate niobate-lead titanate (PZN-PT), while the second polymer matrix is preferred to be made of a second polymer selected from the group consisting of thermosetting polymer, thermoplastic polymer, polyvinylidene fluoride (PVDF) polymer and polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] copolymer.
It is another aspect of this invention to provide a magnetoelectric device including at least one magnetoelectric element as described and at least one field generator for generating a magnetic field. The magnetoelectric element is positioned in the magnetic field.
Preferably, the field generator is an invariable field generator. More preferably, a further second variable field generator is included to generate a variable magnetic control field.
Alternatively, the field generator is a variable field generator to generate a variable magnetic control field.
It is another aspect of this invention to provide a method of controlling at least the magnetoelectric voltage coefficient αE of a magnetoelectric device including a magnetoelectric element, said magnetoelectric element including at least one set of alternative piezoelectric layer and magnetostrictive composite layer, wherein:
Preferably, the magnetoelectric device has a resonance frequency region, and the magnet control field is varied within the resonance frequency region. More preferably, the resonance frequency region is about 45 to 85 kHz.
Preferred embodiments of the present invention will now be explained by way of example and with reference to the accompanying drawings in which:
This invention is now described by way of example with reference to the figures in the following paragraphs.
Objects, features, and aspects of the present invention are disclosed in or are obvious from the following description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
It should be noted that ceramic magnetostrictive materials can also be fabricated into the composite form to reduce their intrinsic brittleness problem. For both metal- and ceramic-based magnetostrictive composites, their properties can be tailored to suit specific application requirements by changing the volume fractions of their constituent phases. This tailorable capability significantly enhances the importance of composites in magnetoelectric applications.
Though useful, monolithic magnetostrictive rare-earth-based alloys, being metals, generally have two disadvantages. Firstly, the operational frequency is limited to a few kilohertz due to the presence of eddy-current losses. Secondly, it may be difficult to machine and fabricate devices owing to the brittleness of the material. By dispersing and aligning the magnetostrictive materials into a polymer matrix, for instance by fabricating the monolithic materials into a composite form comprising two or more monolithic parts separated from one another by at least a part of passive polymer, the materials' bandwidths can conveniently be extended into the ultrasonic regime (i.e., ≧20 kHz) and their brittleness can significantly be reduced due to increased electrical resistivity and mechanical durability, respectively.
To alleviate the mechanical brittleness problem in ceramic piezoelectric phase, a higher compliance piezoelectric material is used. This includes piezoelectric polymers [e.g., polyvinylidene fluoride (PVDF) polymer, polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] copolymer, etc.] and piezoelectric composites comprising a piezoelectric ceramic [e.g., barium titanate (BaTiO3), lead zirconate titanate (PZT), lead magnesium niobate-lead titanate (PMN-PT), lead zirconate niobate-lead titanate (PZN-PT), etc.] dispersed in a polymer matrix that is either a polymer passive to magnetic and electric fields [e.g., epoxy, phenolic, unsaturated polyester (UP), polycarbonate (PC), polystyrene (PS), polymethyl methacrylate (PMMA), polyimide (PI), unpoled polyvinylidene fluoride (unpoled PVDF), unpoled polyvinylidene fluoride-trifluoroethylene [unpoled P(VDF-TrFE)], etc.] or a piezoelectric polymer [e.g., PVDF, P(VDF-TrFE), etc.]. For example, two or more piezoelectric PZT parts may be separated from one another by a part of epoxy.
A magnetoelectric device of this invention in sensor mode is shown in
The invariable field generator is preferably, but is not limited to, a pair of permanent magnets. This permanent magnet pair, which situates near both ends of the magnetoelectric element, provides an invariable magnetic field (i.e., a fixed dc magnetic field) along the desired operational direction of the device so as to maximize the device performance. That is, along the magnetization (M) axis of the magnetostrictive phase in the magnetoelectric element, but this will be considered as a design option. Depending on the configuration of the magnetoelectric element, this permanent magnet pair can be positioned vertically (
A magnetoelectric single-element device in transducer or combo mode is shown in
While the preferred embodiment of the present invention has been described in detail by the examples, it is apparent that modifications and adaptations of the present invention will occur to those skilled in the art. Furthermore, the embodiments of the present invention shall not be interpreted to be restricted by the examples or figures only. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2234968 | Hayes et al. | Mar 1941 | A |
3004176 | Mason et al. | Oct 1961 | A |
3401377 | Bartlett et al. | Sep 1968 | A |
6437558 | Li et al. | Aug 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20050218729 A1 | Oct 2005 | US |