The present invention relates to mail tray loading devices used for automatically loading mail into mail trays. The mail tray loader is designed to eliminate the need for manual intervention during the tray loading process. The mail tray loader is also designed to reduce the cost and complexity found in present tray loading machinery. In a typical inserting machine installation, the envelopes exiting the inserting machine (inserter) are transferred from the inserter onto a low-speed conveyor on which the envelopes accumulate in a shingled stream. Transfer of mail from this conveyor to the mail tray is usually accomplished manually. This tends to stifle productivity, particularly in high-volume operations. Although some automatic traying machines exist, they are relatively complicated and expensive. The present invention replaces the traditional output conveyor and offers a compact and cost-effective means for loading the mail into trays automatically.
The disclosed automatic mail tray loading device is adapted to receive envelopes from an inserting machine or from other mail-processing systems and place them in mail trays. The device has a two-stage envelope buffer, which buffers the envelopes into a shingled array before depositing them into the mail tray. The first stage buffers the envelopes during purging of the second stage and the second stage buffers the mail during a tray change. The mail trays are held on a tray conveyor, at an inclination that ensures proper loading of the tray. The tray conveyor incrementally moves the envelope tray downward until the tray is full of envelopes. A new, empty tray is then moved into position and the filled tray is moved laterally to the tray offload station. The system consists of four main functional components: an envelope conveyor, a tray conveyor, a lateral tray transfer mechanism and an auxiliary buffer. The envelope conveyor receives the envelopes from the inserter and buffers them in a shingled stream before discharging them into the envelope tray. The tray conveyor positions the envelope tray to receive the envelopes as they are discharged from the envelope conveyor. The tray lateral transfer mechanism advances the filled tray laterally to the offload station. The auxiliary buffer is located at the upstream end of the envelope conveyor and functions as the auxiliary buffer to buffer envelopes arriving from the inserter during purging of the envelope tray prior to a tray change. This arrangement provides for an efficient and economical tray loading device and can accommodate the output from high speed inserters.
For the purpose of promoting an understanding of the principles of the invention, reference will be made to the embodiments illustrated in the drawings. Specific language will also be used to describe the same. It will, nevertheless, be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates.
The embodiment shown in
The mail tray loading device 10, as shown in
The envelope conveyor assembly 14 receives envelopes from the inserter, and buffers the envelopes in a shingled array before discharging them into an envelope tray 128, as shown in FIG. 8. The envelope conveyor assembly 14 is comprised of a pair of conveyor support arms 20 that attach the envelope conveyor assembly 14 to a frame 22. The envelope conveyor assembly 14 also includes a main frame 24, a support pan 26 and a top plate 28, as shown in
Referring to FIGS. 1,4 and 5, the main frame 24 of the envelope conveyor assembly 14 is positioned within the tray frame 22 and includes a purge panel solenoid 38 and an envelope level sensor 40 adapted to sense the level of the envelopes stacked in the envelope tray on the tray conveyor assembly 16. The main frame 24 also includes a conveyor pulley shaft 41 that is adapted to allow for the attachment of a pair of pulleys 42 that retain the conveyor belts 30. Also included on the envelope conveyor assembly 14 is a pair of outer roller covers 44 (
The envelope conveyor assembly 14, as shown in
The tray conveyer assembly 16, as shown in
The lateral tray transfer assembly 18, as shown in
When the mail tray loading device 10 is operational, the conveyor belts 30 of the envelope conveyor assembly 16 are run at a low speed. The first stage buffer area 54 is ready to accept envelopes from the inserter machine. A processor 102 for the mail tray loading device 10 transmits a ready signal to the host inserter machine. As each envelope is discharged from the inserter, it is detected by an envelope sensor 104 that is attached to the side guide 51 in the first stage buffer area 54 before the envelope lands upon the conveyor belts 30. The first stage buffer area 54 is dimensioned to be approximately the size of the envelopes so that when the envelopes from the inserter enter, they form a uniform horizontal stack. The slow moving conveyor belts 30 continually grab and pull the lowest envelopes in the stack beneath the stop plate 46 and orient the envelopes in a shingled array as the envelopes move toward the second stage buffer area 56 and ultimately into the envelope tray 128.
The continuing motion of the conveyor belts 30 causes the envelopes to be discharged into the envelope tray 128 as shown in
Once the trailing edge of the tray 128 passes the tray full sensors 110 the signal is no longer tripped and a signal is sent to the processor 102. Upon receiving a signal from the tray full sensor 110, the processor 102 initiates a tray change cycle. The tray change cycle consists of activating the purge panel solenoid 38, purging or emptying the envelope conveyor belts 30, and advancing a new (empty) tray 128 into position to receive a subsequent batch of envelopes from the envelope conveyor assembly 14. The activation of the purge panel solenoid 38 elevates the purge panel 36. The elevation of the purge panel 36 elevates the stack of envelopes in the first stage buffer area 54. The elevated position of the envelopes prevents them from passing beneath the stop plate 46, allowing the envelopes in the second stage buffer area 56 to be fully evacuated from the envelope conveyor assembly 14. Upon activation of the purge panel solenoid 38, the processor also increases the speed of the envelope conveyor belts 30 for a duration long enough to completely purge the second stage buffer area 56 of envelopes.
After the high speed operation of the envelope conveyor belts 30 has ended, the conveyor belts 30 resume their original travel speed. Upon the envelope conveyor belts 30 returning to their normal speed, the purge panel solenoid 38 is deactivated and the tray conveyor 64 is motorized to move a new (empty) tray 128 downward until a new tray sensor 112 detects the lead edge of the new tray 128. The deactivation of the purge panel solenoid 38 allows the conveyor belts 30 to restart the flow of envelopes down the envelope conveyor assembly 14 in a shingled array. Also, the downward movement of the tray conveyor 64 causes the full tray 128 to drop down into the lateral tray transfer assembly. Upon detection of the lead edge 134 of the new tray 128, the processor 102 de-energizes the conveyor motor 108 to halt the movement of the tray conveyor 64. Shingled envelopes that have resumed traveling the length of the envelope conveyor assembly 14 begin to enter the new tray 128. Upon detection of the top of the envelope stack by the envelope level sensor 140, the processor energizes the tray conveyor 64 to move the new tray 128 downward allowing additional envelopes to enter the tray 128.
The drop of the full tray 128 from the tray conveyor 64 onto the lateral tray transfer assembly 18 is detected by a filled tray exit sensor 114. Upon detection of the full tray 128 by the filled tray exit sensor 114, the processor 102 energizes the electric motor 100, which turns the lead screw 88. The rotation of the lead screw 88 pulls the lateral transfer arm 82 and arm support 84 across the guide rod 86, moving the full tray 128 to an offload station 116, as shown in FIG. 1. The tray 128 is driven sideways onto the offload station 116 until it is detected by the filled tray clear sensor 118. Upon detection of the filled tray 128 on the off-load station 116, the processor 102 reverses the electric motor 100 to return the lateral transfer arm 82 to its original position. The lateral transfer arm 82 is detected by lateral transfer arm home sensor 120, as shown in
In the simplest implementation of the mail tray loading device 10, placing the empty trays on the tray conveyor 64 and removing the filled trays from the offload station 116 will be manual operations. In applications where the host inserting machine discharges envelopes at a higher rate of speed, the placement and removal of the trays can be automated to maintain higher productivity by implementing additional hardware. An envelope conveyor exit sensor (not shown), an empty tray buffer sensor (not shown) and a full tray buffer sensor (not shown) are utilized to detect abnormal operating conditions. Upon abnormal activation of any of these sensors, the processor 102 halts the operation of the mail tray loading device 10 and sends a not ready signal to the host inserter machine and alerts an operator either audibly or visually to take corrective action.
The tray change cycle can also be initiated manually by pressing a manual tray change button, or by the host inserter machine sending a tray change command to the processor 102. The inserter machine may require a tray change to segregate envelope types or envelopes having different zip codes. Under normal operating conditions, it will be necessary to initiate a manual tray change at the end of an envelope run. In the case where a tray change command is received from the host inserter machine, the tray change cycle itself will be initiated by the processor after a preset number of envelopes are received from the inserter subsequent to receiving the tray change command. The specific preset number of envelopes will depend upon the particular inserter configuration.
Various features of the invention have been particularly shown and described in connection with the illustrated embodiment of the invention, however, it must be understood that these particular arrangements merely illustrate, and that the invention is to be given its fullest interpretation within the terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1284781 | Rogers | Nov 1918 | A |
1548350 | Charland | Aug 1925 | A |
3822793 | Stobb | Jul 1974 | A |
3865365 | Hardin et al. | Feb 1975 | A |
4051957 | Parups | Oct 1977 | A |
4273491 | Roux | Jun 1981 | A |
4518160 | Lambrechts et al. | May 1985 | A |
4750315 | Wadell | Jun 1988 | A |
4750729 | Kanoto et al. | Jun 1988 | A |
4805890 | Martin | Feb 1989 | A |
5009053 | Langenbeck et al. | Apr 1991 | A |
5135352 | Scata et al. | Aug 1992 | A |
5233814 | Bergerioux et al. | Aug 1993 | A |
5346206 | Steinhart | Sep 1994 | A |
5347790 | Romanenko et al. | Sep 1994 | A |
5347791 | Ginzl et al. | Sep 1994 | A |
6601847 | Hendrickson et al. | Aug 2003 | B2 |