Each day more than 200,000 United States Postal Service (USPS) carriers deliver mail to approximately 100 million individual domestic addresses. Mail generally consists of three broad types of items, namely letters, flat mail that is larger than letter mail, and parcels. Before a carrier begins to walk through or drive through his or her delivery route, it is the carrier's responsibility to put all of this mail into an appropriate sequence for efficient delivery.
Under the present USPS procedure, the carrier assembles at least three sequenced stacks of mail, including letters, flats (including enveloped and non-enveloped magazines), and parcels. The carrier may also have one or more additional sequenced stacks, e.g., pre-sorted mass-mail items to be delivered to many or all of the stops on the delivery route. Thus, at each delivery stop the carrier selects the items for that address from each of the various stacks and puts them all into the postal patron's mailbox. This sorting and shuffling through various stacks of mail is time consuming, inefficient, and consequently expensive to the USPS.
Preliminary tests by the USPS indicate significant potential savings in carrier delivery time if all of the mail pieces for each stop are consolidated into a single package before the carrier begins delivery activities. However, with current mail sorting procedures and the mail-casing equipment now available to the carriers, the additional time required for the carrier to pre-consolidate the mail into individual packages essentially negates the potential savings in delivery time.
More efficient procedures and equipment can be deployed within the post office to make the operation more efficient, thus saving substantial amounts of time and money, by making use of a different sorting system and method as described herein. The current mail case into which the carrier pre-sequences the mail is shown in
Two significant problems have been observed. Dividers 21 between stops in existing USPS mail cases are relatively rigid, and they cannot conveniently be repositioned during a sort. If a particular patron gets an excessive amount of mail on a given day, the carrier removes part or all of it temporarily. The carrier then must reconsolidate that patron's mail at the end of the casing operation. Also, as the slot fills, it becomes increasingly difficult to case additional mail into that slot. A more flexible partition between slots would help to remedy both of these shortcomings.
The slots are generally too small to accommodate flats without folding them over as shown in
For efficient delivery, all of the mail for each postal patron should be individually containerized or wrapped. To accomplish this with the existing case 20, the contents from each slot must be removed and packaged one stop at a time. With the existing USPS case design, the time required to package each patron's mail stop-by-stop exceeds the resulting time savings along the delivery route.
The USPS has attempted a system wherein a grocery store-style frame holds a horizontal stack of plastic bags. One bag is torn off the pad and made ready for filling by stretching it open on the frame, while the remaining bags remain on the pad in a closed or completely collapsed (flat) condition. In pulling down the mail from the slots in the case, the postal carrier takes mail from one slot, puts it in a bag, removes the bag from the frame and puts it in a flats tub or letter tray, generally in delivery order. This exposes the next bag on the frame for the mail in the next case slot corresponding to a delivery address. This process makes use of bags to keep mail for a single destination together, but requires several steps and is thus labor intensive. The pull-down process is carried out one destination at a time.
A newly designed mail case is hereby proposed. It facilitates sequence-sorting various types of mail together into individual bags that each represent unique delivery points. The mail case uses multi-bag inserts so that the bags for several stops can be set up quickly for sorting. At the end of the sorting operation, the entire insert or a portion of it may be pulled down from the case as a single unit to maintain the established delivery point sequence. This eliminates the carrier's need to find separation points or to combine selections from multiple sequenced stacks of mail during the subsequent delivery operation. This results in a dramatic improvement in delivery efficiency. Flexible bag walls allow mail to randomly overfill mail slots that receive greater than the standard volume of mail. This overfilling feature improves efficiency while maintaining slot density.
The invention also provides a more efficient method for sorting a batch of mail to a set of addresses. Such a method includes the steps of: (a) determining the destination address of a mail piece, such as by human review or machine scanning; (b) placing the mail piece in a flexible-walled bag that is one of a row of bags associated with the set of addresses; and (c) repeating steps (a) and (b) until all or substantially all mail in the batch for which an address can be determined has been placed within a bag. In a preferred embodiment, the mail pieces are letters, flats, or parcels, and the bags are accordingly configured as rectangular thin-walled bags, preferably of plastic, with elongated, straight mouths disposed side-by-side to form a rectangular group of bags, or a multi-bag. Following steps (a)–(c), the invention preferably further includes steps of (d) removing groups of bags simultaneously from the rack for placement in a carrying container such as a postal tub or delivery satchel, and then disconnecting the bags for quick and efficient delivery. In this manner, the invention provides for simultaneous bagging and sorting of flat mail, and optionally further permits a group of bags to be pulled-down from the sorting case in order, instead of one address at a time pull-down as presently practiced by the U.S. Postal Service.
A storage device for use in such a method preferably includes a series of flexible, thin-walled bags disposed side by side such that mouths of the bags face a common direction and form a row. The side edges of the mouth of each bag may be integrally bonded (as by fusing or adhesive) to the edges of the mouths of adjoining bags in the widthwise direction of the device to prevent inadvertent insertion of mail between adjacent bags. However, when a case provided with a bag tensioning mechanism is employed, the tension applied to the bags is often sufficient to prevent this, and the bag mouths need not be bonded. The bags are also preferably united by at least one, preferably two reinforcing strips extending in the lengthwise direction of the device. The strips may be formed integrally as part of the multi-bag, or may have suitable means for mounting the series of bags thereon. Preferably a pair of the reinforcing strips are disposed along the top corners of the device on either side of the row of the mouths of the bags. These strips in combination with the means for mounting the bags to the strips should have sufficient strength so that the multi-bag can be manually handled without causing individual bags to separate, yet permit separation of individual bags at the appropriate time, as described hereafter. The strips may also have means thereon for removably securing the storage device to a supporting frame so that the mouths of the bags remain open as items are placed into the bags through the mouths, the strips acting to facilitate loading of the bags into the case.
The storage device of this invention may optionally provide perforations near the mouth of each bag allowing the bag to be torn off. In such a case, the postal carrier can use the storage device directly as a delivery device, replacing the traditional postal satchel into which loose or rubber-banded bundles of mail are placed. To deliver mail, the carrier carries the device, assisted if needed by handles or a strap provided for that purpose. To deliver mail, the carrier walks or drives his or her route and tears off one bag per delivery address, greatly speeding the delivery process.
According to a preferred form of the invention, the multi-bag comprises a series of flexible walled bags disposed side by side such that mouths of the bags face a common direction and form a row, giving the multi-bag a generally rectangular shape when unfilled and stretched to a taut condition. Side edges of each bag near the mouth of each bag may be integrally bonded to the edges of the mouths of adjoining bags. A pair of reinforcing strips extending in the lengthwise direction of the multi-bag along opposite upper corners of the multi-bag. Suitable means are provided for attaching the strips to the multi-bag so that the strips unite the multi-bag, and the strips and attaching means may have sufficient strength so that the multi-bag can be handled without coming apart, especially when loaded, for example, with up to about 20 pounds of mail pieces or other items. The attaching means may take a variety of forms as described hereafter including applied adhesive, adhesive tape double or single sided, weld(s), mechanical interlocking of bag surfaces, and fasteners.
A preferred sorting case of the invention suitable for use with such multi-bag storage devices has suitable means for mounting the storage devices therein with the bag mouths facing outwardly, means for tensioning the bags to hold the bag mouths open during loading of items therein and for relaxing the bags to facilitate mounting in and removal from the case, and means for locking the bags in a taut condition during loading. The locking mechanism according to this embodiment preferably includes a movable shelf that moves relative to a stationary shelf to pull the bags taut from opposite sides, and a mechanism for releasably clamping opposite sides of each multi-bag to lock them into position during loading, so that the bags do not work loose from the case during mail sorting.
As discussed above, a postal sorting case includes a plurality of slots defined by dividing walls, each slot being labeled for sorting of mail to a specific address. Regardless of the specific construction of the sorting case, an essential principle of the invention is the use of slot dividing walls made of a flexible or compliant material which permits random overfilling of certain slots while maintaining the same overall slot density. This could be accomplished using, for example, flexible pouches or bendable dividers, without the multi-bag features. These and other aspects of the invention are described in the detailed description that follows.
In the accompanying drawings:
One implementation of the invention incorporates a multi-bag mail-case insert whereby the carrier cases the mail directly into individual bags that are then delivered to respective postal patrons. The multi-bag mail-case insert has several advantages: fast mail-case set-up in preparation for mail sorting, fast pull-down from the sorting case or rack after the casing operation is completed, flexible slots to accommodate variations in mail volume for individual mail patrons on a given day, and convenient maintenance of sequence order for efficient delivery.
A sample multi-bag storage device 30 according to the invention as shown in
Securing adjacent bag mouths helps keep the assembly together and prevents spaces from opening between the bag mouths 31 which are to take the place of the slots in the traditional mail case, and also helps maintain sequence order once the strips are removed. It would be unacceptable to have mail insertable between two bags in the multi-bag, so preferably the adjacent margins 32 of each bag are bonded together, continuously or at spaced intervals, along all or substantially all of the perimeter of each bag mouth 31. The reinforcing strips 33 each have a series of pins 34 that penetrate the multi-bag and secure the strip 33. However, the manner in which strips 33 are secured is not critical and any method that facilitates production may be employed, for example, adhesives or chemical or fusion welds.
As shown in
Bag mouths 31 each correspond to a predetermined destination, and thus it is important for multi-bag 30 to be positioned so that each opening 31 is in the correct position on the case for that address. For this purpose, marks or graduations 46 may be provided along one of the rails 41 so that visual alignment of each bag mouth 31 with its corresponding is maintained. Where sorting is to be carried out manually, indicia of the destination address, such as a label, can be provided in the spaces between marks 46. However, where an automated system is used to sort mail instead of a human being, the label could be omitted or replaced by a machine-scannable label such as a bar code.
Once sorting to individual bags is completed, the entire device 30 may be disconnected from the case and pulled down as a unit. It can then be stored, for example, in a flats tub or letter tray 50 as shown in
In either type of embodiment, the bags used may be printed with advertising to offset the costs associated with their use. However, if in some instances it is not preferred to deliver mail in a bag to a recipient, a reusable multi-bag may be used wherein the postal carrier removes the mail from the bag at the time of delivery.
Use of the invention by a postal service could be as follows. Each day the carrier sorts the various pieces of mail for his or her route into the mail case(s), as shown in
A further embodiment of the invention is shown in
Bag mouths 102 may be bonded to one another as described above, but it is possible, given the use of a tensioning device in the case as described hereafter, that bonding of adjacent bags can be omitted altogether or reduced to a single central spot of attachment. For this purpose, one of the two adjoining bag surfaces can be formed with a series of bumps that can be used as a material for welding it to the other surface. While direct bonding of one bag to the next is preferred, other forms of attachment are within the scope of the invention. An adhesive could be used to secure adjacent bag mouths together, or a mechanical fastening system can be used wherein both adjoining bag surfaces can be formed with a series of bumps and corresponding recesses that interlock when pressed together.
In an alternative embodiment shown in
In the alternative, tape 111 can be substituted with a single layer of coated-on adhesive that preferentially adheres to strip 103 and has light tack for the plastic, such as polyethylene, that bags 101 are made of. This embodiment eliminates the tape component and hence reduces both the cost and recycling impact of the multi-bag. Other conventional means of attachment without fasteners, such as spot-welding or heat bonding of each tab 104 to each bag 101 at the same location as tape or adhesive layer 111, are also within the scope of the present invention.
During the delivery process, the postal carrier upon reaching a mail stop tears off each individual bag 101 and leaves it in the postal patron's mail box or the like. Depending on how multi-bag 100 is configured, this would require breaking off strips 103 along lines 108 and leaving the two broken-away pieces of strip 103 as part of each bag. In the alternative, the carrier could peel the sides of each bag 101 away from strip 103 and could return strips 103 at the end of the delivery run for recycling or re-use.
The dimensions of multi-bags 30, 60, 100 correspond to the objects being sorted, which could include small products or other items as well as mail pieces. For the latter, the bag mouth is preferably rectangular in its taut state, typically 11.5″ long by 1.1″ wide, preferably in the ranges of 11–12″ long and 1–2″ wide. The depth of the bag is not critical but should be deep enough to contain the longest mail piece likely to be encountered with some length to spare. As such a depth of at least 12″, preferably 13″–16″, is suitable.
Aspects and advantages of the invention include: (1) the removable multi-bag mail case inserts, (2) the mail case with disposable or recyclable bags that consolidate carrier mail for efficient delivery, and (3) a recyclable or disposable plastic multi-bag mail-case insert that is designed to optimize installation, pull-down and delivery time so that overall time savings will more than offset the cost of the insert. The multi-bag inserts provide elasticity whereby extra mail for one or more patrons can frequently be accommodated without having to set aside part of the accumulated mail for that patron before the sort is completed.
The invention further provides a mail sequence-sorting case that is ergonomically superior to existing cases. It facilitates improvements in sorting time as a result of large slots, slot elasticity, use of soft surfaces, elimination of sharp edges, ergonomically acceptable reach distances, reduction of interim pull-down operations as a result of full slots, and easy simultaneous pull-down of multiple slots at the end of the sorting operation. The multi-bag insert may be stretched tightly over a frame to keep the bags open for efficient mail sorting, and the insert is easily and quickly attachable to a case frame, enhancing overall casing productivity. The insert is removed as a single unit in order to minimize pull-down time and enhance overall casing productivity.
The invention further provides a multi-bag mail case insert that maintains sequence order to facilitate delivery efficiency, enhancing overall carrier delivery productivity. The individual bags may be perforated so that they can easily be detached individually for delivery on the carrier route. The use of imprintable bags permits the USPS to recover revenue to offset bag cost or to increase advertising revenue in conjunction with the delivery operation.
Turning now to
Each female strip 306 is about an inch wide and includes a plurality of slots 308, arranged in pairs uniformly spaced along the length of the strip. Slots 308 extend transversely across female strip 306 over a major portion of the width of the strips and may be formed in any conventional manner, such as with a common punch out machine. As illustrated, male strips 304 may be slightly wider, on the order of 1.5 inches wide, and formed along one side with a row of rounded tabs 310 arranged in side-by-side fashion along one edge of the strip. Tabs 310 are separated by notches 312 and each tab 310 is configured to fit into the opening of a bag 302 at an end thereof with the bag material extending into notches 312. Each tab 310 is provided with a pair of centrally located wings 314 having a length approximately equal to the length of slots 308. As in the case of slots 308, wings 314 may be easily formed by punching a pair of opposing “C” shaped sections 316 from the strip at the location of each tab 310. Each “C” shaped section is spaced from the opposing “C” shaped section the same distance as between slots 308 of female strip 306. Each pair of wings 314 is centered on a tab 310 and configured to be inserted in and engage a corresponding pair of slots 308 of female strip 306.
As best shown in
After multi-bag 300 has been loaded, the filled multi-bag may be disassembled, either at the post office or as the postal carrier goes along his route, depending upon convenience and other factors. Disassembly of multi-bag 300 is accomplished by grasping one pair of ends of strips 304, 306 and pulling the ends in different directions. This pulls wings 314 back through slots 308, “unzipping” the multi-bag. Another advantage provided by multi-bag 300, is that upon disassembly, only the strips remain. No small parts, connectors, staples or other fasteners are generated. Strips 304 and 306 may be reused or recycled and are not delivered to the postal customer.
Each arm 372 comprises a generally triangular flat steel plate that is substantially parallel to and moveable relative to the adjoining side wall 360. As illustrated, each arm is provided with a slot 362 through a bolt 363 mounted on side wall 360 passes. A locking washer (not shown) may be secured on the end of each bolt 363. Slot 362 and bolt 363 cooperate to guide arms 372 over a limited vertical distance relative to stationary frame 352. A substantially horizontal plate 368 spans the top of each pair of arms 372, such that each holder 373 overall has in inverted U-shape as shown in
Stationary frame 352 includes transverse beams 400 extending along the length of each shelf 364 between sidewalls 360. Each beam 400 has one or more upwardly extending pins 402 mounted on a top surface thereof that are aligned with a plurality of corresponding holes 406 in a bottom wall 410 of moveable shelf 364. A free resting flat plate 398 is interposed between shelf 364 and flange 390 along the length of shelf 364, with the forward most edge 404 of plate 398 supported close to pins 402, which engage plate 398 upon downward movement of moveable frame 354. A second notched and tabbed, L-shaped flange 396 depending from stationary beam 400 extends inwardly into bag openings 356 below beam 400 and forms part of stationary frame 352. The forward edge 408 of plate 368 is disposed between beam 400 and flange 396 such that plate 368 is moves towards flange 396 upon downward movement of frame 354.
Case 350 operates as follows. When in a first position in which the movable shelf is positioned upwardly from that shown in
Cord 378 is connected to a series of levers 386, 388 which are in turn connected to the lowermost hinge 374. Pulling on cord 378 causes lever 388 to pull down on hinge 374 and hence on bottom shelf 364a, moving the entire shelf assembly including holder 373 downwardly. A series of links 375 interconnect hinges 374 of each successive shelf 364, preferably at both ends, so that all shelves 364 move in tandem, pivoting downwardly on hinges 366. This causes flange 390 to move down towards plate 398 and simultaneously causes plate 368 to move down towards notched flange 396, thereby clamping the upper and lower ends of each multi-bag 300 as shown. Strips 304, 306 at the top edge of each bag 300 are thereby captured between plate 368 and tabbed flange 396. Simultaneously, beam 412 moves downwardly, lowering tabbed flange 390 towards plate 398 which is held up by pins 402, trapping strips 304, 306 at the bottom edge of multi-bag 300 between flange 396 and plate 398. The downward movement of movable shelf 364 relative to stationary shelf 352 above it also causes each multi-bag 300 to be stretched into a taught condition suitable for loading mail. Plate 368 in particular acts as a locking mechanism for the upper end of the multi-bag 300, and plate 398 in combination with rods 402 similarly clamps and locks the lower end of the associated multi-bag 300. Cord 378 is secured (e.g., tied off) until the casing operation is completed. Thereafter, cord 378 is released, freeing the movable shelf unit and allowing the mail-filled multi-bags 300 to be disengaged from the flanges and pulled down for further processing.
It will be understood that the foregoing description is of preferred exemplary embodiments of the invention, and that the invention is not limited to the specific forms shown. For example, other means could be used to tension the bags on the case, such as loops on the corners of the multi-bag held on pins, posts or the like on the case. These and other modifications are within the scope of the invention as expressed by the appended claims.
This application is a divisional of U.S. patent application Ser. No.: 09/924,155, filed Nov. 26, 2001, now U.S. Pat. No. 6,715,614.
Number | Name | Date | Kind |
---|---|---|---|
254836 | Nauerth | Mar 1882 | A |
660541 | Field | Oct 1900 | A |
779551 | Letts | Jan 1905 | A |
802320 | Rice | Oct 1905 | A |
862243 | Field | Aug 1907 | A |
928106 | Carpenter | Jul 1909 | A |
1205213 | Johnson | Nov 1916 | A |
1418403 | Smith | Jun 1922 | A |
1640083 | Ladd | Aug 1927 | A |
1755950 | Dobson et al. | Apr 1930 | A |
2623527 | Guichard | Dec 1952 | A |
2625973 | Weldon et al. | Jan 1953 | A |
2759612 | Brinkmann | Aug 1956 | A |
3167074 | Toms | Jan 1965 | A |
3732978 | Reader | May 1973 | A |
3760943 | Reader | Sep 1973 | A |
4168004 | Owen | Sep 1979 | A |
4219247 | Litchfield et al. | Aug 1980 | A |
4249663 | Hewlett | Feb 1981 | A |
4429789 | Puckett, Jr. | Feb 1984 | A |
4493684 | Bolton | Jan 1985 | A |
4527694 | Bolt et al. | Jul 1985 | A |
4589555 | Hollingsworth | May 1986 | A |
4593816 | Langenbeck | Jun 1986 | A |
4720048 | Maroney et al. | Jan 1988 | A |
4756657 | Kinney | Jul 1988 | A |
4765490 | Hanson | Aug 1988 | A |
4789248 | Penas | Dec 1988 | A |
4802773 | Gross | Feb 1989 | A |
4836428 | Evans et al. | Jun 1989 | A |
4880121 | D'Elia | Nov 1989 | A |
4979705 | Bovitz | Dec 1990 | A |
5000325 | D'Elia | Mar 1991 | A |
5024344 | Paula | Jun 1991 | A |
5025979 | Dellacroce | Jun 1991 | A |
5035515 | Crossman et al. | Jul 1991 | A |
5086934 | Kelly | Feb 1992 | A |
5109252 | Schott, Jr. | Apr 1992 | A |
5119942 | McCullars | Jun 1992 | A |
5190252 | Schrager | Mar 1993 | A |
5211290 | Janus et al. | May 1993 | A |
5234116 | Kristinsson et al. | Aug 1993 | A |
5238139 | Bisceglia | Aug 1993 | A |
5590794 | Zachary | Jan 1997 | A |
5725119 | Bradford et al. | Mar 1998 | A |
5804265 | Saad et al. | Sep 1998 | A |
5815903 | Foster et al. | Oct 1998 | A |
5836488 | Priestley | Nov 1998 | A |
5845826 | Nguyen | Dec 1998 | A |
5885002 | Reiss | Mar 1999 | A |
5931304 | Hammond | Aug 1999 | A |
6464092 | Kortman et al. | Oct 2002 | B1 |
6648153 | Holmes | Nov 2003 | B1 |
6715614 | Pippin et al. | Apr 2004 | B1 |
6830156 | MacKelvie | Dec 2004 | B1 |
20040007544 | MacKelvie | Jan 2004 | A1 |
20040099622 | Lee | May 2004 | A1 |
Number | Date | Country |
---|---|---|
1450890 | Jan 1989 | CH |
0 949 015 | Oct 1999 | EP |
WO 9533580 | Dec 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20040168993 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09924155 | Nov 2001 | US |
Child | 10788598 | US |