The invention relates generally to antenna tracking and, in particular, to main beam alignment verification for angle tracking antennas.
Tracking antenna systems dynamically follow changes in a direction of a received signal, and position a tracking antenna to align the signal with the peak level of the main beam of the tracking antenna. Such signal alignment results in coincidence of the signal and a portion of the main beam that provides maximum antenna gain and thus system sensitivity.
Various approaches to antenna tracking involve aligning the main beam peak of an antenna with the signal by using open commanding and relative power measurements. One example, referred to as “step track,” involves positioning an antenna in a nominal direction, and commanding the antenna in equal but opposite angular offsets and measuring received signal power at each offset position. If the received signal power levels are equal, the antenna is correctly aligned. If the received power levels are unequal, the difference in the power levels can be used to correct the antenna alignment. The process is repeated in the orthogonal plane. The step track technique is periodically repeated to validate correct antenna alignment and to follow any changes in the direction of the signal.
Other approaches to antenna tracking involve a closed loop technique referred to as “monopulse.” Two types of antenna patterns are used in such techniques. The first type of pattern has a maximum gain value that is coincident with the axis of the antenna, and is used for data reception. The second type of pattern has a null on the axis of the antenna and, to first order, has a linear variation with displacements from the axis and typically a phase difference between the data pattern and the tracking pattern that coincides with the azimuth angle of the signal direction. This behavior, the linear increase with deviation from axis and the phase difference, is used by an antenna control unit as an error signal, thereby permitting implementation of a closed loop tracking system that dynamically follows changes in the direction of the signal.
Unfortunately, these angle-tracking techniques depend upon initial antenna pointing (prior to initiation of antenna tracking) to align the signal within the main beam angular extent of the antenna. In some cases, however, such alignment is not assured.
One prior method for verifying this alignment involves using a smaller guard antenna together with the larger main antenna that is used for data reception. In practice, the smaller antenna is about 1/10 the diameter of the main antenna to obtain the required gain and pattern characteristics to envelope the sidelobes of the main antenna. The signal levels received by the main antenna and the guard antenna are then compared. If the signal level of the main antenna exceeds the signal level of the guard antenna, the antenna is aligned within the main beam where the main antenna gain is higher than the gain of the guard antenna. If the signal level of the main antenna is comparable or less than the signal level of the guard antenna, then the signal is aligned with sidelobes of the main antenna.
In addition to requiring a second antenna, another short-fall of this technique is that the boresight of the guard antenna needs to be maintained coincident with the main antenna. Moreover, the smaller guard antenna needs to be mechanically isolated from the main antenna to avoid deforming the main antenna and its patterns, and the mechanical balance of the assembly needs to be maintained. When the received signal level fluctuates, as commonly occurs with multipath at low elevation angles, the guard antenna requires a second tracking receiver so that the signal levels in the guard and main antennas can be simultaneously measured. Aside from the expense of an additional tracking receiver, the two receivers need to be reliably calibrated so that the same received power level results in the same indicated signal levels. This calibration is needed so that the signal level comparison can be used to reliably verify main beam alignment. Additionally, for large antennas that require a protective radome to avoid pointing errors caused by wind loading, a larger radome that envelops both the main and guard antennas is significantly more expensive than a radome for the main antenna alone.
Thus, it would be useful to be able to provide a main beam alignment verification alternative to the prior approaches. It would also be desirable to be able to provide a cost effective method for verifying the main beam alignment of received signals. It would also be useful to be able to provide a mechanism for verifying main beam alignment without imposing additional hardware capabilities, i.e., using existing antenna hardware.
Various methods for verifying main beam alignment according to the present invention generally involve measuring the width of the lobe containing the received signal. As shown in
As discussed below, various embodiments can be implemented with existing antenna hardware operated in conjunction with appropriate software controls and received power measurements. Furthermore, the methods described herein do not require a guard antenna and, therefore, do not require the additional aperture needed for the guard antenna or an additional tracking receiver to measure the signal levels received by the guard antenna.
Referring to
The example open loop antenna tracking system 500 includes an antenna 502, a positioner 504, a data receiver 506 and an antenna control system 508, configured as shown. The antenna control system 508 is provided with a received signal power input from the data receiver 506. In this example embodiment, satellite ephemeris and antenna data inputs are also provided to the antenna control system 508.
In operation, after the data receiver 506 acquires the signal, a signal level measurement is made. A typical received signal level indication is the automatic gain control (AGC) voltage of the receiver. The antenna 502 is then offset in equal angular increments in opposite directions and the received power levels at each offset position are measured using a step track procedure, for example. In this example embodiment, the measured power levels are used for an additional purpose. The three measured power levels, at the initial acquisition point and the two angularly displaced positions, are then compared to the a priori known main beam shape and the sidelobe shape of the antenna 502. The a priori antenna data and the measured power levels are processed by the antenna control system 508 which includes, for example, a main beam search algorithm in firmware and step track decision logic for sidelobe determination. Because the angular width of the sidelobes is less than that of the main beam, the power level changes at the angular offset positions are more drastic than those at the main beam. By this comparison of the three power levels with the a priori antenna pattern data, decisions are made as to main beam alignment or sidelobe alignment. In this example embodiment, the process is then repeated in an orthogonal direction.
In an example embodiment, open loop commanding techniques are used to find the main beam. By using an open loop command to the next sidelobe peak and/or the main antenna beam, there may be sufficient received signal power to maintain receiver acquisition, and therefore it will not be necessary to move the antenna and try to reacquire the receiver. If the tracking receiver has not acquired, a two-dimensional raster scan (e.g., in azimuth and elevation) can be used. In such a case, once the tracking receiver has acquired, the open loop commanding for antenna repositioning can be used.
Other information can be used in the above search process. For example, in some cases, an estimate of the nominal signal level may be available. Also by way of example, when an acquisition at low elevation angles is being performed, the search for the main beam can exclude those antenna positions where the main beam would be positioned below the horizon.
Signal level fluctuations can have an impact on open loop antenna tracking techniques. Multipath is a common cause of such fluctuations that occurs at low elevation angles. For step track, the fluctuations can be reduced by dwelling at each angular position for a sufficient amount of time to average the power measurements. Averaging at low elevation angles may have limited effectiveness in cases where the multipath has a strong specular component. Averaging, particularly in the elevation coordinate, is less effective since the average of the direct signal and the multipath component has a non-zero mean value. It is generally more effective to average in the azimuth coordinate. An alternative approach is to wait until the satellite has increased in its elevation angle and the spatial filtering of the pattern of the receive antenna reduces multipath. When the satellite is higher above the horizon, a further search for the main beam can be conducted at the anticipated position of the satellite at that time. The main beam acquisition verification method described above can be used for open loop tracking designs using step track techniques or with closed loop monopulse-based tracking designs.
In an example embodiment, a method for main beam alignment verification includes providing data including main beam and sidelobe angular widths for an antenna, measuring power levels of a signal acquired by the antenna at multiple antenna positions, and comparing the measured power levels with the data to determine whether a direction of the signal is incident upon a main beam of the antenna.
In another example embodiment, a method for main beam alignment verification includes providing data pertaining to one or more patterns associated with an antenna, measuring power levels of a signal acquired by the antenna, and comparing the measured power levels with the data to determine whether a direction of the signal is incident upon a main beam of the antenna.
Various methods for verifying main beam alignment according to the present invention involve examining monopulse error response. Referring to
In an example embodiment, a determination is made as to whether a measured monopulse output is consistent with the main beam. By way of example, the monopulse error response is determined a priori by measurements and/or analyses of the tracking system for the antenna. In an example embodiment, the monopulse error response is determined over the linear error response of the main lobe (which for practical antenna designs is typically somewhat less than the width of the main beam as shown in
In an example main beam alignment method, a determination is made as to whether indicated tracking error behavior corresponds to variations that result in the main beam of the antenna.
As discussed above, open loop pointing techniques can be used to realign the antenna with the main beam. The monopulse error response can also be used to realign the antenna to its main beam of the data pattern. As with the open loop tracking technique, measurement and/or analyses can be used to determine the monopulse error response and knowledge of this response can be used in open loop commanding to determine the realignment. Linear regions of the monopulse error response also coincide with the sidelobe peaks, and open loop commanding can be used to reposition the antenna to realign the antenna. Open loop commanding can be used in conjunction with determining whether an error slope corresponds to a value within the main beam or within the sidelobes. If the system has a closed loop monopulse-based tracking system, a combination of the approaches described herein can be used to obtain a further assurance of main beam acquisition.
In an example embodiment, a method for main beam alignment verification includes providing data including monopulse error responses for a main beam region and sidelobe regions of an antenna, measuring power levels of a signal acquired by the antenna at multiple antenna positions, and comparing the measured power levels with the data to determine whether a direction of the signal is incident upon a main beam of the antenna.
Although the present invention has been described in terms of the example embodiments above, numerous modifications and/or additions to the above-described embodiments would be readily apparent to one skilled in the art. It is intended that the scope of the present invention extend to all such modifications and/or additions.
Number | Name | Date | Kind |
---|---|---|---|
3164835 | Alsberg | Jan 1965 | A |
3646558 | Campanella | Feb 1972 | A |
3763465 | Tatge et al. | Oct 1973 | A |
3997901 | Cayzac | Dec 1976 | A |
4083048 | DeRosa et al. | Apr 1978 | A |
4170011 | Birkemeier et al. | Oct 1979 | A |
4347514 | Birkemeier | Aug 1982 | A |
4348676 | Tom | Sep 1982 | A |
4696053 | Mastriani et al. | Sep 1987 | A |
4709238 | Green | Nov 1987 | A |
4823134 | James et al. | Apr 1989 | A |
4888592 | Paik et al. | Dec 1989 | A |
4963890 | Perrotta et al. | Oct 1990 | A |
4970521 | Lee | Nov 1990 | A |
5017929 | Tsuda | May 1991 | A |
5313215 | Walker et al. | May 1994 | A |
5341147 | Scott | Aug 1994 | A |
5457464 | Scott et al. | Oct 1995 | A |
5515058 | Chaney et al. | May 1996 | A |
5797083 | Anderson | Aug 1998 | A |
5912642 | Coffin et al. | Jun 1999 | A |
5923288 | Pedlow, Jr. | Jul 1999 | A |
5929809 | Erlick et al. | Jul 1999 | A |
5940028 | Iwamura | Aug 1999 | A |
5964822 | Alland et al. | Oct 1999 | A |
6087985 | Rummeli et al. | Jul 2000 | A |
6087995 | Grace et al. | Jul 2000 | A |
6320541 | Pozgay et al. | Nov 2001 | B1 |
6335705 | Grace et al. | Jan 2002 | B1 |
6380908 | Andrews et al. | Apr 2002 | B1 |
6417803 | de La Chapelle et al. | Jul 2002 | B1 |
6445343 | Pietrusiak | Sep 2002 | B1 |
6556166 | Searcy et al. | Apr 2003 | B1 |
6580391 | Kepley et al. | Jun 2003 | B1 |
6608590 | Naym et al. | Aug 2003 | B1 |
6611236 | Nilsson | Aug 2003 | B1 |
6611696 | Chedester et al. | Aug 2003 | B2 |
6646598 | Timothy et al. | Nov 2003 | B1 |
6661373 | Holliday | Dec 2003 | B1 |
6690917 | Soliman et al. | Feb 2004 | B2 |
6714156 | Ibrahim et al. | Mar 2004 | B1 |
20030210176 | Hager et al. | Nov 2003 | A1 |
20040046695 | Brothers et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 10875025 | Jun 2004 | US |
Child | 11896133 | US |