Optical coherence tomography (OCT) is a novel biomedical imaging technique that can render 2D and 3D structural and functional information in real time.1,2 OCT is based on the theory of low-coherence interferometry. Biological samples absorb very little and scatter some of the near infrared light (NIR) that they are probed with.2 OCT uses NIR to probe specimens as deep as a few millimeters, with micron resolution. OCT systems have been introduced recently in a clinical setting for use in ophthalmology.
In OCT the NIR probing light is equally split into a mirror arm that serves as a reference and a sample arm. The interference of the backscattered light fields in the two arms of the interferometer (Er and Es) is detected (as intensity Id) and used to determine the structure of the scattering object in the sample arm. Image reconstruction is based on the theory of inverse scattering; by inverse Fourier-transforming the autocorrelation signal from the demodulated detected intensity at different times (time-domain OCT, or TD-OCT,
Superparamagnetic iron oxide (SPIO) particles have been used extensively as contrast agents for magnetic resonance imaging (MRI).9 Magnetic particles with small core sizes (<100 nm) are easily transported through the circulatory system and are able to extravasate, and are thus suitable for both in vivo and in vitro studies.6,8 Depending on their composition and size, magnetic particles can be very responsive to external, non-invasive manipulation or detection due to their strong magnetic susceptibility. Moreover, they can be functionalized to target antigens and thus enhance contrast at the molecular and cellular level, aiding in pathogen localization and early diagnosis of disease. The use of these magnetic particles in OCT has several advantages: the ability to externally manipulate the particles, the low magnetic susceptibility inherent in human tissues, the availability of FDA approved biocompatible iron oxide particles for MRI contrast, and the potential for hyperthermic therapy with high frequency (>100 kHz) modulation.
Magnetomotive optical coherence tomography (MM-OCT) in a time-domain optical coherence tomography (TD-MMOCT) system has been used for detecting the displacements in different samples caused by the modulation of the magnetic field and it has been subsequently shown that the magnetomotive response in the system is predictable.8 In this scheme, axial scans in a two-dimensional transversal sample plane are acquired with the magnetic field off and on, while allowing the particles and the sample sufficient time to complete motion and reach equilibrium between axial scans, for example at a line rate of 10 Hz. Thus, the images taken with the TD-MMOCT system represent a static description of the sample in the absence and in the presence of the magnetic field, and may be used as a background-rejecting method by estimating a background displacement signal when the magnetic field is off, compared to the magnetic-specific displacement when the magnetic field is off-on.8
This previous work demonstrated the ability to image magnetite (Fe3O4) micro- and nanoparticles after uptake by in vitro macrophages4 and in vivo African frog tadpoles8 by modulating an externally applied magnetic field and detecting the resultant magnetomotion specific to the particles. Other researchers have also used this principle to provide hemoglobin contrast in optical Doppler tomography,31 and to detect iron uptake in tissues with differential phase OCT32 and also in ultrasound.9
Phase measurements in common-path low-coherence light interferometry have been shown to render high sensitivity to sub-wavelength displacements or obstacles in the path of light.10-12 Path length sensitivities as low as 25 μm for spectral-domain optical coherence phase microscopy (SD-OCPM)10 and 18 μm (equivalent phase stability=0.4 mrad) for spectral-domain phase microscopy (SDPM)11 have been reported. Phase-resolved methods10-15 are often used in a dynamical regime, such as in measuring intralipid16-18 or blood flow19-23 velocities, nerve displacements,24 or monitoring cell10 and even cardiomyocyte12 activity.
In a first aspect, the present invention is a spectral-domain magnetomotive optical coherence tomography apparatus, comprising (a) a spectral-domain optical coherence tomography device, and (b) a magnet. The magnet is coupled with the optical coherence tomography device so that changes in the magnetic field are coordinated with collection of data by the optical coherence tomography device.
In a second aspect, the present invention is a method of examining a sample, comprising examining the sample with a spectral-domain optical coherence tomography device, to collect data. The sample comprises magnetic particles, and the magnetic particles are subjected to a changing magnetic field during the examining.
The following definitions are included to provide a clear and consistent understanding of the specification and claims.
The signal-to-noise ratio (SNR) is defined as the integrated intensity at fB compared to a control sample.
A “tissue phantom” or simply “phantom” is a synthetic control sample intended to mimic tissue when examined by OCT.
“Spectral-domain optical coherence tomography” or “SD-OCT” is any type of optical coherence tomography where a Fourier transform of the collected data is required to obtain temporal interference data or a temporal interferogram. SD-OCT is distinct from time-domain optical coherence tomography (TD-OCT) where a Fourier transform of the collected data is not required to obtain temporal interference data.
The term “substantially parallel” means parallel and up to 50 from parallel.
The present invention is based on the discovery of a method and apparatus for imaging a sample (such as biological tissue, in vivo and/or in vitro) which contains magnetic particles (more specifically, particles with a high magnetic susceptibility, such as magnetite and maghemite) that may be used to induce movement in the tissue at the location of the particle. This is referred to as magnetomotive imaging. The particles are referred to as a “contrast agents”, although typically there is no imaging of the particles themselves; typically, the particles do not themselves scatter light. The imaging is carried out using OCT, preferably SD-OCT (which may be referred to as spectral-domain magnetomotive optical coherence tomography, SD-MMOCT). This technique may be used to image biological tissue, with microscopic resolution and millimeter scale or larger imaging volumes. The imaging of the particles is carried out by placing a magnet, preferably an electromagnet, near the sample surface to be scanned (biological or non-biological) and modulating the magnetic field, for example by modulating the current to the electromagnet, or by rotating or moving a permanent magnet, during imaging. The magnetic field gradient produced by the magnet pulls/pushes the magnetic particles toward/away from the magnet, and in doing so displaces them from their rest positions (for example, where they are bound to the surface of a diseased biological cell that has been targeted). These nano- or micro-scale displacements are modulated at the same frequency as the magnetic field, and are detected by the OCT system as a change in scattering by the environment immediately surrounding the particles.
Imaging light is preferably transversely scanned slowly, so that multiple modulations of the magnetic field are accomplished over the time it takes the imaging system to collect the data over one transverse resolution distance. A subsequent image in the same location is acquired with the magnetic field off, allowing for the contribution of background motions to be subtracted from the original image, and thus an image of the distribution of the particles is rendered. When using a SD-OCT system, the magnetomotive signal is dominated by a phase modulation in the OCT data, which is more sensitive than amplitude modulation.
The magnetic particles can be selected for biological or non-biological applications. For biological applications, the magnetic particles are preferably polymer-coated to make them biocompatible. The magnetic particles may be targeted using a variety of techniques: (1) the magnetic particles may be targeted for specific disease markers expressed by biological cells, by labeling the surfaces of the particles with antibodies, peptides, or other proteins that have specificity for the markers;42 (2) the magnetic particles may be passively targeted using features of the disease, for example, the additional blood vasculature present in tumors; and/or (3) the magnetic particles may be manipulated into certain areas (such as the body of a patient, or location within a sample) using an external magnetic field, (this method is known as magnetic drug targeting: for instance, collection of particles at the site of a mass for both imaging and treatment).41
Examples of these types of particles include SPIOs (Superparamagnetic Iron Oxides) and USPIOs (Ultrasmall Superparamagnetic Iron Oxide), which have been used as MRI contrast agents for several purposes, including prostate cancer detection by the specific uptake of SPIOs by healthy lymph nodes.39 Examples of these commercially available magnetic particles include FERIDEX I.V.® (ferumoxides injectable solution, Bayer HealthCare Pharmaceuticals), RESOVIST® (SH U 555 A; Schering, Berlin, Germany), and COMBIDEX® (ferumoxides, USPIO, Advanced Magnetics).
Hyperthermic therapy may be used to killing cells, such as cancer cells, with the magnetic particles, once they have reached the desired site.43 Furthermore, because these magnetic particles were developed originally for MRI, they may also be used for multimodal imaging: by injecting the magnetic particles in a patient or live animal, the particles can be traced over several hours or up to several days using both the MRI and OCT. This invention thus allows for the distribution of the particles to be imaged on the microscopic scale, which can be used concomitantly with MRI, and also with hyperthermic therapy.
In one specific application, a patient may be exposed to magnetic iron oxide particles targeting cancer, imaged with MRI to determine general regions of disease, then during surgical intervention the mesoscale imaging provided by this device would provide the surgeon with microscale images of the locations of the magnetic particles. Because OCT imaging in particular typically penetrates a few millimeters below the tissue surface, this would allow the surgeon to evaluate the surgical margins of, for example, a cancerous tumor.
This OCT system may also be used for elastography, to measure the stiffness of the tissue (elastic modulus) and/or the viscosity of the tissue. There are several ways to carry out elastography using OCT: (1) the magnetic field is rapidly switched on or off, and the resulting relaxation oscillations of the tissue are recorded; this decay signal contains the resonant frequency of the tissue (which is proportional to the square root of the elastic modulus) and the decay time of the tissue (which is proportional to the viscosity); and (2) the magnetic field is square-root sinusoidally modulated (to provide a sinusoidal force), and the frequency of modulation is chirped to cover a range of frequencies; the response of the tissue contains the frequency-dependent amplitude and phase of particle displacement (note: this is a different phase than the optical phase described above). These amplitude and phase changes versus frequency are mapped to the viscosity and elastic modulus of the tissue. Preferably, when carrying out the method of (1) or (2), an identical analysis is carried out on a homogeneous control sample having a known viscosity and/or known elastic modulus.
A changing magnetic field may be produced using an electromagnet, preferably cooled using a water-jacket attached to a chiller. Alternatively, one or more permanent magnets, which may be rotated or moved, may also be used to produce a changing magnetic field. In another aspect, the magnet could be an electromagnet within a catheter for insertion within the sample, such as a patient.
In order to study the dynamics of motion in tissue, we chose to take advantage of the capabilities of a SD-OCT system: fast acquisition rates, good phase stability for increased sensitivity of detection (the reference-arm mirror is fixed, unlike in TD-OCT systems), and not least, better signal to noise ratios.25-28 Using the faster axial line rates (≧1 kHz) of SD-OCT, magnetomotion is dynamic,33 and thus provides a new method which does not require excessive dwelling at each tissue location.
An aspect of the present invention includes an SD-MMOCT apparatus, illustrated in
The SD-OCT device includes a detector, such as a line camera. Preferably, the line rate of the detector is greater than 2fB; this is known as the Nyquist sampling criterion. In an aspect of the present invention, the SD-OCT will include a swept source, rather than the typical broadband source. In another aspect of the present invention, the SD-OCT is a common-path interferometer.
In TD-OCT the time-dependent signal measured, SOCT(T), is:
where Esample and Eref are the electric fields from the sample and reference arms, respectively, and τ is the delay time from the moving mirror. The complex analytic signal {tilde over (S)}OCT is obtained by the Hilbert transformation, and can be written in terms of a slowly-varying envelope Senv and fast-modulated phase φ (which are positive and real-valued numbers). Typically the OCT image is constructed from Senv alone.
In SD-OCT the frequency-dependent signal measured is:
S
OCT(ω)=E*sample(ω)Eref(ω)
{tilde over (S)}
OCT(τ)=Fourier{SOCT(ω)}
and the complex analytical time-domain signal {tilde over (S)}OCT is obtained by Fourier transformation of the data. This relationship is known as the Wiener-Khintchine theorem.
When embedded in tissue that is subsequently probed with an external magnetic field, magnetic particles that are far below saturation move along the axis on which the field B has a dominant gradient, as it follows from the force equation:
where Fp is the magnetic force acting on a magnetic particle with volume Vp and magnetic susceptibility Xp , Xbg is the magnetic susceptibility of the sample, and μ0 is the space permeability.4 When the magnetic field at the site being probed has a dominant vertical component along which it varies (parallel or substantially parallel to the probing beam as in the sample-magnetic field configuration of the sample arm of the system shown in
In a preferred aspect of the method of the present invention, the electromagnet current I(t) is continually modulated by an offset sinusoid at frequency fB:
A square-root is used to achieve a resulting magnetic gradient force (proportional to the square of the magnetic field) that is a pure sinusoid with frequency fB . When a sinusoidal force at frequency fB is applied by the magnetic particles to a specific location (for example, at a depth position corresponding to τ0) in the tissue, it will respond by undergoing a displacement
Δz(t)=A sin(2 πfBt+φ),
where A is the amplitude and φ the mechanical phase lag. The optical phase changes Δφ in the complex analytic signal are related to the displacements Δz in the sample by:
We can then write the resulting time-varying OCT signal τ0 as:
{tilde over (S)}
OCT(τ0,Δz)=Senv(τ0+2nΔz/c)exp(iφ(τ0)+i(4πnΔz/λ))
where n is the refractive index, c the speed of light in vacuo, and λ the center wavelength of light.
In the “slowly varying envelope approximation”, which is often a valid assumption for OCT, we can assume that the phase term in the exponential carries the bulk of the signal if the displacements are small compared to the coherence length (the envelope width is essentially the coherence length):
where Ic is the coherence length of the light.
To couple this with B-mode OCT scanning, the magnetic field is preferably modulated several cycles during the time taken to mechanically sweep the imaging light across one resolution length, which means that:
where Vscan is the transverse scan velocity, and Δx is the transverse image resolution. In this way, the transverse Fourier transform of the spectral-domain interferogram yields a magnetomotive signal at a higher frequency than the structural OCT image data band. To produce an OCT image of tissue motion induced by the force of the magnetic field on the magnetic particles, the data {tilde over (S)}OCT is band pass filtered about fB at each depth position τ0 with a bandwidth of vscan/Δx and subsequently inverse Fourier transformed.
This works because for displacements small compared to the wavelength:
exp(i(4πnΔz/λ))≈1+i(4πnΔz/λ) for Δz<<λ/n,
and thus {tilde over (S)}OCT is directly proportional to Δz. An advantage of this technique is that the magnetomotive signal is automatically weighted by the strength of the OCT signal (light scattering signal) at each point. This rejects large amounts of unwanted noise at pixels where there is low light intensity.
Example transverse Fourier spectra are shown in
It was also found that for higher magnetic particle concentrations, harmonics of fB appear. Under these conditions the displacement Δz is large and the approximation used above is not always valid. The signal, without any approximation, is:
{tilde over (S)}
OCT(τ0,0)exp(i(4πnΔz/λ))={tilde over (S)}OCT(τ0,0)exp(i(4πn/λ)A sin(2πfBt+φ)),
which is a Bessel function of the first kind exhibiting harmonics of fB for sufficiently large displacements Δz. These harmonics of fB reduce the strength of the signal at the fundamental frequency fB.
Using this technique, the signal-to-noise ratio (SNR), defined as the integrated intensity at fB compared to control, is greatly improved from the previous TD-MMOCT system using the 3-pulse method.8 The concentration-dependent SNRs are shown in
In an alternative aspect of the present invention, the “slowly varying envelope approximation” is not used, and the optical phase is directly processed by the full four-quadrant arctangent to pull out the phase term:
φ(τ0,ΔZ)=unwrap(arctan({tilde over (S)}OCT(τ0,Δz)))=φ(τ0)+4πnΔz/λ.
A phase unwrapping technique44 (“unwrap”; a one-dimension phase unwrapping technique) is preferably used in this aspect of the present invention. This no longer requires that Δz be small compared to the wavelength, unlike when the “slowly varying envelope approximation” is used. One can then bandpass filter φ around fB at each depth position τ0. The resulting signal is the MMOCT image. Thresholding based on the amplitude of {tilde over (S)}OCT at each pixel is preferably also be performed, since this calculation does not have the advantage of the “slowly varying envelope approximation”: the magnetomotive signal is not automatically weighted by the strength of the OCT signal at each point, and unwanted noise may be present at pixels where there is low light intensity. Example spectra of φ from a tissue phantom containing 100 ppm magnetic particles are shown in
In another aspect of the present invention, elastography imaging is carried out using SD-MMOCT, to determine the viscosity and elastic modulus of the sample or specific parts of the sample. A sinusoidally driven visco-elastic system can be modeled by the following equation of motion:
z″(t)=q0 sin(ωt)−γz′(t)−ω02z(t)
where z′ and z″ are the first and second derivatives of position z with respect to time t, q0 is the force per unit mass, ω is the angular driving frequency (=2 πfB), γ is a damping angular frequency that is proportional to the viscosity, and ω0 is the natural angular frequency of the system, where the elastic modulus is proportional to ω02. In the underdamped case (γ<2ω0):
The amplitude thus exhibits a mechanical resonance at
and the width of the resonance is proportional to γ.
By applying a chirped modulated force to the sample, F(t)=|2(t) (where I is the actual current applied to the electromagnet), the mechanical frequency spectra of A(ω) and φ(ω) can now probed. If the system is similar to the under-damped model described above, it is then possible to determine γ and ω0 (especially if a comparison is made with a sample of known viscosity and/or elastic modulus). This is done as follows: a chirped waveform from 0 to 2 kHz was applied to a sample consisting of 2% agarose gel embedded with magnetic particles, and imaged in M-mode. The optical phase was then directly processed by the full four-quadrant arctangent to pull out the phase term. Then the Fourier transform (FT) of the modulation force F(t) was divided from that of the unwrapped optical phase φ.
A(ω) was averaged over the pixels of {tilde over (S)}OCT that were significantly above the noise floor. The “phasor sum” was used to average φ over the same region. This method was applied to a 2% agarose tissue phantom containing magnetic nanoparticles. A least-squares fitting method was used to extract the frequencies γ/2π and ω0/2π from A(ω) in the range from 500 to 1500 Hz, and the values obtained were 67 Hz and 1058 Hz, respectively. The spectra and fit curves are plotted in
This method allows one to measure the depth-dependent γ and ω0 at a single transverse location in the sample (in M-mode). Transverse stepping can then be performed to construct a 2- or 3-D elastography image.
While the φ(ω) was not used in the fitting in this example because it was noisy, it is a useful parameter for two reasons:
The SD-OCT system used in the examples includes two commercial lasers, a single-mode fiber interferometer, galvanometer mirrors for scanning the beam across the sample, a line scan CCD camera, commercial D-A and A-D converters, and computer software to control the scanning and data acquisition, and processing. In addition, for magnetic particle contrast, a water-jacketed solenoid coil which allows the laser light to pass through the central bore is positioned immediately above the sample (this electromagnet has been previously described8) and powered with a 1 kW power supply and controlled by the same computer, with software to synchronize the electromagnet modulation with the scanning and data acquisition.
This example demonstrates the feasibility of MMOCT in a spectral-domain OCT system (SD-MMOCT), and compares the sensitivities of amplitude and phase detection for improved imaging performance. The phase stability of the SD-OCT system was calculated as the standard deviation of the phase from a perfect reflector10 (mirror) and was found to be 0.18 rad. In terms of physical displacement and given the bandwidth and the center wavelength of our source, this translates to approximately 11 nm displacement sensitivity. These values of sensitivity are larger than those reported for spectral-domain phase microscopy most likely because our SD-OCT system is a dual-path interferometer and thus the phase stability is vulnerable to jitter in the relative path lengths (such as those caused by temperature fluctuations and fiber bending or moving) and other noise sources that common-path systems can significantly reduce.10-12 Compared to time-domain phase stability, however, this is an important improvement (for example, a time-domain OCT system with Fourier domain optical delay using a resonant scanning mirror exhibits a phase stability of ˜1 rad at 100 Hz).
The optical and mechanical properties of the silicone-based tissue phantoms imaged in this study match closely those of biological tissue, for example human skin.2 Titanium dioxide (TiO2) microparticles with a diameter of about one micron served as scatterers. Magnetite (Fe3O4) particles with a mean diameter between 20-30 nm were homogeneously dispersed in the sample medium for a magnetic sample (
The samples were probed with 13 mW of optical power from a broadband titanium: sapphire laser (KMLabs, Inc.) centered at 800 nm and with a bandwidth of about 115 nm, providing an axial resolution of 3 μm. The magnetic field was applied by means of a computer-controlled electromagnet (
In a first set of experiments, spectral domain data was acquired at a fixed position in the sample (M-mode imaging) in order to reveal the time evolution of the amplitude and phase over the depth of the sample, while the magnetic field was periodically turned on and off. Axial scans were acquired with a camera line rate of 1 kHz. The power dissipated on the electromagnet was 100 W, corresponding to a power supply control voltage of 7.5 V. The period of a cycle was about 25 ms, with a duty cycle of 32% (magnetic field modulated at 40 Hz). The results of this experiment indicate that the time scale of the sample response to magnetic field changes (either displacing when the field is turned on, or relaxing when the field is turned off), is comparable to, if not larger than, the duration of a cycle. It is difficult to assess if the agents and the sample have enough time to complete motion and reach equilibrium with the present magnetic field modulation period. Therefore, in order to better evaluate these time scales, measurements of magnetomotion with the magnetic field modulated at lower frequencies were done subsequently and are discussed below. Nonetheless, magnetomotion is evident in the data shown in
Further, the magnetic field was modulated at 6.67 Hz, while the camera rate was kept at 1 kHz. The amplitude and unwrapped phase M-mode data are shown in
and plotted in
In another experiment, the magnetic field strength was varied by changing the electromagnet power, and 8100 axial scans were acquired with a camera line rate of 29 kHz. This high frequency allows for higher sampling of the oscillations at the transitions between different states of the magnetic field. The magnetic field was modulated at 11.6 Hz in order to accommodate a set of three off-on transitions over the whole duration of a scan, which was 279.3 ms. The magnetic field strength is proportional to the power supply control voltage. The results of this experiment for a magnet control voltage of 7.5 V were in good agreement with those of
The changes in amplitude and phase as a function of electromagnet control voltage (which is linearly proportional to the magnetic field strength—for an 8V electromagnet control voltage the magnetic field strength is B=0.06 T and ΔB2≈1.3 T2/m) are plotted in
Phase and amplitude changes for a low magnetic field corresponding to a control voltage of 1 V reveal the smallest displacement detected in this set of data. The corresponding amplitude and phase variations right before and after the magnetic field is turned on are plotted in
Soft silicone-based tissue phantoms described previously8 were impregnated with 4 mg/g TiO2 microparticles to provide a −30/cm scattering coefficient and were added with varying concentrations of magnetite (−25 nm) particles. The OCT imaging system included an 800 nm femtosecond laser (KMLabs) pumping a single-mode fiber interferometer with 120 nm bandwidth and −8 mW at the sample. A 40 mm imaging lens provided 16 μm transverse resolution with axial resolution ˜3 μm. The electromagnet provided −600 G at the sample as described previously.8 For TD-MMOCT, a delay galvanometer was modulated at 10 Hz and dual-balanced detector (New Focus Nirvana) measured the interferogram. For SD-MMOCT, a line scan camera (Dalsa) measured the spectral interferogram with an exposure time of 250 μs and line rate of 1 kHz. The image dimensions were kept at 0.5 mm wide by 0.75 mm deep for comparison, and the imaging times were 50s for TD-MMOCT and 5s (2.5s each for control and modulated images) for SD-MMOCT. The data are shown in
Agar phantoms (4%) were prepared with varying concentrations of magnetite particles (Ocean Nanotech, ˜10 nm) and imaged using spin-echo MRI (4.7T Varian SISCO, Trep=4s, Techo=50 ms, 10 mm slice thickness). As shown in
The same magnetic particles used in the MRI were tail-vein injected into a healthy rat (˜0.5 mg/kg Fe in saline) which was euthanized after 2 hours circulation time. The major organs were harvested and compared to those from a second rat injected with a similar volume of saline only. Histology and Prussian blue staining was performed on harvested tissues, and only the spleen revealed a significant amount of magnetite particle uptake. Six sets of SD-MMOCT images (control and modulated) were then acquired from both the control and magnetic particle-laden spleens, at varying locations covering the length of the outside surface. For tissue imaging, the same SD-MMOCT parameters were used as in Example 2, except a larger depth (1 mm) was analyzed. The magnetic-specific SNR was computed for both groups, revealing an SNR of 0.095±0.29 dB for the control group. For the magnetic particle-laden spleen, four of the 6 images exhibited an SNR greater than 1 standard deviation above the control, with 0.62±0.42 dB for the group. As shown in
4. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30, 747-749 (2005).
This application claims the benefit of U.S. Provisional Application No. 61/022,276 filed 18 Jan. 2008, attorney docket no. ILL10-116-PRO.
This invention was made with government support under grant/contract no. BES05-19920 awarded by the National Science Foundation, and under grant/contract no. 1R21 EB005321 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61022276 | Jan 2008 | US |