The invention disclosed herein relates generally to mail processing systems, and more particularly to mail processing systems that include dimensional rating capabilities with true length support.
Mail processing systems for preparing mail pieces, including the functions of generating and printing evidence of payment for delivery (also referred to as indicia) on mail pieces, including, for example, envelopes, flats, postcards, and other items, have long been well known and have enjoyed considerable commercial success. There are many different types of mail processing systems, ranging from relatively small units that handle only one mail piece at a time, to large, multi-functional units that can process thousands of mail pieces per hour in a continuous stream operation. The larger mailing machines often include different modules that automate the processes of producing mail pieces, each of which performs a different task on the mail piece. The mail piece is conveyed downstream utilizing a transport mechanism, such as rollers or a belt, to each of the modules. Such modules could include, for example, a singulating module, i.e., separating a stack of mail pieces such that the mail pieces are conveyed one at a time along the transport path, a moistening/sealing module, i.e., wetting and closing the glued flap of an envelope, a weighing module, and a metering module, i.e., applying evidence of postage to the mail piece. The exact configuration of the mailing machine is, of course, particular to the needs of the user.
Various postal services and private delivery services (referred to herein collectively as “carriers”) throughout the world have developed rating systems which are used to determine the fee associated with the delivery of a particular mail piece. Generally, conventional rating systems utilize a variety of different parameters or factors which influence the fee structure, such as: weight of the mail piece, desired class of service (as examples, first class or third class in the United States), and destination of the mail piece. Some carriers use rating systems that also utilize the dimensions of a mail piece, e.g., length, width, and thickness, in determining the fee for delivery of a mail piece. Rating of mail pieces based on the dimensions of the mail piece is commonly referred to as dimensional rating. The carriers generally communicate the rating systems in the form of tables or charts, which are updated periodically to reflect new pricing or changes in the rating parameters.
To process mail pieces utilizing dimensional rating systems, mail processing systems have been developed that include one or more sensors capable of determining one or more dimensions of a mail piece. The determined dimensions are then used to determine, based on the appropriate rate tables or charts, the fee for delivery of each mail piece. Such mail processing systems are disclosed, for example, in U.S. Pat. Nos. 6,832,213 and 6,006,210. Such mail processing systems have a mail piece processing path that includes a conveyor apparatus that feed mail pieces along a feed deck past a print head module for printing of an indicium that evidences payment for delivery of each mail piece. A registration wall is located substantially perpendicular to the feed deck, such that the top edge of the mail piece is registered along the registration wall to ensure an indicium is printed in the correct location. The mail pieces are fed into the mail processing system in either landscape or portrait orientation such that the indicium will be printed parallel to the address block. The side of the mail piece that is specified as the length is the side that is registered against the registration wall, referred to as the top edge of each mail piece. Sensors located along the feed deck are used to determine both the length and width of each mail piece, and surcharges can be added to the delivery fee for oversized mail pieces.
While such systems generally work well for dimensional rating of mail pieces, there are issues that arise based on the requirements of various carriers, which may assign the length and width to different sides of each mail piece. Some carriers, such as, for example, the United States Postal Service (USPS), specify that the length of each mail piece is always the side that is parallel to the address block (regardless of the orientation of the mail piece). Thus, for mail pieces 10 and 12 illustrated in
In conventional mail processing systems in which the top edge of the mail piece is always specified as the length, the potential for improper rating of mail pieces exists when carrier rates are based on true length. Table I below illustrates an example of a format table based on maximum length and width parameters for an exemplary class of service offered by a carrier. Each class of service offered can have different formats, and different fees. Within each class, the rate applied for delivery of a mail piece is based in part on the format of the mail piece, e.g., the length and width, and also possibly the thickness and actual weight. As can be seen from Table I, when a mail piece is less than or equal to the maximum length of 240 mm and maximum width of 165 mm, it is classified as a Letter and will be rated in the Letter Category. If either of the width or length exceeds the maximum dimension for the Letter Category, the mail piece will be classified as a Flat and will be rated in the Flat Category, which has higher delivery fees than the Letter Category. If either of the width or length exceeds the maximum dimensions for the Flat Category, then the mail piece will be classified as a Parcel and will be rated in the Parcel Category, which has higher delivery fees than the Flat Category.
Referring again to
For carrier rates that are based on true length, the classification of mail piece 10 will be correct, since the top edge 14 also happens to be the longest edge of the mail piece 10. However, conventional mailing systems will improperly classify mail piece 12 when rates are based on true length. As noted above, for rates based on true length, the orientation of the mail piece does not matter—the longest side is always deemed to be the length. Mail piece 12 should be classified as a Letter, since the side edge 18, being longer than the top edge 16, should be determined to be the length (and does not exceed 240 mm) and the top edge 16 should be determined to be the width (and does not exceed 165 mm). Because conventional mail processing systems always specify the top edge, e.g., edge 16 of mail piece 12, as the length, the width of mail piece 12 will be determined to be side 18. Since the width exceeds the maximum dimension for a Letter, mail piece 12 will be classified as a Flat, when as noted above mail piece 12 should be classified as a Letter. The improper classification of mail piece 12 as a Flat instead of a Letter results in an overpayment of fees by the mailer for delivery of mail piece 12 by the carrier. Other improper classifications also occur when a mail piece would be improperly rated as a Parcel instead of a Flat, e.g., mail piece 12 with side 16 being 250 mm or less and side 18 exceeding 250 mm. Such errors lead to dissatisfaction with conventional mail processing systems, as the result is an unnecessary waste of funds by the mailers.
Thus, there exists a need for a mail processing system that includes dimensional rating capability that can provide true length support for carrier rates to prevent the improper classification of mail pieces.
The present invention alleviates the problems associated with the prior art and provides a mail processing system that includes dimensional rating capability that can provide true length support for carrier rates to prevent improper classification of mail pieces.
In accordance with embodiments of the present invention, the mail processing system determines a first dimension, parallel to the path of travel, and a second dimension, transverse to the path of travel, of a mail piece. The first dimension and second dimension are compared to each other to determine which is greater. The greater of the two dimensions is assigned to be the length of the mail piece, regardless of the orientation of the mail piece. The format of the mail piece is then determined based on a comparison of the assigned length and assigned width dimensions to maximum dimensions specified by a format table. Based on the determined format of the mail piece, a delivery fee is then calculated. An indicium can then be generated and printed on the mail piece. Because the length is assigned to the longest side of each mail piece, the mail piece will be properly classified with respect to the format, resulting in the payment of proper fees for delivery of the mail piece.
Therefore, it should now be apparent that the invention substantially achieves all the above aspects and advantages. Additional aspects and advantages of the invention will be set forth in the description that follows, and in part will be obvious from the description, or may be learned by practice of the invention. Moreover, the aspects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings illustrate a presently preferred embodiment of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.
In describing the present invention, reference is made to the drawings, wherein there is seen in
Control unit 32 includes an accounting module 36 and a rate module 38, which may be, for example, memory devices similar to memory device 30. The rate module 38 contains the necessary information pertaining to the rating system of the carriers supported by the mail processing system 20. This rating system information includes the dimensional rating requirements of the carrier. The accounting module 36 keeps track of funds by maintaining a descending register which stores an amount of funds available for use and an ascending register which stores a total amount of funds dispensed over the life of the mail processing system 20. Funds may be added to the descending register by any conventional means.
The mail processing system 20 further includes one or more sensors 32, 34 that are located along the transport 24 to provide signals to the control unit 22. Preferably, the sensors 32, 34 are any conventional optical type sensors that include a light emitter and a light detector, but it should be understood that any type of sensor arrangement or combination of sensors can be utilized. Sensor 32 preferably includes a light emitter and a light detector located in opposed relationship on opposite sides of the path of travel of a mail piece such that a mail piece passes therebetween. By measuring the amount of light that the light detector receives, the presence or absence of a mail piece can be determined. The emitter and detector of sensor 32 are positioned such that the control unit 22 can determine, based on the signals provided by the sensor 32, the dimension of a mail piece parallel to the path of travel (based on, for example, detecting the lead and trail edges of a mail piece). Sensor 34 is preferably formed of an array assembly mounted in any conventional fashion to be flush with the feed deck (
In conventional mailing systems that do not provide true length support, a sensor similar to sensor 34 would always be used to determine the width dimension. Thus, only those sensors in the array that correspond to width beak points as identified by the format tables, e.g., 165 mm and 250 mm from Table I, would be activated. In this manner, the sensor 32 can be used to determine the dimension of each mail piece 50a, 50b, and 50c parallel to the path of travel (designated the length), and the sensor 34 can be used to determine if the dimension of each mail piece 50a, 50b, and 50c in the direction transverse to the path of travel (designated the width) is less than 165 mm (if neither of the activated sensors of the array detect the mail piece), between 165 and 250 mm (if the sensor located just beyond 165 mm detects the mail piece but the sensor located just beyond 250 mm dos not detect the mail piece), or greater than 250 mm (if both of the activated sensors of the array detect the mail piece). As will be described below, for mail processing system 20 that provides true length support, those sensors in the array of sensor 34 that correspond to both the width and length break points as identified by the format tables are activated, since the dimension of the mail piece transverse to the path of travel may be deemed as either the length or the width.
In step 104, the control unit 22, based on the retrieved dimensional rating data, prepares the mail processing system 20 for operation in the appropriate dimensional rating mode. For example, when true length support is required by the carrier, the control unit 22 obtains the length and width breaks, e.g., from a format table similar to Table I above, and activates the appropriate sensors within sensor 34. Specifically, as noted above, those sensors in the array of sensor 34 that correspond to both the width and length break points as identified by the format table are activated, since the dimension of the mail piece transverse to the path of travel may be deemed as either the length or the width. Thus, for example from Table I above, sensors located preferably just beyond 165 mm, 240 mm, 250 mm and 353 mm (if provided) are activated. Thus, for example, sensors located at 169 mm, 244 mm and 254 mm from the registration wall 54 are activated. Because of size limitations of the feed deck 52, in some situations there is insufficient depth to provide a sensor for the 353 mm location, and as such the array of sensors of sensor 34 may not extend to that point.
In step 106, as a mail piece, e.g., mail piece 50a, 50b, or 50c, is being processed by the mail processing system 20, sensor 32 is utilized to determine the dimension of the mail piece in the direction parallel to the path of travel. Since this dimension is based on detection of the leading and trailing edges of the mail piece, a reasonably accurate measurement of the actual dimension can be made. The sensor 34 is used to determine an approximate dimension of the mail piece in the direction transverse to the path of travel, based on the response of the individual sensors of sensor 34 previously activated in step 104. For example, if the sensor located 169 mm from the registration wall 54 does not detect the presence of a mail piece, the mail piece is deemed to have a dimension transverse to the path of travel of not greater than 165 mm. If the sensor located 169 mm from the registration wall does detect the presence of a mail piece, but the sensor located 244 mm from the registration wall does not detect the mail piece, the mail piece is deemed to have a dimension transverse to the path of travel of greater than 165 mm but less than or equal to 240 mm. If the sensor located 244 mm from the registration wall does detect the presence of a mail piece, but the sensor located 254 mm from the registration wall does not detect the mail piece, the mail piece is deemed to have a dimension transverse to the path of travel of greater than 240 mm but less than or equal to 250 mm. If the sensor located 254 mm from the registration wall detects the presence of a mail piece, the mail piece is deemed to have a dimension transverse to the path of travel of greater than 250 mm.
Thus, based on the response from the activated portions of sensor 34, the control unit 22 can determine an approximate dimension of each mail piece in the direction transverse to the path of travel. In step 108, the control unit 22 determines which of the obtained dimensions is greater. Since the dimension obtained transverse to the path of travel is just an estimate within a range of dimensions, the control unit 22 assigns a specific value to this dimension to compare it with the dimension obtained parallel to the path of travel. Table II below provides exemplary values assigned for each estimate.
Thus, for example, if the dimension transverse to the path of travel is determined to be not greater than 165 mm, the control unit 22 assigns a value of zero for use in comparing with the measured dimension parallel to the path of travel. Since the rating is performed based on specified break points, it does not matter what the actual measurement is, as long as it falls within the range specified by the break points. In step 110, the greater of the two dimensions is assigned to be the length, and the lesser of the two dimensions is assigned to be the width. If the two dimensions are both within the same range, then either can be assigned to be the length, as it will not have any impact on format determination.
Once it is determined which dimension (parallel to the path of travel or transverse to the path of travel) is assigned to be the length, then in step 112 the assigned length is compared against the maximum length dimensions of the appropriate format table, e.g., for the class selected by the user to rate the mail piece, and the assigned width is compared with the maximum width dimensions, to determine the format with which the mail piece complies. Table III below illustrates examples of format determination for various sized mail pieces using as an example the length and width breaks as specified in Table 1. As shown in Table III, the first column indicates the actual size of a mail piece, in mm, in a first dimension that is parallel to the path of travel (designated X side), and the second column indicates the actual size of each mail piece, in mm, in a second dimension that is transverse to the path of travel (designated Y side). The third column indicates the measurement of the first dimension as provided by sensor 32, and the fourth column indicates the value assigned by the control unit 22, as described above, for the dimension transverse to the path of travel. The fifth column indicates which side, X or Y, is deemed to be the length for true length support. The sixth column indicates the format in which a mail piece would be classified when the carrier rating utilizes true length support. The seventh column indicates the format in which a mail piece would be classified when the carrier rating does not utilize true length support.
Once the appropriate format of a mail piece has been identified based on length and width, the control unit 22 uses this information, combined with the weight and maximum thickness requirements, in step 114, to determine the proper fee for delivery of the mail piece. As can be seen from Table III, there are several instances where a conventional mail processing system that does not provide true length support would improperly identify the format for a mail piece, which would result in the user paying additional unnecessary fees for delivery of the mail piece. Mail processing system 20, utilizing the processing described above for providing true length support, accurately identifies the correct format for each mail piece. Thus, the information used by the control unit 22 to rate each mail piece is accurate, and the improper rating of mail pieces is prevented. In step 116, an indicium generated by the control unit 22 that reflects the proper delivery fee is printed on the mail piece by the print module 26.
While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as limited by the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
5121328 | Sakai et al. | Jun 1992 | A |
5238123 | Tovini et al. | Aug 1993 | A |
5734476 | Dlugos | Mar 1998 | A |
5770864 | Dlugos | Jun 1998 | A |
5777746 | Dlugos | Jul 1998 | A |
5793652 | DeBarber et al. | Aug 1998 | A |
5808912 | Dlugos et al. | Sep 1998 | A |
5815274 | Dlugos | Sep 1998 | A |
5841541 | Dlugos | Nov 1998 | A |
5878379 | Dlugos et al. | Mar 1999 | A |
5909013 | Dlugos | Jun 1999 | A |
5914463 | Dlugos | Jun 1999 | A |
6006210 | Freeman et al. | Dec 1999 | A |
6135292 | Pettner | Oct 2000 | A |
6403907 | Tanimoto | Jun 2002 | B1 |
6832213 | Freeman et al. | Dec 2004 | B2 |
20060112023 | Horhann et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 2006084484 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080262978 A1 | Oct 2008 | US |