The present invention is related to devices that produce motion in conductive fluids including devices and methods for ionized gas (plasma) confinement and devices and methods for nuclear fusion. The invention further relates to devices and methods to generate a magnetic field from the flow of a conducting fluid, i.e., devices that exhibit dynamo behavior.
A key effort in plasma physics is the search for new device configurations capable of generating certain plasma configurations. One device configuration being sought generates a certain minimum plasma pressure for a time sufficient for sustained thermonuclear fusion [1]. Another produces the dynamo effect [2].
Central to both dynamo behavior and fusion is the conserved quantity of helicity in its magnetic [3], hydrodynamic [4], and cross forms [5]. Magnetic helicity can be generated in plasma when current is driven along a magnetic field line [3]. The electric field can be transformed away in a moving frame of reference [6] so particles experience no magnetic helicity in the reference frame of steady flow. Here I describe a device able to generate full magnetohydrodynamic (MHD) helicity.
Cowling's theorem dictates that dynamo behavior requires asymmetry [7]. Spatial periodicity, i.e., B(x+li)=B(x) where B is the magnetic field, satisfies this asymmetry requirement [8] [9]. Examples of spatial B-field periodicity are readily apparent in cusped magnetic field configurations as the fields alternate in polarity along a length [10]. In addition, Komarov et al. showed that spatially periodic fields satisfy the Boltzmann equation for plasmas in steady state and observed spatial periodicity in pinch experiment plasmas [11] [12].
Driving currents across cusped magnetic fields can produce Taylor-Couette flows in plasmas or other conductive fluids [13] [14]. Current provides torque at the fluid edge and the velocity of the resulting flow is given by E×B/B2 where E is the electric field. Azimuthal flows in cylindrical and spherical geometry plasmas have been driven by spatially periodic polar (poloidal) currents across spatially periodic polar magnetic cusps. The Big Red Ball device at University of Wisconsin-Madison has 36 rings of permanent magnets fastened to the wall of a spherical chamber to create 36 magnetic cusps for li=π/18 periodicity along the π radians of its polar angle [15]. These currents impart azimuthal Lorentz J×B torque at the plasma edge. Momentum flows from the fields by Poynting's theorem. It does not appear that extension of the above single-direction flow to two-directional flow has been reported or disclosed by anyone.
In view of the above, it would be beneficial to have a device or devices and methods to combine toroidal flow with poloidal flow for helical fluid flow in conductive fluids with helical magnetization, and give some uses for such configurations of matter. The present invention provides this.
The present invention provides means for laminar fluid kinematic dynamo embodiments from embodiments of at least one magnetohydrodynamic (MHD) helicity generator. The means for constructing a magnetohydrodynamic generator are disclosed herein. A laminar fluid kinematic dynamo can be constructed by linking or interlocking two toroidal magnetohydrodynamic generators or to construct a single magnetohydrodynamic helicity generator with write, twist, or crossing topologies. These topologies are provided and a linkage topology is shown herein as a representative embodiment. Additional means are provided for reducing the number of magnetic field coils and electrodes necessary for inducing flow in the conductive fluid.
Further aspects of the present invention will become apparent from consideration of the drawings and the following description of forms of the invention. A person skilled in the art will realize that other forms of the invention are possible and that the details of the invention can be modified in a number of respects without departing from the inventive concept. The following drawings and description are to be regarded as illustrative in nature and not restrictive.
The present invention and its features will be better understood by reference to the accompanying drawings, wherein:
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Producing both toroidal and poloidal flows forms a hydrodynamic singular structure by conservation of hydrodynamic helicity [4]. Conservation of helicity maintains flux linkage. Analogous to the way smoke and bubble ring hydrodynamic vorticity conservation conserves flux linkage, poloidal flow conserves poloidal particle flux linkage as toroidal circulation conserves toroidal particle flux linkage. In the practice of plasma confinement, particles lost out any one cusp loss region (poloidal or toroidal) would necessarily reduce flux linkage, so in the absence of transient disruptive effects plasma is confined.
Magnetic helicity in a fluid with helical flow produces a magnetic singular structure possessing canonical MEM helicity. A number of means of magnetic helicity injection have been developed including coaxial [17] and steady-inductive imposed-dynamo current drive [18]. Added heating can employ any of the conventional wave or particle means [19]. A 3-dimensional view of one embodiment MHD helicity generator is shown in
Beginning in the 1960's, adequate starting singular structure plasma rings, plasmoids, or spheromaks, the configuration sought in the Tormac, were produced in experiments [20]. In the 1970's hot electrons (Te>Ti) enabled separatrix formation about the magnetic axis to separate passing and confined plasma in multipole cusped-field toroidal plasma configurations [21] [20] [22].
Two ways of visualizing a single MHD helicity generator may be instructive. The cylindrical Plasma Couette eXperiment, predecessor to the spherical Big Red Ball, produces azimuthal (toroidal) flow by driving currents across magnetic fields spatially periodic along the polar (poloidal) z-axis [23]. If the axis is extended and the ends linked into a torus the device is now driving poloidal flow by the change in coordinate. To generate helical flow, to the now toroidal device with toroidal field periodicity and poloidal flow, periodic poloidal magnetic cusps and currents can be added to drive toroidal flow. The PCX device has an additional central column of fields and currents but we ignore these in this example. The spherical Big Red Ball device does not have this central column.
Alternatively, the MHD helicity generator looks somewhat similar to a magnetic helicity-injected Tokamak fusion reactor, but all the magnetic fields are cusped, and across the magnetic fields, currents drive flow. In the Tokamak the toroidal and poloidal magnetic fields are aligned, the device must withstand compressive stress, and the plasma is subject to interchange down the field gradient. The Tokamak design does not have means to drive flow aside from external drives such as neutral beam injection despite flow being crucial for transition to the high-confinement H-mode of operation. In the tokamak, the magnetic field is bent into a torus and this is well known to be unstable. In the device proposed here the cusped fields produce an expansive force on the reactor and there is no interchange risk. Here, a steady-state singular structure plasmoid is spun up and confined to a static minimum-B well, and this is well known to be stable [24] [25] [26], in the very least, when the flow velocity is driven at the Alfvén velocity [27].
In another embodiment of the invention the device may be constructed of coils that wind both ways around the toroidal device to produce the necessary poloidal and toroidal spatial field periodicity across which currents can be driven to drive flow.
Dynamo behavior, or the production of a steady magnetic field by the flow of a conductive fluid, is expected when laminar vortex rotor flows of conducting fluids with meridional (poloidal) circulation are combined with “sufficient vigour and complexity” [28]. We claim here that such vigor can be combinations of the above magnetic laminar flows in an interlocking geometry as shown in the
Gravity is created by sufficiently increasing the electric and magnetic forces in one or a combination of the above reactor systems to engage a measurable change in Maxwellian stress-energy tensor by the Thirring-Lense effect of rapidly rotating bodies [30].
While the invention has been illustrated and described in what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as permitted under the law. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
It should be understood that while the use of the word preferable, preferably, or preferred in the description above indicates that feature so described may be more desirable, it nonetheless may not be necessary and any embodiment lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow. In reading the claims it is intended that when words such as “a,” “an,” “at least one” and “at least a portion” are used, there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Unless specifically stated to the contrary in the claim, the language “at least one of X, Y, and Z” should be interpreted as including both the conjunctive and disjunctive forms. Specifically, the language “at least one of X, Y, and Z” is intended to encompass the following permutations of X, Y, and Z: X alone; Y alone; Z alone; X and Y; X and Z; Y and Z; and X, Y, and Z. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.
This U.S. non-provisional patent application claims the benefit of and/or the priority under 35 USC § 119(e) to U.S. provisional application Ser. No. 63/252,581 filed Oct. 5, 2021 titled “Magnetohydrodynamic Boat Motor, Pump, and Sensor, and Helicity Generator (Dynamo),” the entire contents of which is specifically incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63252581 | Oct 2021 | US |