This application is a National Stage of International Application No. PCT/AT2005/000165, filed May 17, 2005, and which claims the benefit of Austrian Utility Model No. GM 359/2004, filed May 17, 2004. The disclosures of the above applications are incorporated herein by reference.
The invention relates to a magnetorheological clutch comprising a stationary part, a primary part having primary lamination bands and a secondary part having secondary lamination bands, wherein at least one of the primary part and the secondary part coaxially rotates relative to the respective other part, with a working space being formed between the primary part and the secondary part which contains a magnetorheological fluid and in which primary lamination bands and secondary lamination bands alternate sequentially in the radial direction and with a regulatable magnetic field acting on the magnetorheological fluid. To distinguish between the primary part and the secondary part, it is assumed that the secondary part engages around the primary part and the working space, provided nothing else is described.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
The power consumption and the construction size are critical and must therefore be minimized for the use of a clutch of this type in the drivetrain of a power vehicle. There are also further demands: A regulation range of the transmitted torque which is so wide that a driving off from stationary is possible without slip, on the one hand, and complete separation is possible, on the other hand, also for noise reasons; and, finally, fast response to be compatible with electronic drive regulation systems (ESB, ABS, etc.).
A clutch of this type is known from EP 940 286 A2. The magnetic field is generated by a coil fixed with respect to the housing here. The field lines are relatively long due to the manner of construction of the magnetic coil with its yoke, which reduces the size of the active part of the magnetic field, that is its part acting on the magnetorheological liquid. An air gap thereby also arises between its yoke and the rotating parts, in particular the disks, which has to have a substantial width for tolerance reasons. The magnetic field lines are thereby interrupted and the magnetic field acting on the magnetorheological liquid is further weakened.
The object underlying the invention consists of improving a clutch of this type such that a torque can be transmitted which is as high as possible in the smallest possible working space and with minimal power consumption.
This is achieved by an even number of magnetic coils with a radial winding axis, with adjacent magnetic coils being oppositely poled, and their arrangement within the working space containing the magnetorheological fluid and the magnetic field lines emerge out of or enter into the first yokes substantially in the radial direction ensure the shortest closed field lines which act over the larger part of their length in the working space. The lamination bands can be arranged either inside or outside as well as inside and outside the magnetic coils, which is meant by at least on one side. The fact that the primary lamination bands and the secondary lamination bands are closed cylindrical jackets provides low axial dimensions of the clutch and a particularly favorable shape of the magnetic field. This favorable shape of the magnetic field is also served by the outer and the inner second yokes which divert the magnetic field lines and bound the working space outwardly and inwardly.
The further features also effect a shortening and homogenization of the magnetic field lines overall, a maximization of their active part and a minimization of magnetic short circuit. The field lines run in one direction radially, are reversed at the two second yokes and then run radially in the opposite direction. The flux density of the field lines closed per se is thus largely constant.
To combine the first yokes compactly and to permit a rash assembly, they are combined to form a first yoke ring with their magnetic coils. Furthermore, to restrict the creation of eddy currents in the yokes, they are composed of metal sheets or they comprise a sintered material of high magnetic permeability. The magnetic field can thereby be built up and phased out again fast, which permits the fast regulation required for electronic driving aids and braking aids.
The first yokes can be rotationally fixedly connected to the primary part or alternatively to the secondary part and the second yokes can be rotationally fixedly connected to the secondary part or alternatively to the primary part. Because the cylindrical lamination bands are connected to the primary or secondary part at one of their two rims, both arrangements are equally favorable.
In a particularly favorable embodiment, primary lamination bands and secondary lamination bands are arranged outside and inside the first yokes and the two yokes have parallel and coaxial cylindrical surfaces facing the lamination bands. The first yoke ring is thus arranged approximately at the radial center between the lamination bands, whereby the number of the lamination bands close to the generator of the magnetic field doubles and the magnetic field is thus optimally utilized.
In another embodiment, the primary lamination bands and secondary lamination bands are arranged outside the first yokes and the inner second yoke is connected to the first yokes. This arrangement is more favorable at very high speeds because the centrifugal force acting on the first yokes is smaller.
In an advantageous further development, the lamination bands are of a material of high magnetic permeability and have zones of low magnetic permeability extending distributed over their periphery in the axial direction. These zones reduce the magnetic short circuit within the lamination bands. These zones can comprise rows of sequential holes which are preferably arranged such that the rows of sequential holes are steep helixes. The rows are therefore inclined at an acute angle to a generatrix of the cylindrical jacket (which the lamination bands form). Torque irregularities are thereby reduced.
It also lies within the framework of this measure to combine a row of sequential holes to form slits. When the extent of the zones of low magnetic permeability of the primary lamination bands differs from that of the zones of the secondary lamination bands, the arising of vibrations or of noises is restricted.
In a modified embodiment, the first yokes and the inner second yoke are, finally, fixedly connected to the housing and the outer second yoke is connected to the secondary part and has cylindrical surfaces parallel and coaxial to the lamination bands at its inner side facing the lamination bands. Thanks to the first yokes, which are fixed to the housing, no sliding contacts are required for the energy supply to the magnetic coils; however, at the price of an air gap which can, however, be kept very small due to the arrangement in accordance with the invention. The clutch thus has a very remote similarity to an electric motor.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
In
The secondary part 4 is likewise rotatable about the axis 9, that is coaxially; it comprises a jacket 14 and bearing plates 15, 16 which engage around the primary part 3 and are sealed with respect to it by means of seals 13. The bearing plates 15, 16 furthermore carry the bearings 17 in which the primary part 3 is guided with respect to the secondary part 4. The bearings of the secondary part in the housing 1 are not shown. The bearing plate 16 of the secondary part 4 comprises at least partly a material of low magnetic permeability; the margins 18 of the cylindrical secondary lamination bands 20 are fixedly mounted to it. A working space 21 is thus formed between the primary part 3 and the secondary part 4 and contains a magnetorheological fluid and primary lamination bands 7 and secondary lamination bands 20 of radii reducing in alternating order. A circlip 22 or the like can be provided for the dismantlable connection of the other bearing plate 15 to the jacket 14.
In the embodiment described, a number of first yokes 24 with magnetic coils 25 whose winding axis is radial and which are oppositely poled sequentially in the peripheral direction are located approximately in the radial center between the pairs of primary and secondary lamination bands 7, 20. This means that a first yoke 24 with a magnetic coil 25 is followed in the peripheral direction by a further first yoke 24′ with a reversely poled magnetic coil 25′, and so on, so that an even number of first yokes is present distributed over the periphery (see
The first yokes 24, 24′ have outer cylindrical end faces 26, with the axis of rotation 9 also being the geometric axis of the cylinder. The space between the individual first yokes can be filled with a material of low magnetic permeability or can be combined in another manner to form a closed ring 28 which is fixedly connected at its one-sided foot part 29 to the disk 6. The power supply 33 from the sliding contact 2 to the magnetic coils 25, 25′ also takes place by this connection. The first yokes 24 also have inner cylindrical end faces 31, likewise having the axis of rotation 9 as the cylinder axis.
Furthermore, two second yokes are provided, and indeed an outer second yoke 34 and an inner second yoke 37, both made of a material of high magnetic permeability. The outer second yoke 34 is a ring which is preferably simultaneously the jacket of the secondary part and has an inner coaxial cylindrical surface 35 which is equidistant to the outermost lamination band 7, 20 and bounds the working space 21 to the outside. The inner second yoke 37 is rotationally fixedly connected to the bearing plate 16 of the secondary part 4 and has an outer coaxial cylindrical surface 38. Further pairs of lamination bands 7*, 20* are located between the first yokes 24 and the inner second yoke 37. In the embodiment shown, only one primary and one secondary lamination band 7, 20 respectively is drawn outside the yoke ring 28 and one pair 7*, 20* is drawn inside the yoke ring 28; in most cases, however, a plurality of such pairs are necessary for the transmission of a high torque.
The described arrangement of magnetic coils and yokes generates a magnetic field which is represented by the field lines 40, 40′, 41, 42. It can best be recognized in
In the embodiment of
The somewhat more remote embodiment of
In
The description is merely exemplary in nature and, thus, variations that do not depart from the gist of the present disclosure are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
GM359/2004 | May 2004 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AT2005/000165 | 5/17/2005 | WO | 00 | 1/4/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/111454 | 11/24/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2543394 | Winther | Feb 1951 | A |
2615945 | Jaeschke | Oct 1952 | A |
2709507 | Trickey | May 1955 | A |
2745527 | Winther | May 1956 | A |
2818148 | Winther | Dec 1957 | A |
3266606 | Barrett | Aug 1966 | A |
3358798 | Janson | Dec 1967 | A |
4682676 | Murata | Jul 1987 | A |
5823309 | Gopalswamy et al. | Oct 1998 | A |
5896965 | Gopalswamy et al. | Apr 1999 | A |
5967273 | Hampton | Oct 1999 | A |
6581739 | Stretch et al. | Jun 2003 | B1 |
7461731 | Steinwender | Dec 2008 | B2 |
7588131 | Steinwender | Sep 2009 | B2 |
20010041637 | Leeper | Nov 2001 | A1 |
20050121269 | Namuduri | Jun 2005 | A1 |
20050188690 | Namuduri et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
0940286 | Sep 1999 | EP |
191019786 | Jan 1911 | GB |
783 060 | Sep 1957 | GB |
56138527 | Oct 1981 | JP |
94015535 | Jun 1996 | RU |
WO 2004040157 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080135367 A1 | Jun 2008 | US |