The present application claims priority from Japanese Patent Application No. 2022-176468 filed on Nov. 2, 2022, and Japanese Patent Application No. 2023-142206 filed on Sep. 1, 2023, the entire contents of which are hereby incorporated by reference.
The present disclosure relates to a magnetostrictive film and an electronic device including the magnetostrictive film.
Magnetostrictive films disclosed in, for example, Patent Document 1 or Patent Document 2 have magnetostriction, which is a property that causes displacement, such as expansion and contraction, when an external magnetic field is applied. The magnetostrictive films are applied to various electronic devices, such as actuators, speakers, magnetometers, power generation devices, and energy conversion devices.
When the magnetostrictive films are used in vibration actuators or speakers, the larger the magnetostriction constant dλ/dH, the faster the start of the devices for a current. Also, the larger the magnetostriction constant dλ/dH, the larger the change (sensitivity) of magnetization in response to a stress. To enable the magnetostrictive films in the electronic devices to produce an output for a small external magnetic field, not only having a large magnetostriction constant dλ/dH but also having a low magnetic field threshold HTH has been in demand for the magnetostrictive films.
It is desirable to provide a magnetostrictive film having a large magnetostriction constant dλ/dH and having a low magnetic field threshold HTH and an electronic device including the magnetostrictive film.
The following means are provided.
A magnetostrictive film includes rich regions having a mesh pattern in a cross section perpendicular to a film thickness direction of the magnetostrictive film, the rich regions being richer in a specific element contributing to ferromagnetism than surroundings of the rich regions.
An electronic device includes the magnetostrictive film.
FIG. 4A1 is a graph of an Fe concentration profile measured along an imaginary straight line shown in
FIG. 4A2 is a graph of an Fe concentration profile of another example measured as in FIG. 4A1.
Hereinafter, embodiments of the present disclosure are described.
As shown in
The substrate 4 may be made from any material. For example, the material is preferably single crystalline but may be polycrystalline or amorphous. Examples of the substrate 4 include Si, PZT, MgO, strontium titanate (SrTiO3), lithium niobate (LiNbO3), and glass. The shape and dimensions of the substrate 4 are not limited and are determined as appropriate according to the type or purpose of a device in which the magnetostrictive film 2 is included.
The magnetostrictive film 2 is preferably amorphous and particularly preferably includes an amorphous soft magnetic alloy. Examples of soft magnetic alloys include Fe—Si—B based alloys, Fe—Cr—Si—B based alloys, Fe—Ni—Mo—B based alloys, Fe—Co—B based alloys, Fe—Ni—B based alloys, Fe—Al—Si—B based alloys, Fe—Co—Si—B based alloys, Fe—Si—B—Cu—Nb based alloys, Co—Fe—Ni—Si—B—Mo based alloys, Fe—Ga—B based alloys, Fe—Sm—B based alloys, and Fe—Tb—B based alloys. A section of the magnetostrictive film 2 includes an amorphous phase composed of the above-mentioned soft magnetic alloy as a main phase.
“Amorphous” indicates a condition of an atom arrangement not having crystal-like long range order but having short range order. The atom arrangement of the magnetostrictive film 2 can be analyzed using, for example, a three-dimensional atom probe (3DAP), X-ray diffraction (XRD), electron diffraction with a transmission electron microscope (TEM), fast Fourier transform (FFT) processing of a TEM image, image analysis based on phase contrast of a TEM image, and neutron diffraction (ND). When a diffraction peak or a diffraction spot is observed in XRD or electron diffraction, presence of long range order attributed to a crystal can be determined. When a halo pattern is observed in XRD or electron diffraction, presence of an amorphous short range order can be determined. Note that long range order and short range order are compatible.
For example, when a structural analysis of the magnetostrictive film 2 is performed using 2θ/θ measurement with XRD, it is desirable that the resulting XRD pattern of the magnetostrictive film 2 have a broad halo pattern with a half width of 0.5° or more within a range of 2θ=30° to 60° and that no diffraction peak attributed to a crystal be observed. When the structural analysis of the magnetostrictive film 2 is performed using electron diffraction with a TEM, it is preferable that a concentric halo pattern having a blurry outline be observed and that no diffraction spot attributed to a crystal or no Debye-Scherrer ring indicating presence of a polycrystal be observed.
Although the main phase of the magnetostrictive film 2 of the present embodiment is the amorphous phase as mentioned earlier, the magnetostrictive film 2 may include a crystal phase having long range order. When the magnetostrictive film 2 includes the crystal phase, a peak attributed to the crystal phase may be observed in the XRD pattern of the magnetostrictive film 2, together with the halo pattern attributed to the amorphous phase. However, the amorphous ratio of the magnetostrictive film 2 is preferably 90% or more, more preferably 95% or more, or still more preferably 100%.
The amorphous ratio can be calculated using, for example, the area ratio of the amorphous phase in a section of the magnetostrictive film 2. In a TEM image or a HRTEM image based on phase contrast, it can be confirmed that a crystalline portion in the image has lattices arranged systematically whereas an amorphous portion therein has a random pattern with no regularity. Thus, the crystal phase and the amorphous phase can be distinguished based on the phase contrast for estimating the area ratio of the amorphous phase.
The magnetostrictive film 2 may have any thickness tm. For example, the thickness tm may fall within 10 nm to 10 μm or within 300 nm to 1 μm. The thickness tm is found by, for example, analyzing a sectional image like
Note that, in
In the present embodiment, the closer the color is to black (dark color), the higher the Fe concentration; and the closer the color is to white (bright color), the lower the Fe concentration. However, the dark color and the bright color may be vice versa.
The rich regions 2a have a width W. The width W preferably falls within 1 to 10 nm or more preferably falls within 2 to 6 nm or 2 to 5 nm.
In measurement of the Fe concentration distribution at 1-nm intervals at 61 points in an area (X: 5 nm, Y: 60 nm, Z: 5 nm) subject to analysis along an imaginary straight line HL having a predetermined length and penetrating a center of the field of view in a circle having a predetermined diameter (e.g., 60 nm) shown in
The local maximums of the Fe content ratio (atom %) shown in FIG. 4A1 correspond to locations of maximum peaks of the Fe concentrations of the respective rich regions 2a on the imaginary straight line HL shown in
From the Fe concentration profile shown in FIG. 4A1, the rich regions 2a can be defined as regions having an Fe concentration that is higher than the local minimums of the Fe concentrations of the adjacent poor regions 2b by preferably 0.5 at % or more, more preferably 1.0 at % or more, or still more preferably 1.5 at % or more. Alternatively, the rich regions 2a can be defined as regions having an Fe concentration that is higher than the average Fe concentration of the field of view of FIG. 4A1 by preferably 0.2 at % or more or by more preferably 0.4 at % or more or 0.8 at % or more.
In the present embodiment, as shown in FIG. 4A1, preferably at least five local maximums or more preferably at least seven local maximums are observed within the imaginary straight line HL having a length of 60 nm. In the present embodiment, a distance (also referred to as period) L between the local maximums next to each other falls within a range of preferably 3 to 15 nm or more preferably 5 to 10 nm.
As shown in
The predetermined height for which the rich regions 2a continue depends on the thickness tm of the magnetostrictive film 2 shown in
In the present embodiment, regarding the phrase “the rich regions 2a continue,” the rich regions 2a are deemed to be entirely continued in
As the magnetostrictive film 2 has the low magnetic field threshold HTH, the electronic device including the magnetostrictive film 2 can respond quickly to a small external magnetic field. Also, as the magnetostrictive film 2 has the large magnetostriction constant dλ/dH, the electronic device including the magnetostrictive film 2 can have high input-output conversion efficiency and produce a larger output for a predetermined input signal. Having the high conversion efficiency, the electronic device including the magnetostrictive film 2 is easily reduced in size.
The magnetostrictive film 2 of the present embodiment can be included in various devices, such as actuators, speakers, magnetometers, energy conversion devices, oscillators, and micropumps. Examples of magnetometers include magnetic current sensors for detection using electromotive force of a piezoelectric substrate laminated on a magnetostrictive film and resonance-type magnetometers in which a piezoelectric film and a magnetostrictive film are laminated on a Si cantilever. The magnetostrictive film 2 can also be included in electronic devices having a structure in which the magnetostrictive film and a piezoelectric film are laminated, such as apparatuses for converting electricity into magnetism and vice versa.
A method of producing the magnetostrictive film 2 shown in
When the film is formed by sputtering, the degree of vacuum at the time of film formation is preferably 0.1 Pa or less, more preferably 0.05 Pa or less, or still more preferably 0.02 to 0.05 Pa. The degree of vacuum at the time of film formation indicates the total pressure of a process gas and other gases, such as a residual gas, in a film formation chamber during film formation; and the lower the value, the higher the degree of vacuum. The pressure inside the film formation chamber prior to film formation is preferably 1.0×10−5 Pa or less, more preferably 5.0×10−6 Pa or less, or still more preferably 1×10−6 to 5.0×10−6 Pa.
Setting the temperature of the substrate 4 at the time of film formation low while the degree of vacuum prior to film formation is set high as described above enables the magnetostrictive film 2 including the rich regions 2a having a mesh pattern in the cross section shown in
At the time of film formation, an inert gas (e.g., Ar) is introduced. The flow rate of the inert gas is preferably 30 sccm or more and 150 sccm or less.
The film formation pressure is preferably 0.016 Pa or more and 0.08 Pa or less. Note that the unit “sccm” indicates the flow rate converted (standard conversion) to cm3/min at 1 atm (1013 hPa) at 25° C.
In the present embodiment, it is assumed that conditions of annealing after film formation, as well as the film formation conditions (e.g., substrate temperature), affect generation of the rich regions in a mesh pattern. Reasons why the film formation conditions or the annealing conditions affect generation of the rich regions in a mesh pattern are not necessarily clarified but may be as follows.
It is assumed that facilitation of generation of the rich regions is attributed to migration (movement) of elements during film formation or annealing. It is assumed that the likelihood or degree of element migration depends on the film formation temperature, the annealing conditions, etc., and that certain conditions enable the amorphous structure to include the rich regions in a mesh pattern.
After the magnetostrictive film 2 is formed on the substrate 4, the magnetostrictive film 2 may be patterned by, for example, etching or lift-off. Also, the substrate 4 may be subject to processing, such as cutting and etching.
Note that, after the magnetostrictive film 2 is formed on the substrate 4 and before or after patterning, annealing of the magnetostrictive film 2 is preferably performed. Annealing enables further reduction of the magnetic field threshold HTH of the magnetostrictive film 2 and further increase of the magnetostriction constant. Annealing conditions are not limited. The annealing temperature is preferably 100 to 400° C., more preferably 200 to 400° C., or still more preferably 250 to 350° C.
As described later, each of the vibrators 30 disposed on the common frame 200 includes a laminated body (also referred to as a magnetoelectric conversion element) including the magnetostrictive film 2 (the same magnetostrictive film of the first embodiment) and a piezoelectric film 32. The vibrators 30 can receive electrical signals, electrical energy, etc. from an external magnetic field or generate electromagnetic waves based on the electric signals, etc. The electronic device 10 can be used as, for example, an antenna device for receiving external electricity or external signals in an electronic apparatus 97, but uses of the electronic device 10 are not limited to antenna devices.
As shown in
Arrangement of the vibrators included in the electronic device 10 is not limited to arrangement in two-dimensional arrays shown in
The common frame 200 shown in
The openings 21 of the common frame 200 are provided using a semiconductor microfabrication technique, such as etching. However, the common frame 200 is not limited to a silicon substrate and may be other wiring boards, such as a flexible printed circuit board and a rigid circuit board.
As shown in
In the description of the electronic device 10, the depth direction (direction orthogonal to an XY plane at the entrances of the openings 21) of the openings 21, where the vibrators 30 are disposed, is the Z-axis direction; the direction that is perpendicular to the Z-axis direction and along which the vibrators 30 are aligned in parallel when viewed from the Z-axis direction is the Y-axis direction; and the direction perpendicular to the Z-axis and the Y-axis is the X-axis direction.
Hereinafter, the vibrators 30 and their surrounding structure are described in more detail.
As shown in
Although not shown in
The magnetostrictive film 2 shown in
The piezoelectric film 32 shown in
The electrode film 33 shown in
For forming the magnetostrictive film 2, the piezoelectric film 32, and the electrode film 33 of the vibrator 30, various thin film formation methods known as microfabrication techniques for semiconductor manufacturing processes may be used. Examples of thin film formation methods include vacuum deposition, sputtering, sol-gel, chemical vapor deposition (CVD), PLD, and ion beam deposition (IBD).
For example, laminating the electrode film 33, the piezoelectric film 32, and the magnetostrictive film 2 on an upper surface of a silicon substrate that becomes the common frame 200 in the order mentioned and molding the resulting laminated body into a predetermined shape and predetermined dimensions by etching or the like can produce the vibrator 30. On an upper surface of the magnetostrictive film 2 in the Z-axis direction or a lower surface of the electrode film 33 in the Z-axis direction, an insulating film made from silicon oxide, silicon nitride, etc. may be formed by the above-mentioned thin film formation methods. Such an insulating film contributes to improvement of mechanical strength and durability of the vibrator 30.
When energy of an external magnetic field, such as an electromagnetic wave and an alternating magnetic field, is emitted to the vibrator 30 shown in
As shown in
The electronic device 10 includes the pair of supporting members 36, which vibratably connects the vibrator 30 to the common frame 200. The supporting members 36 are disposed at respective ends of the vibrator 30 in the X-axis direction. As shown in
At the space between the vibrator 30 and the brim of the opening 21, each supporting member 36 extends along the X-axis direction and the Y-axis direction and is connected to the vibrator 30 at one end and to the common frame 200 at the other end. The supporting members 36, with the vibrator 30 disposed therebetween, have a symmetrical shape having a reference line penetrating a center of the vibrator 30 and extending in the Y-axis direction as an axis of symmetry.
The beam material 36a shown in
A supporting-member electrode layer embedded in the beam material 36a is composed of a conductive material, similarly to the electrode film 33 of the vibrator 30 shown in
The supporting-member electrode layer of one supporting member 36 of the pair connects the magnetostrictive film 2 to the wiring member 27, and the supporting-member electrode layer of the other supporting member 36 of the pair connects the electrode film 33 to the wiring member 27. Via such supporting-member electrode layers, electric charge generated at the electrode film 33 is extracted outside the vibrator 30. Note that illustration of the supporting-member electrode layers is omitted in
A power supply unit 94 of the electronic apparatus 97, which receives the energy, is composed of a capacitor 95 and a power management IC (PMIC) 92 including a rectifier circuit or the like connected to the electronic device 10 for integration. When the electronic device 10 of the power supply unit 94 receives the external energy E supplied from the transmission antenna 98, elastic wave vibration of the vibrators 30 shown in
As shown in
The contactless power supply system 99 can be applied to various electronic apparatuses, and types of the electronic apparatus 97 in which the electronic device 10 can be included are not limited. Having a small size and high efficiency, the electronic device 10 shown in
The present disclosure is not limited to the above-mentioned embodiments and can variously be modified within the scope of the present disclosure.
For example, while Fe is exemplified as a specific element that contributes to ferromagnetism and is included in the rich regions 2a in the above-mentioned embodiments, the specific element may include at least one selected from the group consisting of Co, Ni, etc. other than Fe or together with Fe.
Hereinafter, the present disclosure is described based on further detailed examples, but the present disclosure is not to be limited thereto.
A magnetostrictive film was formed on a silicon substrate so that the film had a composition of Fe72Co8Si12B8. An ultra-high vacuum DC sputtering apparatus was used to form the magnetostrictive film. Film formation conditions were as follows. The degree of vacuum prior to film formation was 1.0×10−5 Pa or less. The degree of vacuum at the time of film formation was 0.05 Pa. The output was 200 W (DC). The applied magnetic field was 6400 A/m. The substrate temperature was 25° C. An Ar gas as an inert gas was supplied to the apparatus at a flow rate of 100 sccm. Note that, in Example 1, annealing after film formation was not performed.
After the magnetostrictive film was formed, the silicon substrate was cut into dimensions of 10 mm in the widthwise direction x 40 mm in the lengthwise direction. The silicon substrate had an average thickness of 640 μm, and the magnetostrictive film had an average thickness tm of 500 nm. High frequency inductively coupled plasma (ICP) analysis was performed for analysis of the alloy composition of the magnetostrictive film to confirm that the composition was Fe72Co8Si12B8.
The following evaluation of the magnetostrictive film of Example 1 produced as described above was performed.
The alloy composition of the magnetostrictive film was analyzed using high frequency inductively coupled plasma (ICP) analysis to confirm that the composition of the magnetostrictive film of Example 1 was Fe72Co8Si12B8. A structural analysis of the magnetostrictive film was performed using XRD to confirm that only a halo pattern was observed within 2θ=30° to 60° and no diffraction peak attributed to a crystal was detected in the resulting XRD pattern. That is, it was confirmed that the magnetostrictive film of Example 1 was amorphous with an amorphous ratio of 100%.
Table 1 shows the results. In the amorphous column of Table 1, “Y” indicates that the amorphous ratio of the magnetostrictive film 2 was 90% or more, and “N” indicates that the amorphous ratio of the magnetostrictive film 2 was less than 90%. In the crystal diffraction peak column of Table 1, “Y” indicates that a diffraction peak attributed to a crystal was detected, and “N” indicates that no diffraction peak attributed to a crystal was detected.
For evaluation of the magnetostrictive film using 3DAP, the magnetostrictive film was processed into a needle-shaped sample. The sample had a predetermined thickness (depth) of the magnetostrictive film shown in
Regarding the mapping image of the cross section shown in
In the XY plane mesh pattern column, “Y” indicates that the rich regions 2a having a width W that fell within 1 to 10 nm were observed in a mesh pattern in
A curve (magnetic field-magnetostriction curve) showing relationship between magnetic fields and magnetostriction of the magnetostrictive film was measured. Using the magnetic field-magnetostriction curve, a magnetic field threshold HTH and a magnetostriction constant dλ/dH were calculated. Specifically, an external rotating magnetic field of 0 to 6400 A/m was applied to the magnetostrictive film, and the strain amount generated at the magnetostrictive film was measured with a laser displacement sensor to give the magnetic field-magnetostriction curve.
The size of the external magnetic field at the time when a magnetostriction X. of 0.1 ppm was caused was calculated as the magnetic field threshold HTH. The maximum value of the slope of the magnetic field-magnetostriction curve was calculated as the magnetostriction constant dλ/dH. Table 1 shows the results. Ex. 1 of
A magnetostrictive film was formed as in Example 1 except that annealing was performed at 250° C. after the magnetostrictive film was formed for the same evaluation. Table 1 shows the results. Ex. 2 of
A magnetostrictive film was formed as in Example 1 except that annealing was performed at 350° C. after the magnetostrictive film was formed for the same evaluation. Table 1 shows the results. FIG. 4A2 shows results of measuring an Fe concentration profile of Example 3. Ex. 3 of
A magnetostrictive film was formed as in Example 2 except that lead zirconate titanate (PZT) was used instead of Si as a substrate for the same evaluation. Table 1 shows the results.
A magnetostrictive film was formed as in Example 1 except that annealing was performed at 450° C. after the magnetostrictive film was formed for the same evaluation. Table 1 shows the results. Cex. 1 of
A magnetostrictive film was formed as in Example 1 except that a substrate holder for holding the substrate was cooled with liquid nitrogen during film formation for the same evaluation. Table 1 shows the results. Cex. 2 of
Magnetostrictive films were formed as in Example 2 except that the compositions of the respective magnetostrictive films were CoFeB ((Co75Fez5)80B20), FeGaB ((Fe80Ga20)85B15), FeSmB ((Fe80Sm20)90B10), and FeNiB ((Fe75Ni25)80B20) for the same evaluation. Table 2 shows the results.
Magnetostrictive films were formed as in Examples 5 to 8 except that annealing was performed at 450° C. for the same evaluation. Table 2 shows the results.
As shown in Table 1, it was confirmed that HTH of the magnetostrictive film of each of Examples 1 to 4, in which the rich regions 2a were observed with a 3DAP in a mesh pattern in the cross section of the magnetostrictive film as shown in
As shown in Table 2, it was confirmed that the results were the same as in Example 2 and Comparative Example 1 despite the compositions of the magnetostrictive films being changed. That is, it was confirmed that HTH of the magnetostrictive film of each of Examples 5 to 8 was lower than those of Comparative Examples 5 to 8.
Number | Date | Country | Kind |
---|---|---|---|
2022-176468 | Nov 2022 | JP | national |
2023-142206 | Sep 2023 | JP | national |