Magnetostatic wave device

Information

  • Patent Grant
  • 6194091
  • Patent Number
    6,194,091
  • Date Filed
    Friday, September 25, 1998
    26 years ago
  • Date Issued
    Tuesday, February 27, 2001
    23 years ago
Abstract
A magnetostatic wave device comprises a magnetic garnet single crystal film. The single crystal film magnetic garnet is represented by the general formula of Y3Fe5-x-yInxMyO12 (wherein M is at least one of Ga, Al and Sc, 0.01≦x≦0.45 and 0≦y≦1.2) and the Curie temperature is about 150° C. to 285° C.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a magnetostatic wave device, and more particularly to a magnetostatic wave device comprising a magnetic garnet single crystal film.




2. Description of the Related Art




Single crystals of Y


3


Fe


5


O


12


(referred to YIG hereinafter), a kind of magnetic garnet single crystal film, has been an important substance as a material for use in magnetostatic wave devices. A remarkable property of YIG is that it has an extremely small ferromagnetic half-width (ΔH), which is related to the fact that the difference between input signals and output signals can be made small when it is used for the magnetostatic wave device. An additional feature is that a YIG is characterized by a saturation phenomenon at a relatively small input signal level. The YIG single crystal films have been widely used for magnetostatic wave devices such as limiters and noise filters by taking advantage of this phenomenon. Various kind of single crystal films of magnetic garnet containing iron have been also used for the magnetostatic wave device in addition to the YIG single crystal film described above.




However, the feature of the YIG output signal being saturated at a relatively small input signal level is not revealed immediately after receiving the input signal. Instead, the input signal is directly output as an output signal. There is therefore a transient response phenomenon in that the output signal is saturated as a function of a time lapse which causes a problem in that the function as a magnetostatic wave device can not be fully displayed. Although increasing the insertion loss of the magnetostatic wave device is one solution for this problem, too large an insertion loss makes the output signal level too small.




SUMMARY OF THE INVENTION




Accordingly, the object of the present invention is to provide a magnetostatic wave device with improved performance by shortening the time interval suffering the transient response phenomenon without increasing the insertion loss.




For attaining the foregoing object, the present invention provides a magnetostatic wave device which comprises a magnetic garnet single crystal film, and the magnetic garnet single crystal film is represented by the general formula of Y


3


Fe


5-x-y


In


x


M


y


O


12


(wherein M is at least one of Ga, Al and Sc, 0.01≦x≦0.45 and 0≦y≦1.2) and the Curie temperature of the magnetic garnet single crystal film is about 150° C. to 285° C.




According to the present invention, a magnetostatic wave device can be obtained in which the time interval suffering the transient response phenomenon is shortened less than 120 ns without increasing the insertion loss.




For the purpose of illustrating the invention, there is shown in the drawing a form presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a perspective view showing one example of the magnetostatic wave device.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Hereinafter, the preferred embodiments of the present invention are explained in detail with reference to the drawings.




EXAMPLE 1




Firstly, Fe


2


O


3


, Y


2


O


3


, Lu


2


O


3


, Ga


2


O


3


, Al


2


O


3


, Sc


2


O


3


and In


2


O


3


as raw material for magnetic garnet films and PbO and B


2


O


3


as solvents were prepared. A Gd


3


Ga


5


O


12


substrate as a substrate for forming a magnetic garnet film by a liquid phase epitaxial growth method was also prepared.




The materials described above were selected and weighed so as to obtain a magnetic garnet film having the composition shown in TABLE 1, followed by adding PbO and B


2


O


3


as solvents and filling the mixture into a platinum crucible placed in a vertical type electric furnace. The mixture was then heated at about 1200° C. to form a uniform molten liquid.




After keeping the molten liquid at a constant temperature of around 900° C. to bring the liquid into a super-saturation state, the Gd


3


Ga


5


O


12


substrate was immersed into this molten liquid in the next step to allow the garnet film to grow for a given time interval by rotating the substrate. Then, the substrate was pulled from the molten liquid and the adhered molten liquid on the garnet film was scattered off by centrifugal force by allowing the substrate to rotate at high speed, thereby obtaining a magnetic garnet single crystal film formed on the substrate.


















TABLE 1












Transient




Saturation




Curie




Lattice






Sample





Insertion




response




magnetization




temperature




constant






No.




Composition




loss (dB)




time (ns)




(G)




(° C.)




(nm)











*1




Y


3


Fe


5


O


12






7




184




1760




287




1.2376






2




Y


3


Fe


4.99


In


0.01


O


12






7




120




1780




285




1.2380






3




Y


3


Fe


4.3


In


0.1


Ga


0.6


O


12






8




112




1160




252




1.2387






4




Y


3


Fe


3.7


In


0.1


Sc


0.1


Ga


1.1


O


12






9




118




190




245




1.2383






*5




Y


3


Fe


3.6


In


0.1


Sc


0.15


Ga


1.15


O


12






12




114




180




242




1.2387






6




Y


3


Fe


4.7


Al


0.1


In


0.2


O


12






8




119




2080




219




1.2374






*7




Y


2.9


Lu


0.1


Fe


4.8


In


0.2


O


12






13




118




2100




221




1.2376






8




Y


3


Fe


4.32


In


0.45


Al


0.23


O


12






9




113




2380




150




1.2381






*9




Y


3


Fe


4.31


In


0.46


Al


0.23


O


12






12




110




2400




138




1.2384






*10




Y


3


Fe


4.45


In


0.35


Ga


1.2


O


12






12




115




240




145




1.2379














Electrodes


3


,


4


were then formed on the magnetic garnet single crystal film


2


as shown in

FIG. 1

to produce a magnetostatic wave device and the insertion los and transient response time were measured. The reference numeral


1


denotes the Gd


3


Ga


5


O


12


substrate while H represents the applied direction of external magnetic field, I


in


represents the input direction of a microwave, W represents the propagation direction of a magnetostatic surface wave (MSSW) and I


out


represents the output direction of the microwave.




The saturation magnetization was measured using a sample vibration type magnetometer and the Curie temperature was determined by measuring the temperature dependence of the saturation magnetization. Lattice constants were also measured by a X-ray analysis.




The results obtained from the experiments above are listed in TABLE 1. Samples with a mark (*) are outside of the scope of the present invention and the others are within the scope of the present invention.




EXAMPLE 2




Firstly, Fe


2


O


3


, Y


2


O


3


, La


2


O


3


, Ga


2


O


3


, and In


2


O


3


as raw materials for magnetic garnet films, and PbO and B


2


O


3


as solvents were prepared. Then, a Sm


3


Ga


5


O


12


substrate as a substrate for forming a magnetic garnet film by a liquid phase epitaxial growth method was prepared.




The materials described above were selected and weighed so as to obtain a magnetic garnet film having the composition shown in TABLE 2, followed by adding PbO and B


2


O


3


as solvents and filling the mixture into a platinum crucible placed in a vertical type electric furnace. Then, the mixture was heated at about 1200° C. to form a uniform molten liquid.




After keeping the molten liquid at a constant temperature of around 900° C. to bring the liquid into a super-saturation state, the Sm


3


Ga


5


O


12


substrate was immersed into this molten liquid in the next step to allow the garnet film to grow for a given time interval by rotating the substrate. Then, the substrate was pulled up from the molten liquid and the adhered molten liquid on the garnet film was scatter off by centrifugal force as a result of allowing the substrate to rotate at high speed, thereby obtaining a single crystal film of magnetic garnet formed on the substrate.


















TABLE 2












Transient




Saturation




Curie




Lattice






Sample





Insertion




response




magnetization




temperature




constant






No.




Composition




loss (dB)




time (ns)




(G)




(° C.)




(nm)











11




Y


3


Fe


4.45


In


0.4


Ga


0.05


O


12






9




116




2550




167




1.2438






*12




Y


2.9


La


0.1


Fe


4.5


In


0.45


Ga


0.05


O


12






18




109




2500




151




1.2439














Then, the magnetostatic wave device was produced by the same method as in Example 1 and the insertion loss and transient response time were measured. The saturation magnetization was also measured using a sample vibration type magnetometer as well as the Curie temperature from the measurement of temperature dependence of the saturation magnetization. Lattice constants were determined by a X-ray analysis.




The results obtained from the experiments above are listed in TABLE 2. Sample 12 is outside of the scope of the present invention and sample 11 within the scope of the present invention.




EXAMPLE 3




Firstly, Fe


2


O


3


, Y


2


O


3


, La


2


O


3


, In


2


O


3


and Sc


2


O


3


as raw materials for magnetic garnet films, and PbO and B


2


O


3


as solvents were prepared. Then, a Nd


3


Ga


5


O


12


substrate as a substrate for forming a magnetic garnet film by a liquid phase epitaxial growth method was prepared.




The materials described above were selected and weighed so as to obtain a magnetic garnet film having the composition shown in TABLE 3, adding PbO and B


2


O


3


as solvents and filling the mixture into a platinum crucible placed in a vertical type electric furnace. Then, the mixture was heated at about 1200° C. to form a uniform molten liquid.




After keeping the molten liquid at a constant temperature of around 900° C. to bring the liquid into a super-saturation state, the Nd


3


Ga


5


O


12


substrate was immersed into this molten liquid in the next step to allow the garnet film to grow for a given time interval by rotating the substrate. Then, the substrate was pulled from the molten liquid and the adhered molten liquid on the garnet film was scatter off by centrifugal force by allowing the substrate to rotate at high speed, thereby obtaining a single crystal film of magnetic garnet formed on the substrate.


















TABLE 3












Transient




Saturation




Curie




Lattice






Sample





Insertion




response




magnetization




temperature




constant






No.




Composition




loss (dB)




time (ns)




(G)




(° C.)




(nm)











13




Y


3


Fe


4.2


In


0.4


Sc


0.4


O


12






9




109




2980




163




1.2506






*14




Y


2.9


La


0.1


Fe


4.3


In


0.4


Sc


0.3


O


12






21




108




2830




167




1.2509














Then, the magnetostatic wave device was produced by the same method as in Example 1 and the insertion loss and transient response time were measured. The saturation magnetization was also measured using a sample vibration type magnetometer as well as the Curie temperature from the measurement of temperature dependence of the saturation magnetization. Lattice constants were determined by a X-ray analysis.




The results obtained from the experiments above are listed in TABLE 3. Sample 14 is outside of the scope of the present invention and sample 13 is within the scope of the present invention.




As are evident from the results in Examples 1 to 3, the magnetostatic wave device comprises a magnetic garnet single crystal film having a composition within the scope of the present invention and whose Curie temperature is limited enables one to obtain high performance characteristics in which the time interval suffering the transient response phenomenon is shortened without increasing the insertion loss.




A good magnetostatic wave device can not be obtained, on the contrary, when the Curie temperature is higher than about 285° C. as in the sample number 1 or when the Curie temperature is lower than about 150° C. as seen in the sample number 10, because the transient response time becomes long after forming into a magnetostatic wave device in the former case and the insertion loss becomes large in the latter case. When the content of M (at least one of Ga, Al and Sc) is larger than 1.2 as in the sample number 5, on the other hand, the insertion loss becomes large after forming into a magnetostatic wave device, failing to obtain a good magnetostatic wave device.




Although the single crystal film of magnetic garnet in which a part of Y is substituted, as in the sample numbers 7, 12 and 14, has a Curie temperature within the range of 150° C. to 285° C., it is not preferable since the insertion loss becomes large after forming into a magnetostatic wave device.




While preferred embodiments of the invention have been disclosed, various modes of carrying out the principles disclosed herein are contemplated as being within the scope of the following claims. Therefore, it is understood that the scope of the invention is not to be limited except as otherwise set forth in the claims.



Claims
  • 1. A magnetostatic wave device comprising a magnetic garnet single crystal film of the formula Y3Fe5-x-yInxMyO12 in which M is at least one element selected from the group consisting of Ga, Al and Sc, 0.01≦x≦0.45 and 0≦y≦1.2 and the Curie temperature is about 150° C. to 285° C.
  • 2. The magnetostatic wave device of claim 1 wherein 0<y≦1.2 and M is Ga.
  • 3. The magnetostatic wave device of claim 1 wherein 0<y≦1.2 and M is Al.
  • 4. The magnetostatic wave device of claim 1 wherein 0<y≦1.2 and M is Sc.
  • 5. The magnetostatic wave device of claim 1 wherein 0<y≦1.2 and M is two members of said group.
  • 6. The magnetostatic wave device of claim 1 wherein the Curie temperature is 167 to 252° C.
  • 7. A magnetostatic wave device comprising a substrate in combination with a magnetic garnet single crystal film of the formula Y3Fe5-x-yInxMyO12 in which M is at least one element selected from the group consisting of Ga, Al and Sc, 0.01≦x≦0.45 and 0≦y≦1.2 and the Curie temperature is about 150° C. to 285° C.
  • 8. The magnetostatic wave device of claim 7 wherein 0<y≦1.2 and M is Ga.
  • 9. The magnetostatic wave device of claim 7 wherein 0<y≦1.2 and M is Al.
  • 10. The magnetostatic wave device of claim 7 wherein 0<y≦1.2 and M is Sc.
  • 11. The magnetostatic wave device of claim 7 wherein 0<y≦1.2 and M is two members of said group.
  • 12. The magnetostatic wave device of claim 7 wherein the Curie temperature is 167 to 252° C.
Priority Claims (1)
Number Date Country Kind
9-263801 Sep 1997 JP
US Referenced Citations (6)
Number Name Date Kind
5801604 Fujino Sep 1998
5871856 Kumatoriya Feb 1999
5985472 Geho Nov 1999
6016088 Fijno Jan 2000
6052042 Kumotoriya Apr 2000
6114929 Kurata Sep 2000
Foreign Referenced Citations (2)
Number Date Country
55-143009A Jan 1981 JP
09208393 Dec 1997 JP
Non-Patent Literature Citations (2)
Entry
Patent Abstracts of Japan; vol. 005, No. 015 (E-043); Jan. 29, 1981 & JP 55 143009 A (Matsushita Electric Ind. Co., Ltd.), Nov. 8, 1980, Abstract.
Patent Abstracts of Japan; vol. 097, No. 012, Dec. 25, 1997 & JP 09 208393 A (Shin Etsu Chem Co., Ltd.), Aug. 12, 1997, Abstract.