Maintaining an exhalation valve sensor assembly

Information

  • Patent Grant
  • 9950135
  • Patent Number
    9,950,135
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
The disclosure describes an exhalation valve sensor assembly. The disclosure describes a novel exhalation valve sensor assembly that is configured for refurbishing. Accordingly, the disclosure further describes systems and methods for maintaining an exhalation valve assembly and describes a kit for refurbishing an exhalation valve sensor assembly.
Description
INTRODUCTION

Medical ventilators are designed to control the delivery of respiratory gas to a patient to supplement the patient's breathing efforts or to cause the inflation and deflation of a non-breathing patient's lung. Ventilators are often used in conjunction with a dual-limb patient circuit that conveys respiratory gas to a patient through a first tube referred to as the inspiratory limb and return exhaled gas from the patient through a second tube referred to as the expiratory limb.


In order to accurately control the delivery of respiratory gas, pressure in the patient circuit may be controlled so that gas is released during an exhalation phase and, typically but not always, flow is completely blocked during an inhalation phase. However, the ventilator circuit, particularly the expiratory limb that handles the patient's exhaled gas, presents a challenging environment. Challenges include controlling pressure and flow rate in the expiratory limb, monitoring the pressure and flow rate of the system, and capturing potentially contagious material that may be exhaled by the patient.


Maintaining an Exhalation Valve Sensor Assembly

The disclosure describes an exhalation valve sensor assembly. The disclosure describes a novel exhalation valve sensor assembly that is configured for refurbishing. Accordingly, the disclosure further describes systems and methods for maintaining an exhalation valve assembly, and the disclosure describes a kit for refurbishing an exhalation valve sensor assembly.


In an embodiment of an exhalation valve sensor assembly, an exhalation valve sensor assembly includes an assembly base. The assembly based includes a bottom-side of the assembly base, a top-side of the assembly base, and a passageway. The passageway extends through the bottom-side of the assembly base to the top-side of the assembly base. Additionally, a filter opening is on the top-side of the assembly base. A cylindrical well extends from the top-side of the assembly base, and the base of the cylindrical well encircles a portion of an opening of the passageway. An exhalation exhaust is attached to the cylindrical well. A is sensor coupled to at least one of the group selected from the passageway, the filter opening, and the exhalation exhaust. Additionally, the valve sensor assembly includes a recessed portion of the bottom side of the assembly base. The recessed portion includes an annular seat. A circular diaphragm is located within the cylindrical well, and an expiratory filter seal is located within the annular seat. Furthermore, a pressure sensor filter is attached to a filter grommet, and the filter grommet is operatively coupled to the filter opening.


In embodiments of a reprocessing kit, a kit includes a circular diaphragm configured for placement in a cylindrical well of an exhalation valve sensor body. The kit also includes, a seal bead extending from an outer edge of the circular diaphragm. The seal bead is configured to nest within an outer annular groove of the cylindrical well. The circular diaphragm includes an interior cylindrical nipple that extends in a same direction as the seal bead with a valve seat surface for engaging a valve seat of the exhalation valve sensor body. The kit also includes a ring-shaped filter seal with a flat surface. The ring-shaped seal is configured for placement into an annular seat of a recessed portion of the exhalation valve sensor body. The flat surface faces outward away from the annular seat of the exhalation valve sensor body. The kit includes a pressure sensor filter including a disk shaped body having an assembly base side and opposite exterior side with an assembly base nozzle extending from the assembly base side and an exterior side nozzle extending from the exterior side. The assembly base nozzle has a larger diameter than the exterior side nozzle. The assembly base nozzle is configured to attach to a filter grommet of the exhalation valve sensor body via rotation of the pressure sensor filter until the exhalation valve sensor body is flush with the disk shaped body.


Additionally, an embodiment of a method maintaining an exhalation valve sensor assembly includes. Disassembling an installed exhalation valve sensor assembly to form a disassembled exhalation valve sensor assembly. The disassembly includes removing an installed diaphragm from a well of the used exhalation valve sensor assembly. The disassembly includes removing an installed exhalation valve filter seal from an annular seat of a recessed portion of the used exhalation valve sensor assembly. The disassembly includes removing an installed pressure sensor filter from the used exhalation valve sensor assembly. The method includes disinfecting the disassembled exhalation valve sensor assembly to form a disinfected exhalation valve sensor assembly. The disinfecting includes pre-soaking the disassembled exhalation valve sensor assembly in an enzymatic solution to form a pre-soaked exhalation valve sensor assembly. The disinfecting includes rinsing the pre-soaked exhalation valve sensor assembly to form a rinsed exhalation valve sensor assembly. The disinfecting includes disinfecting the rinsed exhalation valve sensor assembly in a disinfectant solution to form a sanitized exhalation valve sensor assembly. The disinfecting includes rinsing the sanitized exhalation valve sensor assembly. The disinfecting includes immersing the sanitized exhalation valve sensor assembly in a drying agent. The method includes drying the disinfected exhalation valve sensor assembly. The method includes after the drying step, reassembling the disinfected exhalation valve sensor assembly. The reassembling includes inserting an uncontaminated pressure sensor filter into the disinfected exhalation valve sensor assembly. The reassembling includes inserting an uncontaminated exhalation valve filter seal into the annular seat of the recessed portion. The reassembling includes inserting an uncontaminated exhalation valve diaphragm into the well.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of an exploded view of an exhalation valve sensor assembly.



FIG. 2 illustrates an embodiment of a top view of an exhalation valve sensor body.



FIG. 3 illustrates an embodiment of a bottom view of an exhalation valve sensor body.



FIG. 4 illustrates an embodiment of a kit.



FIG. 5 illustrates an embodiment of a kit.



FIG. 6 illustrates an embodiment of a kit.



FIG. 7 illustrates an embodiment of an exploded view of a kit.



FIG. 8 illustrates a method of refurbishing an exhalation valve sensor assembly.



FIG. 9 illustrates a method of disassembling a used exhalation valve sensor assembly to form a disassembled valve sensor assembly.



FIG. 10 illustrates a method of disinfecting a disassembled exhalation valve sensor assembly to form a disinfected exhalation valve sensor assembly.



FIG. 11 illustrates a method of reassembling a disinfected exhalation valve sensor assembly.



FIG. 12 illustrates an exploded view of an embodiment of a package for holding multiple kits.





DETAILED DESCRIPTION

Although the kits, apparatuses, systems, and methods discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss these apparatuses, systems, and methods in the context of a medical ventilator for use in providing ventilation support to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients. Additionally, the technology may be used in conjunction with a general gas transport system where there is a desire to direct, monitor, and/or control the effluent flow of gas from the system.


An exhalation valve sensor assembly monitors the pressure, temperature, and/or flow of exhalation gases. However, the exhalation valve sensor assembly is directly exposed exhaled gases of a patient. The exhaled gas contains water vapor or humidity which may clog the flow paths within the exhalation valve sensor assembly. Further, the exhalation gas may contain contagious materials depending upon the patient that could contaminate the exhalation flow sensor assembly. Accordingly, there is a desire to perform maintenance on one or more elements of an exhalation valve sensor assembly.


Accordingly, this disclosure describes embodiments of exhalation valve sensor assembly that is configured to be refurbished. Additionally, the disclosure describes systems and methods for maintaining the exhalation valve sensor assembly. Further, this disclosure describes kits that include replaceable parts that aid in the maintenance of the exhalation valve sensor assembly. The refurbishable exhalation valve sensor assembly, the maintaining systems and methods, and/or the kits prevent contamination between patients. Further, the refurbishable exhalation valve sensor assembly, the maintaining systems and methods, and/or the kits may extend the life of the exhalation valve sensor assembly when compared to exhalation valve sensor assemblies that are not refurbishable.



FIGS. 1-3 illustrate embodiments of an exhalation valve sensor assembly.



FIG. 1 illustrates an exhalation valve sensor assembly 100 that includes an assembly base 102. The assembly base 102 has a bottom-side 104, a top-side 106, and a passageway 108 that extends through the base and provides a flow path from the bottom-side 104 to the top-side 106. The well 112 is attached to and extends from a top-side 106 of an assembly base 102. The well 112 includes an exhalation exhaust 114. A top-side 106 also has a filter opening 110. A bottom-side 104 has a recessed portion. A device having an assembly base 102, a well 112, and an exhalation exhaust 114 may be referred to as an exhalation valve sensor body. Further, an exhalation valve sensor assembly 100 may include a pressure sensor filter 116, a diaphragm 118, and an expiratory filter seal 120.


In embodiments, both the top-side 106 and the bottom-side 104 of the assembly base 102 have substantially flat surfaces. Additionally, either or both the top-side 106 and the bottom-side 104 may have a recessed portion. A recessed portion need not contain further recesses, but the recessed portion may contain further recessed portions. Further, the top-side 106B, which is opposite the bottom-side 104, may be oriented such that the top-side and bottom-side are substantially parallel to each other.


In embodiments, a passageway 108 may allow gas to flow from a bottom-side 104 to a top-side 106. In some embodiments, the passageway 108 has a cylindrical or tubular shape. Additionally, a passageway 108 may be axially oriented perpendicular to the planes of a top-side 106 and a bottom-side 104. Such an embodiment may form a direct bore from the top-side 106 to a bottom-side 104. Additionally, a top-side opening of the passageway 108 may extend beyond a top-side 106. The extension may be substantially cylindrical or tubular in shape. The extension may extend to a height lower than that of a wall of a cylindrical well 112. Further, a passageway 108 may have a design that can engage the surface of a diaphragm. In some embodiments, the passageway 108 houses one or more temperature, pressure and/or flow sensors. In other embodiments, the passageway 108 does not include any sensors.


In embodiments, the top-side opening of the passageway 108 may be encompassed by a well 112. The well 112 may be cylindrical in shape. A cylindrical well 112 has a single wall. In embodiments where a passageway 108 has an opening that extends past a top-side 106, the height of the wall of the cylindrical well 112 may be higher than that of the height of the extended passageway 108. In embodiments, a passageway 108 allows exhaled air to flow into a well 112. Flow of exhaled air continues from well 112 out to exhalation exhaust 114. A well 112 may be attached to a base 102. Alternatively, a single piece of molded plastic may form the top-side 106 and the well 112.


A well 112 may include an exhalation exhaust 114. An exhalation exhaust 114 is any device, shape, or opening that is adapted to allow flow of gas to travel out of a well 112. For example, an exhalation exhaust 114 may extend out away from the well 112. Alternatively, the exhalation exhaust 114 may be a port. An extended exhalation exhaust 114 may have any suitable shape such as tubular, cylindrical, or parallelepiped shape. Additionally, the extended exhalation exhaust 114 may be a combination of any such shapes to form a unique 3-dimensional shape. In embodiments, an extended exhalation exhaust 114 will be adapted to allow gas to flow from the well 112 to the exhalation exhaust 114.


The exhalation exhaust 114 may direct effluent flow of gas, such as exhaled air from a user of a medical ventilator, to an open environment. This directing may be accomplished by angling an extended exhalation exhaust 114 in some direction. This direction may be a direction away from an exhalation valve sensor assembly 100. The open environment may be the environment external to a ventilator, such as the space in a room in which a person using a medical ventilator is located. Alternatively, the exhalation exhaust 114 may be coupled to another device that may further process or filter the exhaled air.


In embodiments, a filter opening 110 may be an opening to a pathway designed to allow air or another fluid to pass to a sensor device, such as flow sensor device. A pathway may be cylindrical in nature, and the filter opening 110 may be circular in shape. A filter opening 110 may be fitted with a grommet. The filter grommet may be adapted to receive a pressure sensor filter 116.


An exhalation valve sensor body including an assembly base 102, a well 112, and an exhalation exhaust 114 may be made from a rigid plastic material. For example, the rigid plastic material may be PVC. Other suitable materials may also be used to make the exhalation exhaust 114.


A pressure sensor filter 116 may filter air or other gasses for use in combination with a flow sensor. The pressure sensor filter 116 may have a disked shaped body. The disk may have two nozzles that protrude axially through the center of the disk. One nozzle may be adapted for insertion into the filter opening 110 located on the top-side 106 of the assembly base 102. In embodiments, this nozzle is known as the assembly base nozzle. The opposite side nozzle may extend outward away from the assembly base 102. In embodiments, this nozzle is known as an exterior side nozzle. Additionally, in embodiments, the side of the disk shaped body from which the assembly base nozzle extends from is known as the assembly base side. The side opposite the assembly base side from which the exterior side nozzle extends from the disk shaped body is known as the exterior base side.


The pressure sensor filter 116 may be designed to operatively couple to a filter opening 110. Operative coupling may be accomplished through the use of a filter grommet. For example, a filter grommet may contain threads that correspond to threads located on an assembly base nozzle of a pressure sensor filter 116. In embodiments, inserting and twisting a pressure sensor filter 116 into a filter opening 110 containing a threaded filter grommet may screw the pressure sensor filter 116 into the filter opening 110. Other mechanism such as a catch may also be used. Embodiments of a pressure sensor filter are described further with reference to FIG. 4.


A diaphragm 118 may be used in an exhalation valve sensor assembly 100. In embodiments, a diaphragm 118 may be circular and may have a seal bead that extends from an outer edge. A circular diaphragm 118 may additionally have a cylindrical nipple that extends outward from the center of the circular diaphragm 118. A cylindrical nipple may have a flat side that is adapted to sit on a valve seat of a passageway 108. Embodiments of a diaphragm are described further with reference to FIG. 5.


The exhalation valve sensor assembly 100 may include an expiratory filter seal 120. The expiratory filter seal 120 may be ring shaped. Additionally, a ring-shaped expiratory filter seal 120 may have a flat surface and an opposite surface. An expiratory filter seal 120 may fit in a seat of a recessed portion of a bottom side 104 of an assembly base. The flat surface of a expiratory filter seal 120 may face away from a valve sensor body. Embodiments of a filter seal are described further with reference to FIG. 6.


With reference to FIG. 2, FIG. 2 illustrates a top view of an exhalation valve sensor body 200. In embodiments, an exhalation valve sensor body 200 may include a passageway 108, a filter opening 110, a well 112, an exhalation exhaust 114, and a sensor 222.


In embodiments, devices such as a diaphragm or a one way valve may be used to intermittently block a passageway 108. The blockage may correspond to an inhalation phase of a medical ventilator. For example, during inspiration, the passageway 108 may be blocked to prevent gas from flowing from the well 112 into the passageway 108. During exhalation, the blockage created by the diaphragm may be moved to allow airflow from the passageway 108 to an exhalation exhaust 114.


In embodiments, intermittently blocking an air pathway from a passageway 108 is accomplished by use of a diaphragm. For example, the passageway 108 has a valve seat 226 that can engage a diaphragm. In an embodiment, the diaphragm is circular, and the diaphragm has an interior cylindrical nipple. The cylindrical nipple may have a flat surface. In an embodiment, the flat surface of the cylindrical nipple is such that that when the flat surface is flush with a valve seat 226, an airtight or substantially airtight seal is formed. When a diaphragm is in a resting state and inserted into a well 112, air cannot flow from the passageway 108 into the well 112. The force of air traveling from a passageway 108 may be sufficient to cause the cylindrical nipple to separate from the valve seat 226. This separation may allow air to flow from the passageway 108 to the well 112.


In embodiments a sensor 222 may be affixed to areas of an exhalation valve sensor body 200. For example, the sensor may be affixed to an inner wall of the passageway 208. A sensor 222 may be a hot wire anemometer flow meter. There may be a desire to use a hot-wire anemometers sensor 222 because of its small size. Hot wire anemometer-based sensors are known in the art, and such sensors measure flow based on the cooling of a heated wire, or based on the current required to maintain a wire at a fixed temperature when the wire is exposed to the flow of gas. Although a hot wire anemometer-based sensor is described, any suitable sensor now known or later developed may be used.


For example, a sensor 222 may be a differential pressure meter. A sensor 222 in the form of a differential pressure meter includes a pressure sensor connected to two pressure taps providing access to different points in a flow path. The flow path may be a pathway through the passageway 108, into the well 112, and out through the exhalation exhaust 114. A filter opening 110 may provide access to atmospheric pressure for a flow sensor 222. A pressure sensor filter may filter air or other gases to service a flow sensor 222. As is known in the art, flow can be determined by measuring the differential pressure across a known flow restriction under known conditions of temperature and gas characteristics. In embodiments, one or more sensors 222 may be used in combination with other sensors 222, and each sensor 222 used may be of a different type than other sensors 222. The sensor 222 may be placed in a number of locations about an exhalation valve sensor body 200. For example, sensors 222 may be placed in a filter opening, an exhalation exhaust, a passageway, and/or a well.


A well 112 includes at least one wall 220, and the well 112 may have a seal bead lip 228. In embodiments, a well 112 has a cylindrical wall 220. A cylindrical well 112 may be configured to receive a circular diaphragm. For example, an annular grove 230 may be formed by a portion of a wall 220 attached to a seal bead lip 228. The annular groove 230 may be configured to allow a seal bead from a circular diaphragm to be removable inserted into an annular grove 230.


In other embodiments, the edge of the well 112 may have one or more retainers such as lips, grooves, or ridges so that a diaphragm may be removably attached. When attached to the cylindrical well 112, a circular diaphragm may form a substantially airtight seal so gas may only flow from a passageway 108 to exhalation exhaust 114.


With respect to FIG. 3, FIG. 3 represents a bottom view of an exhalation valve sensor body 300. In embodiments, an exhalation valve sensor body 300 has a passageway 108, a filter opening 110, an exhalation exhaust 114, a recessed portion 332, and an annular seat 336.


In embodiments, an annular seat 336 may be present. The annular seat 336 may be configured to receive an expiratory filter seal. Such a seal may form a substantially airtight seal with an attached device, such as a filter trap module of a medical ventilator. This substantially airtight seal may allow air to flow from an attached device through a passageway 108 to out to an exhalation exhaust 114.



FIGS. 4, 5, 6 and 7 are illustrations of embodiments of a kit. Kits contain one or more replaceable parts of an exhalation valve sensor assembly. Kits may additionally contain instructions.


With reference to FIG. 4, FIG. 4 represents an embodiment of kit containing a pressure sensor filter 400. A pressure sensor filter 400 is an embodiment of a kit for replacing an installed pressure filter in an exhalation valve sensor assembly. As shown, the pressure sensor filter 400 may have a disk shaped body 402. The disk shaped body 402 has an exterior side 404 and an assembly base side 406. In embodiments, an exterior side nozzle 408 protrudes from the exterior side 404 of the disk shaped body. Additionally, an assembly base nozzle 410 protrudes from an assembly base side 406. As illustrated in FIG. 4, the assembly base nozzle 410 and the exterior side nozzle 408 have a cylindrical shape. The diameter of the opening of the assembly base nozzle 410 may be greater than that of the diameter of the opening of the exterior side nozzle 408. A passageway exists such that air can flow through an exterior side nozzle 408, into the disk shaped body 402, and through an assembly base nozzle 410. A pressure sensor filter 400 may employ a variety of filtering techniques and filter media. A pressure sensor filter 400 may be used to replace an installed pressure sensor filter during the refurbishing an exhalation valve sensor assembly.


Turning now to FIG. 5, FIG. 5 illustrates an embodiment of a kit containing a diaphragm 500. As shown, diaphragm 500 is a circular diaphragm 500. A diaphragm 500 is an embodiment of a kit for replacing an installed diaphragm of an exhalation valve sensor assembly. The diaphragm 500 has a flexible protrusion that extends outward from the center of a circular diaphragm 500. This protrusion is known as cylindrical nipple 502. In embodiments, the cylindrical nipple 502 may have a flat surface 504 that is adapted to fit a valve seat of a passageway. Additionally, the diaphragm 500 has a seal bead 506 adapted to fit or nest within an annular grove of an exhalation valve body assembly. Further, a diaphragm may have a ring-shaped seal mounting hump 508. The diaphragm 500 is used to replace an inserted diaphragm during the refurbishing of an exhalation valve sensor assembly.


In embodiments, a kit may contain a diaphragm and an expiratory filter seal. In these embodiments, the diaphragm and the expiratory filter seal may be contained in a single package. In some embodiments, when a kit containing a diaphragm and the expiratory filter seal may utilize a ring-shaped seal mounting hump 508 to removably couple to a ring-shaped expiratory filter seal 600 to a diaphragm 500 in order to reduce packaging space. Such a coupling may be a loose coupling. For example, a ring-shaped seal 602 may be placed on a ring-shaped seal mounting hump 508. Doing so may reduce the amount of movement a ring-shaped seal 600 may experience in relationship to the diaphragm 500 when packaged during, for example, transport of a ring-shape seal 602. The ring-shaped seal may be similar or the same as the embodiment illustrated in FIG. 6.


In other embodiments, a kit may contain a diaphragm and a pressure sensor filter contained in one package. In other embodiments, the kit may contain a diaphragm, a pressure sensor filter, and an expiratory filter seal. Indeed, a kit may contain a combination of one or more types of reusable parts. Additionally, each there may be multiple reusable parts of a single type in a kit. The cylindrical nipple 502 may be configured such that one side of a pressure sensor filter nests in the cylindrical nipple 502 when packaged. The nesting may allow for a condensed packaging arrangement. For example a pressure sensor filter 400 may have an exterior side nozzle 408 that nests within the cylindrical nipple 502. Additionally, a pressure sensor filter 400 may have an assembly base nozzle 410 that nests within the cylindrical nipple 502.


In embodiments, diaphragm 500 is constructed from a unitary construction of molded, flexible material such as silicon rubber. The material may be one that resists wear and degradation. Other materials may be used such as VITON rubber, elastomers or other suitable materials.


With respect to FIG. 6, FIG. 6 shows an embodiment of a kit containing an expiratory filter seal 600. The expiratory filter seal 600 is used to replace an installed expiratory filter seal of an exhalation valve sensor assembly. This expiratory filter seal 600 may be a ring-shaped expiratory filter seal as illustrated. A ring-shaped filter seal may have a flat-side 602 specifically adapted to interface with another device within a ventilator system. For example, the ring-shaped filter seal may form a substantially air-tight seal with another device in a ventilator system. In some embodiments, the other device is a filter-trap module. A ring-shaped expiratory filter seal 600 is placed in an annular seat of a recessed portion of a valve sensor body. This may cause a substantially air-tight seal or air-tight seal to form when an exhalation valve sensor assembly is inserted into a ventilator system. Expiratory filter seal 600 may be made of the same or similar material as those materials described above with respect to diaphragm 500.


Turning now to FIG. 7, FIG. 7 illustrates an embodiment of a kit 700. A kit 700 includes a container 702, an expiratory filter seal 704, a pressure sensor filter 706, and diaphragm 708.


As illustrated, container 702 has a lid and a bottom. In some embodiments, the bottom and the lid are pivotally connected to each other. In further embodiments, container 702 is made of a rigid plastic material. For example, the container 702 may be made of PVC. Additionally other suitable materials may be used to for the container. For example, materials for preventing contamination of the kit pieces may be used, such as rubber, flexible plastics, cardboard or other materials may be used.


Other container 702 configurations may be available. For example, a container 702 may be a flexible plastic. This flexible plastic container 702 may be designed for a single use. Opening the container may involve tearing open the single use container 702 along a pre-scored edge.


The bottom portion of a container 702 may be designed to receive one or more reusable parts. For example, certain containers 702 have bottom portions, and these bottom portions have an inner well 710. An inner well 710 may be cylindrical in shape. The inner well 710 may be configured to receive an element of a reusable part. For example, a pressure sensor filter 706 may have one or more nozzles that may fit snuggly or nest into the inner well 710 of a container 702.


Inner well 710 may have an outer circular wall that is sized to receive an expiratory filter seal 704. For example, a ring-shaped expiratory filter seal 704 may have an inner-hole diameter such that the circular expiratory filter seal fits snugly around a wall of a cylindrical inner well 710. Thus the raised wall may prevent the filter seal from moving freely about the packaging shell and/or reduce packaging space and materials.


In embodiments, the raised wall of a cylindrical inner well 710 may be such that a raised wall of the cylindrical inner well 710 is configured to secure a diaphragm 708. In embodiments, a raised wall may be such that the raised wall extends into a hollow inner nipple of a diaphragm 708. This may substantially prevent the diaphragm from moving about a package. In an embodiment, the flexible nature of the diaphragm 708 may be used to provide a restraining force on the other components when installed in the container so that none of the components can move when installed in the container 702. This force may or may not require the diaphragm 708 to be stored in a deformed shape, depending on the implementation of the packaging.


It may be desirous for a container 702 to be substantially sterile. This may be achieved by manufacturing the packaging in a sterile environment. Other embodiments may cause a container 702 to become sterile, before or after installing the diaphragm 708, filter seal 704, and sensor filter 706, by any suitable means known in the art such as heat or chemical sterilization agents.


Instructions may be provided with the reusable parts in a package scheme. For example, instructions 712 may be included in container 702. In an alternative embodiment, the instructions may be attached to the container 702 or provided with the container 702, such as in the packaging as shown in FIG. 12, below. These instructions may, for example, detail a method to refurbish an exhalation valve sensor assembly. This method may be similar to the method described below with reference to FIG. 8.



FIG. 12 illustrates an embodiment of a package for holding multiple kits. Kit packing scheme 900 may contain a container 902, a kit 904, and a kit connector 906.


Container 902 may be a box that can re-sealably open, such as the one illustrated in FIG. 12. A re-sealable container 902 may be a box with a lid that can reattach and/or reclose after being opened. Alternatively, the container may not be re-sealable and/or reclosable once opened. In some embodiments, a container 902 is a flexible plastic pack.


In embodiments, kit 904 may be a circular diaphragm, an expiratory filter seal, or a pressure sensor filter. In other embodiments, a kit 904 may contain one or more of the following: a circular diaphragm, an expiratory filter seal, and a pressure sensor filter. For example, the kit 904 may a kit as described with reference to FIG. 7. In a single reusable part kit packing scheme 900, a kit is made up of only one reusable part. For example, a single reusable part kit packing scheme 900 may contain one or more circular diaphragms, but may not contain a circular diaphragm and an expiratory filter seal. However, other embodiments of packing schemes include containers that contain kits, where the kits are made up of multiple reusable parts.


A kit 904 may be affixed to another kit 904 in a packing scheme 900. This may be accomplished by the use of a kit connector 906. Kit connector 906 may be a rigid plastic affixed to a kit 904. In other embodiments, multiple containers, such as multiple containers 702 are created from a single mold. These


Turning now to FIG. 8, FIG. 8 provides a method 800 of refurbishing an exhalation valve sensor assembly. A patient may contaminate an exhalation valve sensor assembly. For example, expiratory gas contains humidity and biological debris. This may adhere to various parts and passageways of an exhalation valve sensor assembly. Method 800 provides a way to disinfect, clean, and/or extend the usable life of the non-disposable parts of a valve sensor assembly. Refurbishing method 800, however, need not be in response to patient use. In some embodiments method 800 is performed where the fidelity of an exhalation valve sensor assembly is questionable.


In an embodiment, refurbish method 800 begins by removing of an installed exhalation valve sensor assembly operation 802. In remove operation 802 an installed exhalation valve assembly is removed from a ventilation system. In embodiments, there may be a necessity to access an exhalation valve sensor assembly. Access may be obtained by opening a door.


Removal operation 802 may then proceed by inserting a thumb into a installed exhalation exhaust and placing four fingers into a recessed portion of the installed exhalation sensor valve assembly. Care may be taken to not place fingers into a passageway. This may ensure that any flow sensors within a passageway are not damaged.


Refurbish method 800 includes a disassemble operation 804. The disassemble operation 804 disassembles an installed exhalation valve sensor assembly to form a disassembled exhalation valve sensor assembly. As illustrated in FIG. 9, disassemble operation 804 includes a diaphragm removal operation 804A, a seal removal operation 804B, and a filter removal operation 804C. During operation 804A, an installed diaphragm is removed from a well of the used exhalation valve sensor assembly operation 804A. In some embodiments operation 804A includes lifting the installed diaphragm out of a well. Force may be needed to lift the installed diaphragm where an installed diaphragm has a seal bead inserted into an annular grove of a well of an exhalation valve sensor assembly.


During operation 804B, an installed exhalation valve filter seal is removed from an annular seat of the used exhalation valve sensor assembly. In embodiments, operation 804B includes removing an installed expiratory valve filter seal from a recessed portion of the used exhalation valve sensor assembly. This removal may be accomplished by pinching the installed expiratory filter seal between two fingers and lifting the expiratory filter seal out of an annular seat of a recessed portion of an exhalation valve sensor assembly.


During operation 804C, an installed pressure sensor filter is removed from a used exhalation valve sensor assembly. In embodiments, operation 804C includes removing the installed pressure sensor filter, which may be located in a filter grommet that is attached to a filter opening of a used exhalation valve sensor assembly. Accordingly, in this embodiment, the installed pressure sensor is removed by using a twisting motion during operation 804C. In other embodiments, the installed pressure sensor filter is removed by lifting the pressure sensor filter out of a filter opening during operation 804C.


Removal of the disposable parts including an installed diaphragm, an installed valve filter seal, and an installed pressure filter need not occur in any particular order during disassemble operation 804. The term “installed” refers to a disposable part (such as a diaphragm, a pressure sensor filter, and an exhalation valve filter seal) that was installed in an exhalation valve sensor assembly. The exhalation valve sensor assembly containing the installed disposable part may or may not have been used in a medical ventilation device. The medical ventilator containing the installed disposable part may or may not have been used in the treatment of a patient. In some embodiments, the installed disposable part may be contaminated. The removal of the disposable parts creates a disassembled exhalation valve sensor assembly.


The disposable parts may contain bio-contaminated waste. When bio-contamination is present, it is important to dispose of the disposable parts according to local governing ordinances regarding the disposal of potentially bio-contaminated waste.


Refurbish method 800 then proceeds to disinfect operation 806. Disinfect operation 806 includes pre-soaking the disassembled exhalation valve sensor assembly in an enzymatic solution to form a pre-soaked exhalation valve sensor assembly operation 806A, rinsing the pre-soaked exhalation valve sensor assembly to form a rinsed exhalation valve sensor assembly operation 806B, disinfecting the rinsed exhalation valve sensor assembly in a disinfectant solution to form a sanitized exhalation valve sensor assembly operation 806C, rinsing the sanitized exhalation valve sensor assembly operation 806D, and immersing the sanitized exhalation valve sensor assembly in a drying agent operation 806E. Completion of these steps forms a disinfected exhalation valve sensor assembly. Disinfect valve sensor operation is illustrated in FIG. 10.


In embodiments, disinfect operation 806 includes pre-soaking a disassembled exhalation valve sensor assembly in an enzymatic solution operation 806A. Pre-soaking the disassembled exhalation valve sensor assembly may break down any bio-film that may be present. Presoaking a disassembled exhalation valve sensor assembly operation 806A creates a pre-soaked exhalation sensor valve assembly.


In embodiments, disinfect operation 806 includes rinsing a disassembled exhalation valve sensor assembly operation 806B. The rinsing agent may be deionized water or other suitable rinsing agent. Rinsing operation 806B forms a rinsed exhalation valve sensor assembly.


In embodiments, disinfect operation 806 includes disinfecting a disassembled exhalation valve sensor assembly by immersion in a disinfectant solution operation 806C. Disinfecting operation 806C may include preparing a suitable disinfectant.


In embodiments, disinfecting by immersion operation 806C of a rinsed exhalation valve sensor assembly may include orienting the rinsed exhalation valve sensor assembly such that the exhalation exhaust is pointed toward the surface of the disinfectant. Next, one then immerses the disassembled exhalation valve sensor in the disinfectant. While immersed, one then rotates the rinsed exhalation valve sensor until all trapped air contained within the rinsed exhalation valve is removed. The immersion operation 806C forms a sanitized exhalation valve sensor assembly.


The next step in disinfect operation 806 is rinsing a sanitized exhalation valve sensor assembly 806D. This may help to remove any excess disinfectant. The rinsing agent may be deionized water or other suitable rinsing agent. In some embodiments of the method 800, there is a necessity to perform this rinsing several times, including three times.


The next step in disinfect operation 806 is immersing the sanitized exhalation valve sensor assembly in a drying agent operation 806E. Operation 806E the drying agent may be isopropyl alcohol or other suitable agent. One may immerse the sanitized exhalation valve sensor for approximately 15 seconds. Slowly swishing and rotating the sanitized exhalation valve sensor assembly may remove air from air pockets. After this step, the sanitized exhalation valve sensor assembly may be referred to as a disinfected valve sensor assembly. After a disinfect operation 806 various parts of the disinfected valve sensor assembly may be described as disinfected. For example, after a disinfect operation 806, the disinfected valve sensor assembly includes a disinfected well, a disinfected filter opening, and a disinfected annular seat.


Refurbish method 800 then proceeds to a drying operation 808. Operation 808 includes drying a disinfected valve sensor assembly. Drying the disinfected valve sensor assembly may proceed in a low temperature warm air cabinet designed for such purposes. It may be desirable to ensure the temperature does not exceed 140 df.


After the drying step, refurbish method 800 may proceed to a reassemble operation 810. Operation 810 includes reassembling a disinfected exhalation valve sensor assembly, which is illustrated in FIG. 11. This includes inserting an uncontaminated pressure sensor filter into a disinfected filter opening of the disinfected exhalation valve sensor assembly 810A, inserting an uncontaminated exhalation valve filter seal into a disinfected annular seat of the disinfected exhalation valve sensor assembly 810B, and inserting an uncontaminated exhalation valve diaphragm into a disinfected well of the disinfected exhalation valve sensor assembly 810C.


It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In other words, functional elements being performed by a single or multiple components and individual functions can be distributed among different components. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described as possible.


While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the disclosed methods. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure.

Claims
  • 1. A reprocessing kit for reprocessing an exhalation valve sensor assembly, the kit comprising: a circular diaphragm configured for placement in a cylindrical well that extends from a top side of a base of the exhalation valve sensor assembly, wherein a seal bead extends from an outer edge of the circular diaphragm and is configured to nest within an outer annular groove of the cylindrical well, and wherein the circular diaphragm includes an interior cylindrical nipple that extends in a same direction as the seal bead with a valve seat surface for engaging a valve seat of the exhalation valve sensor assembly;a ring-shaped filter seal with a flat surface configured for placement into an annular seat of a recessed portion of the exhalation valve sensor assembly, wherein the flat surface faces outward away from the annular seat of the exhalation valve sensor assembly; anda pressure sensor filter including a disk shaped body having an assembly base side and opposite exterior side with an assembly base nozzle extending from the assembly base side and an exterior side nozzle extending from the exterior side, wherein the assembly base nozzle has a larger diameter than the exterior side nozzle, and further wherein the assembly base nozzle is configured to be received by a filter opening on the top side of the base exterior to the cylindrical well and configured to attach to a filter grommet within the exhalation valve sensor assembly via rotation of the pressure sensor filter until the top side of the base exterior to the cylindrical well of the exhalation valve sensor assembly is flush with the disk shaped body;a container holding the circular diaphragm, the ring-shaped filter seal, and the pressure sensor filter,wherein a bottom of the container includes a cylindrical inner well with an outer circular wall,wherein the ring-shaped filter seal fits around the outer circular wall, andwherein the assembly base nozzle fits within the cylindrical inner well.
  • 2. The reprocessing kit of claim 1, wherein the circular diaphragm, the ring-shaped filter seal, and the pressure sensor filter are configured to replace an installed circular diaphragm, an installed ring-shaped filter seal, and an installed pressure sensor filter.
  • 3. The reprocessing kit of claim 1, wherein the container prevents contamination of the circular diaphragm, the ring-shaped filter seal, and the pressure sensor filter.
  • 4. The reprocessing kit of claim 3, wherein the container is a sterile container.
  • 5. The reprocessing kit of claim 4, wherein the container is a rigid container, and further wherein the rigid container includes a lid.
  • 6. The reprocessing kit of claim 1, wherein the interior cylindrical nipple, when the pressure sensor filter is installed in the container with the circular diaphragm and the ring-shaped filter seal, extends from a center of the circular diaphragm, and wherein the exterior side nozzle of the pressure sensor filter nests within the interior cylindrical nipple of the circular diaphragm.
  • 7. The reprocessing kit of claim 1, further comprising instructions on how to perform a method of refurbishing the exhalation valve sensor assembly.
  • 8. The reprocessing kit of claim 7, wherein the instructions detail how to insert the circular diaphragm, the pressure sensor filter, and the ring-shaped filter seal in the exhalation valve sensor assembly.
  • 9. The reprocessing kit of claim 1, wherein the circular diaphragm includes a seal mounting hump.
  • 10. The reprocessing kit of claim 9, wherein the ring-shaped filter seal, when installed in the container with the circular diaphragm and the pressure sensor filter, fits loosely on the seal mounting hump.
  • 11. The reprocessing kit of claim 10, wherein the assembly base nozzle of the pressure sensor filter, when the pressure sensor filter is installed in the container with the circular diaphragm and the ring-shaped filter seal, nests within the interior cylindrical nipple.
  • 12. A reprocessing kit for reprocessing an exhalation valve sensor assembly, the kit comprising: a circular diaphragm configured for placement in a cylindrical well of an exhalation valve sensor assembly, wherein a seal bead extends from an outer edge of the circular diaphragm and is configured to nest within an outer annular groove of the cylindrical well, and wherein the circular diaphragm includes an interior cylindrical nipple that extends in a same direction as the seal bead with a valve seat surface for engaging a valve seat of the exhalation valve sensor assembly;a ring-shaped filter seal with a flat surface configured for placement into an annular seat of a recessed portion of the exhalation valve sensor assembly, wherein the flat surface faces outward away from the annular seat of the exhalation valve sensor assembly;a pressure sensor filter including a disk shaped body having an assembly base side and opposite exterior side with an assembly base nozzle extending from the assembly base side and an exterior side nozzle extending from the exterior side, wherein the assembly base nozzle has a larger diameter than the exterior side nozzle, and further wherein the assembly base nozzle is configured to attach to a filter grommet of the exhalation valve sensor assembly via rotation of the pressure sensor filter until the exhalation valve sensor assembly is flush with the disk shaped body;a container for holding the circular diaphragm, the ring-shaped filter seal, and the pressure sensor filter,wherein the container includes a lid and a bottom,wherein the bottom includes a cylindrical inner well with an outer circular wall,wherein the outer circular wall is configured to allow the ring-shaped filter seal to fit around the outer circular wall, andwherein the cylindrical inner well is configured to allow the assembly base nozzle to fit within the cylindrical inner well.
  • 13. A reprocessing kit for reprocessing an exhalation valve sensor assembly, the kit comprising: a circular diaphragm configured for placement in a cylindrical well of an exhalation valve sensor assembly, wherein a seal bead extends from an outer edge of the circular diaphragm and is configured to nest within an outer annular groove of the cylindrical well, and wherein the circular diaphragm includes an interior cylindrical nipple that extends in a same direction as the seal bead with a valve seat surface for engaging a valve seat of the exhalation valve sensor assembly;a ring-shaped filter seal with a flat surface configured for placement into an annular seat of a recessed portion of the exhalation valve sensor assembly, wherein the flat surface faces outward away from the annular seat of the exhalation valve sensor assembly;a pressure sensor filter including a disk shaped body having an assembly base side and opposite exterior side with an assembly base nozzle extending from the assembly base side and an exterior side nozzle extending from the exterior side, wherein the assembly base nozzle has a larger diameter than the exterior side nozzle, and further wherein the assembly base nozzle is configured to attach to a filter grommet of the exhalation valve sensor assembly via rotation of the pressure sensor filter until the exhalation valve sensor assembly is flush with the disk shaped body;a container for holding the circular diaphragm, the ring-shaped filter seal, and the pressure sensor filter,wherein the interior cylindrical nipple, when the pressure sensor filter is installed in the container with the circular diaphragm and the ring-shaped filter seal, extends from a center of the circular diaphragm, andwherein the exterior side nozzle of the pressure sensor filter nests within the interior cylindrical nipple of the circular diaphragm.
US Referenced Citations (779)
Number Name Date Kind
2619986 Goepfrich Dec 1952 A
3444857 Godel May 1969 A
3481333 Garrison Dec 1969 A
3485243 Bird Dec 1969 A
3500826 Haire Mar 1970 A
3688794 Bird et al. Sep 1972 A
4066176 Honeycutt Jan 1978 A
4207884 Isaacson Jun 1980 A
4241756 Bennett et al. Dec 1980 A
4406291 Schwesinger Sep 1983 A
4491225 Baillod Jan 1985 A
4527557 DeVries et al. Jul 1985 A
4587967 Chu et al. May 1986 A
4608976 Suchy Sep 1986 A
4699137 Schroeder Oct 1987 A
RE32553 Bennett et al. Dec 1987 E
4712580 Gilman et al. Dec 1987 A
4727871 Smargiassi et al. Mar 1988 A
4747403 Gluck et al. May 1988 A
4752089 Carter Jun 1988 A
D300271 Rudolph et al. Mar 1989 S
D300272 Rudolph et al. Mar 1989 S
D300273 Rudolph et al. Mar 1989 S
D305165 Rudolph et al. Dec 1989 S
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4957107 Sipin Sep 1990 A
4991576 Henkin et al. Feb 1991 A
4993269 Guillaume et al. Feb 1991 A
5000173 Zalkin et al. Mar 1991 A
5020532 Mahoney et al. Jun 1991 A
5038621 Stupecky Aug 1991 A
5057822 Hoffman Oct 1991 A
5072729 DeVries Dec 1991 A
5072737 Goulding Dec 1991 A
5109838 Elam May 1992 A
5127400 DeVries et al. Jul 1992 A
5131387 French et al. Jul 1992 A
5134995 Gruenke et al. Aug 1992 A
5146092 Apperson et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5153436 Apperson et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5168868 Hicks Dec 1992 A
5178155 Mault Jan 1993 A
5230727 Pound Jul 1993 A
5237987 Anderson et al. Aug 1993 A
5255675 Kolobow Oct 1993 A
5259373 Gruenke et al. Nov 1993 A
5269293 Löser et al. Dec 1993 A
5271389 Isaza et al. Dec 1993 A
5277175 Riggs et al. Jan 1994 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301667 McGrail et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303699 Bonassa et al. Apr 1994 A
5309901 Beaussant May 1994 A
5316009 Yamada et al. May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5331995 Westfall et al. Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5335656 Bowe et al. Aug 1994 A
5337739 Lehman Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5343858 Winefordner et al. Sep 1994 A
5351522 Lura Oct 1994 A
5355893 Mick et al. Oct 1994 A
5357946 Kee et al. Oct 1994 A
5360000 Carter Nov 1994 A
5368019 LaTorraca Nov 1994 A
5368021 Beard et al. Nov 1994 A
5369277 Knodle et al. Nov 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5398677 Smith Mar 1995 A
5401135 Stoen et al. Mar 1995 A
D357532 McCulloch Apr 1995 S
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5452714 Anderson et al. Sep 1995 A
5467766 Ansite et al. Nov 1995 A
5484270 Adahan Jan 1996 A
5494028 DeVries et al. Feb 1996 A
5497767 Olsson et al. Mar 1996 A
5503140 Winefordner et al. Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5531221 Power Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542415 Brady Aug 1996 A
5542416 Chalvignac Aug 1996 A
5544674 Kelly Aug 1996 A
5546935 Champeau Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5568910 Koehler et al. Oct 1996 A
5575283 Sjoestrand Nov 1996 A
5596984 O'Mahony et al. Jan 1997 A
5598838 Servidio et al. Feb 1997 A
5606968 Mang Mar 1997 A
5616923 Rich et al. Apr 1997 A
5617847 Howe Apr 1997 A
5630411 Holscher May 1997 A
5632270 O'Mahony et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5657750 Colman et al. Aug 1997 A
5660171 Kimm et al. Aug 1997 A
5662099 Tobia et al. Sep 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5678537 Bathe et al. Oct 1997 A
5683232 Adhan Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5693944 Rich Dec 1997 A
5694926 DeVries et al. Dec 1997 A
5697363 Hart Dec 1997 A
5701883 Hete et al. Dec 1997 A
5701889 Danon Dec 1997 A
5715812 Deighan et al. Feb 1998 A
5762480 Adahan Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5789660 Kofoed et al. Aug 1998 A
5791339 Winter Aug 1998 A
5794614 Gruenke et al. Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5797393 Kohl Aug 1998 A
5803064 Phelps et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5823179 Grychowski et al. Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5845636 Gruenke et al. Dec 1998 A
5857458 Tham et al. Jan 1999 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5875783 Kullik Mar 1999 A
5876352 Weismann Mar 1999 A
5881717 Isaza Mar 1999 A
5881722 DeVries et al. Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884623 Winter Mar 1999 A
5906204 Beran et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5927275 Loeser Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5934274 Merrick et al. Aug 1999 A
5937854 Stenzier Aug 1999 A
5937856 Jonasson et al. Aug 1999 A
5941846 Duffy et al. Aug 1999 A
5957130 Krahbichler et al. Sep 1999 A
6024089 Wallace et al. Feb 2000 A
6041777 Faithfull et al. Mar 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6073630 Adahan Jun 2000 A
6076523 Jones et al. Jun 2000 A
D429330 Hoenig Aug 2000 S
6095139 Psaros Aug 2000 A
6095140 Poon et al. Aug 2000 A
6099481 Daniels et al. Aug 2000 A
6102038 DeVries Aug 2000 A
6106480 Gama De Abreu et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116242 Frye et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6119686 Somerson et al. Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6123074 Hete et al. Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6135106 Dirks et al. Oct 2000 A
6135967 Fiorenza et al. Oct 2000 A
6142150 O'Mahoney et al. Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6152132 Psaros Nov 2000 A
6152135 DeVries et al. Nov 2000 A
6155986 Brydon et al. Dec 2000 A
6158432 Biondi et al. Dec 2000 A
6161539 Winter Dec 2000 A
6176234 Salter et al. Jan 2001 B1
6179784 Daniels et al. Jan 2001 B1
6192885 Jalde Feb 2001 B1
6196222 Heinonen et al. Mar 2001 B1
6203502 Hilgendorf et al. Mar 2001 B1
6217524 Orr et al. Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6227196 Jaffe et al. May 2001 B1
6269810 Brooker et al. Aug 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6287264 Hoffman Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6295985 Kock et al. Oct 2001 B1
6305372 Servidio Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6306098 Orr et al. Oct 2001 B1
6308706 Lammers et al. Oct 2001 B1
6309360 Mault Oct 2001 B1
6312389 Kofoed et al. Nov 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6325978 Labuda et al. Dec 2001 B1
6349922 Rydin Feb 2002 B1
6357438 Hansen Mar 2002 B1
6358215 Ricciardelli Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371113 Tobia et al. Apr 2002 B1
6390091 Banner et al. May 2002 B1
6394962 Gama De Abreu et al. May 2002 B1
6402697 Calkins et al. Jun 2002 B1
6408848 Feldman et al. Jun 2002 B1
6412483 Jones et al. Jul 2002 B1
6415788 Clawson et al. Jul 2002 B1
6419634 Gaston, IV et al. Jul 2002 B1
6439229 Du et al. Aug 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6463930 Biondi et al. Oct 2002 B2
6467478 Merrick et al. Oct 2002 B1
6471658 Daniels et al. Oct 2002 B1
6484719 Berthon-Jones Nov 2002 B1
6523537 Mas Marfany Feb 2003 B1
6523538 Wikefeldt Feb 2003 B1
6526970 DeVries et al. Mar 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6532960 Yurko Mar 2003 B1
6540689 Orr et al. Apr 2003 B1
6543449 Woodring et al. Apr 2003 B1
6546930 Emerson et al. Apr 2003 B1
6550479 Duxbury Apr 2003 B1
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6557554 Sugiura May 2003 B1
6564798 Jalde May 2003 B1
6571795 Bourdon Jun 2003 B2
6572561 Mault Jun 2003 B2
6575163 Berthon-Jones Jun 2003 B1
6575164 Jaffe et al. Jun 2003 B1
6575165 Cook et al. Jun 2003 B1
6575918 Kline Jun 2003 B2
6584973 Biondi et al. Jul 2003 B1
6606994 Clark Aug 2003 B1
6616615 Mault Sep 2003 B2
6616896 Labuda et al. Sep 2003 B2
6619289 Mashak Sep 2003 B1
6622725 Fisher et al. Sep 2003 B1
6622726 Du Sep 2003 B1
6629934 Mault et al. Oct 2003 B2
6631716 Robinson et al. Oct 2003 B1
6644310 Delache et al. Nov 2003 B1
6648831 Orr et al. Nov 2003 B2
6648832 Orr et al. Nov 2003 B2
6659962 Ricciardelli Dec 2003 B2
6668824 Isaza et al. Dec 2003 B1
6668828 Figley et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6675801 Wallace et al. Jan 2004 B2
6688307 Berthon-Jones Feb 2004 B2
6691702 Appel et al. Feb 2004 B2
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6729331 Kay May 2004 B2
6739334 Valeij May 2004 B2
6739337 Isaza May 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6763829 Jaffe et al. Jul 2004 B2
6722359 Chalvignac Aug 2004 B2
6723055 Hoffman Aug 2004 B2
6772762 Piesinger Aug 2004 B2
6805121 Flood et al. Oct 2004 B1
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6815211 Blazewicz et al. Nov 2004 B1
6840906 Gama De Abreu et al. Jan 2005 B2
6866040 Bourdon Mar 2005 B1
6877511 DeVries et al. Apr 2005 B2
6886558 Tanaka et al. May 2005 B2
6896713 Eckerbom et al. May 2005 B1
6908438 Orr et al. Jun 2005 B2
6938619 Hickle Sep 2005 B1
6954702 Pierry et al. Oct 2005 B2
6955651 Kück et al. Oct 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6968840 Smith et al. Nov 2005 B2
6986351 Figley et al. Jan 2006 B2
6990980 Richey et al. Jan 2006 B2
7004168 Mace et al. Feb 2006 B2
D518172 Britten et al. Mar 2006 S
7017574 Biondi et al. Mar 2006 B2
7018340 Jaffe et al. Mar 2006 B2
7032589 Kerchanin, II et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7040315 Stromberg May 2006 B1
7040316 Connelly et al. May 2006 B2
7040321 Göbel May 2006 B2
7043979 Smith et al. May 2006 B2
7066175 Hamilton et al. Jun 2006 B2
7066176 Jaffe et al. Jun 2006 B2
7066177 Pittaway et al. Jun 2006 B2
7074196 Kück et al. Jul 2006 B2
7077131 Hansen Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7117438 Wallace et al. Oct 2006 B2
7118537 Baddour Oct 2006 B2
7121277 Ström Oct 2006 B2
7128069 Farrugia et al. Oct 2006 B2
7135001 Orr et al. Nov 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152604 Hickle et al. Dec 2006 B2
7168597 Jones et al. Jan 2007 B1
D536443 Latsos Feb 2007 S
7183552 Russell Feb 2007 B2
7195013 Lurie Mar 2007 B2
7210478 Banner et al. May 2007 B2
7222623 DeVries et al. May 2007 B2
7241269 McCawley et al. Jul 2007 B2
7270126 Wallace et al. Sep 2007 B2
7275540 Bolam Oct 2007 B2
7291115 Cardona Burrul Nov 2007 B2
7291851 DelFavero et al. Nov 2007 B2
7302949 Pelerossi et al. Dec 2007 B2
7320321 Pranger et al. Jan 2008 B2
7334578 Biondi et al. Feb 2008 B2
7335164 Mace et al. Feb 2008 B2
7341563 Rich et al. Mar 2008 B2
7347205 Levi Mar 2008 B2
7347825 Vaughan et al. Mar 2008 B2
7363085 Benser et al. Apr 2008 B1
7367337 Berton-Jones et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7392806 Yuen et al. Jul 2008 B2
7421296 Benser et al. Sep 2008 B1
7427269 George et al. Sep 2008 B2
7428902 Du et al. Sep 2008 B2
7432508 Daniels et al. Oct 2008 B2
7460959 Jafari Dec 2008 B2
7475685 Dietz et al. Jan 2009 B2
7484508 Younes Feb 2009 B2
7487773 Li Feb 2009 B2
7487778 Freitag Feb 2009 B2
7500483 Colman et al. Mar 2009 B2
7503957 Duquette et al. Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
7519425 Benser et al. Apr 2009 B2
7525663 Kwok et al. Apr 2009 B2
7533670 Freitag et al. May 2009 B1
7547285 Kline Jun 2009 B2
7556038 Kirby et al. Jul 2009 B2
7556042 West et al. Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7588033 Wondka Sep 2009 B2
7610914 Bolam et al. Nov 2009 B2
7617824 Doyle Nov 2009 B2
7621271 Brugnoli Nov 2009 B2
7634998 Fenley Dec 2009 B1
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7668579 Lynn Feb 2010 B2
7686019 Weiss et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7699788 Kuck et al. Apr 2010 B2
7717113 Andrieux May 2010 B2
7721735 Hamilton et al. May 2010 B2
7721736 Urias et al. May 2010 B2
D618356 Ross Jun 2010 S
7740591 Starr et al. Jun 2010 B1
7753052 Tanaka Jul 2010 B2
7779840 Acker et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7810497 Pittman et al. Oct 2010 B2
7814908 Psaros Oct 2010 B2
7819815 Younes Oct 2010 B2
7823588 Hansen Nov 2010 B2
7828741 Kline et al. Nov 2010 B2
7846739 von Bahr et al. Dec 2010 B2
7849854 DeVries et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7861716 Borrello Jan 2011 B2
7870857 Dhuper et al. Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7883471 Aljuri et al. Feb 2011 B2
7885771 Roecker et al. Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7900626 Daly Mar 2011 B2
7913690 Fisher et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8457706 Baker, Jr. Jun 2013 B2
D692556 Winter Oct 2013 S
D693001 Winter Nov 2013 S
D701601 Winter Mar 2014 S
8792949 Baker, Jr. Jul 2014 B2
D731048 Winter Jun 2015 S
D731049 Winter Jun 2015 S
D731065 Winter Jun 2015 S
D736905 Winter Aug 2015 S
D744095 Winter Nov 2015 S
20010029339 Orr et al. Oct 2001 A1
20010031928 Orr et al. Oct 2001 A1
20020026941 Bondi et al. Mar 2002 A1
20020082512 Strom Jun 2002 A1
20020128566 Gama De Abreu et al. Sep 2002 A1
20020138213 Mault Sep 2002 A1
20020148468 Valeij Oct 2002 A1
20030047188 Mace et al. Mar 2003 A1
20030062045 Woodring et al. Apr 2003 A1
20030111078 Habashi et al. Jun 2003 A1
20030140921 Smith et al. Jul 2003 A1
20030191405 Rich et al. Oct 2003 A1
20040003814 Banner et al. Jan 2004 A1
20040050387 Younes Mar 2004 A1
20040087867 Gama De Abreu et al. May 2004 A1
20040138577 Kline Jul 2004 A1
20040186391 Pierry et al. Sep 2004 A1
20040256560 Russell Dec 2004 A1
20040261793 Stromberg et al. Dec 2004 A1
20050005936 Wondka Jan 2005 A1
20050008936 Wondka Jan 2005 A1
20050034726 Pittaway et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050098177 Haj-Yahya et al. May 2005 A1
20050112325 Hickle May 2005 A1
20050124907 Kuck et al. Jun 2005 A1
20050139211 Alston et al. Jun 2005 A1
20050139212 Bourdon Jun 2005 A1
20050150494 DeVries et al. Jul 2005 A1
20050217671 Fisher et al. Oct 2005 A1
20050279358 Richey et al. Dec 2005 A1
20050284476 Blache et al. Dec 2005 A1
20050285055 DelFavero et al. Dec 2005 A1
20060009707 Daniels et al. Jan 2006 A1
20060032499 Halsnes Feb 2006 A1
20060052950 Pierry et al. Mar 2006 A1
20060086357 Soliman et al. Apr 2006 A1
20060129054 Orr et al. Jun 2006 A1
20060130839 Bassovich Jun 2006 A1
20060145078 Russell Jul 2006 A1
20060201507 Breen Sep 2006 A1
20060241508 Jaffe et al. Oct 2006 A1
20060243278 Hamilton et al. Nov 2006 A1
20060249148 Younes Nov 2006 A1
20060249153 DeVries et al. Nov 2006 A1
20060253038 Kuck et al. Nov 2006 A1
20060278223 Younes Dec 2006 A1
20070000494 Banner et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070062531 Fisher et al. Feb 2007 A1
20070044798 Levi Mar 2007 A1
20070068518 Urias et al. Mar 2007 A1
20070068530 Pacey Mar 2007 A1
20070073183 Kline Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070095347 Lampotang et al. May 2007 A1
20070107728 Ricciardelli et al. May 2007 A1
20070113854 Mcauliffe May 2007 A1
20070125377 Heinonen et al. Jun 2007 A1
20070142716 Biondi Jun 2007 A1
20070144521 DeVries et al. Jun 2007 A1
20070144523 Bolam et al. Jun 2007 A1
20070149891 George et al. Jun 2007 A1
20070157930 Soliman et al. Jul 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070163579 Li et al. Jul 2007 A1
20070193579 Duquette et al. Aug 2007 A1
20070199566 Be'eri Aug 2007 A1
20070215154 Borrello Sep 2007 A1
20070221221 Cooke et al. Sep 2007 A1
20070225612 Mace Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070232952 Baddour Oct 2007 A1
20070240718 Daly Oct 2007 A1
20070255160 Daly Nov 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070272242 Sanborn et al. Nov 2007 A1
20070273887 Russell Nov 2007 A1
20070282214 George et al. Dec 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080000471 Bolam et al. Jan 2008 A1
20080009761 Acker et al. Jan 2008 A1
20080011300 Andreiux Jan 2008 A1
20080021339 Gabriel et al. Jan 2008 A1
20080045825 Melker et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080058667 Pierry et al. Mar 2008 A1
20080060646 Isaza Mar 2008 A1
20080060656 Isaza Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080091117 Choncholas et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080119753 Ricciardelli et al. May 2008 A1
20080119754 Hietala May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080168990 Cooke et al. Jul 2008 A1
20080183094 Schonfuss et al. Jul 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080202517 Mitton et al. Aug 2008 A1
20080202518 Mitton et al. Aug 2008 A1
20080214947 Hunt et al. Sep 2008 A1
20080230062 Tham Sep 2008 A1
20080257349 Hedner et al. Oct 2008 A1
20080276939 Tiedje Nov 2008 A1
20090000621 Haggblom et al. Jan 2009 A1
20090007914 Bateman Jan 2009 A1
20090050153 Brunner Feb 2009 A1
20090056708 Stenzler et al. Mar 2009 A1
20090056719 Newman Mar 2009 A1
20090071478 Kalfon Mar 2009 A1
20090071479 Nguyen et al. Mar 2009 A1
20090078251 Zucchi et al. Mar 2009 A1
20090084381 DeVries et al. Apr 2009 A1
20090090359 Daviet et al. Apr 2009 A1
20090107500 Edwards Apr 2009 A1
20090114223 Bonassa May 2009 A1
20090133695 Rao et al. May 2009 A1
20090137919 Bar-Lavie et al. May 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090188502 Tiedje Jul 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090217923 Boehm et al. Sep 2009 A1
20090221926 Younes Sep 2009 A1
20090229612 Levi et al. Sep 2009 A1
20090235935 Pacey Sep 2009 A1
20090241948 Clancy et al. Oct 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241955 Jafari et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090241964 Aljuri et al. Oct 2009 A1
20090247849 McCutcheon et al. Oct 2009 A1
20090247853 Debreczeny Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090250054 Loncar et al. Oct 2009 A1
20090250059 Allum et al. Oct 2009 A1
20090255533 Freitag et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090263279 Kline et al. Oct 2009 A1
20090270752 Coifman Oct 2009 A1
20090277448 Ahlemn et al. Nov 2009 A1
20090293873 Djupesland et al. Dec 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090299430 Daviet et al. Dec 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100012126 Gandini Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100031961 Schmidt Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100059058 Kuo Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100099999 Hemnes et al. Apr 2010 A1
20100101577 Kaestle et al. Apr 2010 A1
20100106037 Kacmarek et al. Apr 2010 A1
20100125227 Bird May 2010 A1
20100137733 Wang et al. Jun 2010 A1
20100139660 Adahan Jun 2010 A1
20100147302 Selvarajan et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100175695 Jamison Jul 2010 A1
20100179392 Chang et al. Jul 2010 A1
20100180897 Malgouyres Jul 2010 A1
20100185112 Van Kesteren et al. Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100198095 Isler Aug 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100222692 McCawley et al. Sep 2010 A1
20100236553 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241019 Varga et al. Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100249549 Baker, Jr. et al. Sep 2010 A1
20100249584 Albertelli Sep 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100268106 Johnson et al. Oct 2010 A1
20100268131 Efthimion Oct 2010 A1
20100269834 Freitag et al. Oct 2010 A1
20100282258 Tailor et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100286544 Tanaka et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100292601 Dompeling et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100324437 Freeman et al. Dec 2010 A1
20100324439 Davenport Dec 2010 A1
20110004108 Peyton Jan 2011 A1
20110009762 Eichler et al. Jan 2011 A1
20110011400 Gentner et al. Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandie et al. Feb 2011 A1
20110066060 von Bahr et al. Mar 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130042869 Andrieux et al. Feb 2013 A1
20130047983 Andrieux et al. Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130152923 Andrieux et al. Jun 2013 A1
20130158370 Doyle et al. Jun 2013 A1
20130159912 Baker, Jr. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
20130186397 Patel Jul 2013 A1
20130186400 Jafari et al. Jul 2013 A1
20130186401 Jafari et al. Jul 2013 A1
20130192599 Nakai et al. Aug 2013 A1
20130220324 Jafari et al. Aug 2013 A1
20130233319 Winter et al. Sep 2013 A1
20130239967 Jafari et al. Sep 2013 A1
20130255682 Jafari et al. Oct 2013 A1
20130255685 Jafari et al. Oct 2013 A1
20130284172 Doyle et al. Oct 2013 A1
20130284177 Li et al. Oct 2013 A1
20140000606 Doyle et al. Jan 2014 A1
20140012150 Milne et al. Jan 2014 A1
20140034054 Angelico et al. Feb 2014 A1
20140123979 Doyle et al. May 2014 A1
20140182590 Platt et al. Jul 2014 A1
20140224250 Sanchez et al. Aug 2014 A1
20140251328 Graboi et al. Sep 2014 A1
20140261409 Dong et al. Sep 2014 A1
20140261410 Sanchez et al. Sep 2014 A1
20140261424 Doyle et al. Sep 2014 A1
Foreign Referenced Citations (16)
Number Date Country
0266963 May 1988 EP
0459647 Dec 1991 EP
0850652 Jul 1998 EP
1205203 Sep 2004 EP
1205203 Sep 2004 EP
1189649 Jun 2005 EP
0965357 Mar 2007 EP
2017586 Jan 2009 EP
2695320 Mar 1994 FR
2002136595 May 2002 JP
WO 9114470 Oct 1991 WO
WO 199611717 Apr 1996 WO
WO 9641571 Dec 1996 WO
WO 9744636 Nov 1997 WO
WO 2007102866 Sep 2007 WO
WO 2007109177 Sep 2007 WO
Non-Patent Literature Citations (30)
Entry
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1988.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006.
Cairo et al., “Mosby's Respiratory Care Equipment, Seventh Edition”, Mosby, US, XP002524651, 2004, pp. 360-361 and 775-778.
International Search Report, PCT/US2009/034363, dated Aug. 5, 2009.
International Search Report, PCT/US2009/055889, dated Nov. 26, 2009.
International Search Report, PCT/US2009/059102, dated Nov. 30, 2009.
Jaffe, Ph.D., Michael B., “Proximal Flow Measurement with the Series 3 Flow Sensors”, Respironics, Inc., 2002, pp. 1-4.
PCT International Search Report dated Mar. 3, 2011, Application's File Reference H-RM-01941WO, International Application No. PCT/US2010/058265, Int'l. filing date Nov. 30, 2010, Applicant Nellcor Puritan Bennett LLC, 16 pgs.
U.S. Appl. No. 12/628,803, Office Action dated Jun. 27, 2012, 13 pgs.
U.S. Appl. No. 12/628,856, Notice of Allowance dated May 23, 2012, 8 pgs.
U.S. Appl. No. 12/628,882, Office Action dated Jul. 11, 2012, 12 pgs.
U.S. Appl. No. 12/628,905, Office Action dated Jul. 11, 2012, 13 pgs.
U.S. Appl. No. 12/628,921, Office Action dated Jun. 26, 2012, 10 pgs.
U.S. Appl. No. 29/360,553, Notice of Allowance dated Oct. 13, 2011, 8 pgs.
U.S. Appl. No. 29/360,554, Notice of Allowance dated Oct. 27, 2011, 8 pgs.
U.S. Appl. No. 29/360,554, Amendment and Response filed Jan. 6, 2012, 3 pgs.
U.S. Appl. No. 29/360,555, Notice of Allowance dated Oct. 27, 2011, 8 pgs.
U.S. Appl. No. 12/628,856, Notice of Allowance dated Sep. 4, 2012, 5 pgs.
U.S. Appl. No. 12/628,803, Office Action dated Sep. 25, 2012, 10 pgs.
U.S. Appl. No. 12/628,905, Office Action dated Nov. 8, 2012, 13 pgs.
U.S. Appl. No. 12/628,921, Office Action dated Sep. 21, 2012, 9 pgs.
U.S. Appl. No. 12/628,921, Advisory Action dated Oct. 30, 2012, 2 pgs.
U.S. Appl. No. 12/628,803, Notice of Allowance dated Nov. 19, 2012, 6 pgs.
U.S. Appl. No. 12/628,882, Office Action dated Nov. 14, 2012, 11 pgs.
U.S. Appl. No. 12/628,856, Notice of Allowance dated Dec. 10, 2012, 5 pgs.
U.S. Appl. No. 12/628,803, Notice of Allowance dated Jan. 30, 2013, 5 pgs.
U.S. Appl. No. 12/628,905, Notice of Allowance dated Feb. 5, 2013, 7 pgs.
U.S. Appl. No. 12/628,882, Notice of Allowance dated Feb. 5, 2013, 3 pgs.
Related Publications (1)
Number Date Country
20140276176 A1 Sep 2014 US