The present invention relates to a maintenance planning apparatus and a maintenance planning method.
Various facilities such as air conditioners or elevators are operated in buildings such as offices, residential buildings, stations, or airports. The facilities deteriorate with the passage of operation time to reach a failure, and thus require appropriate maintenance. Similarly, moving objects such as vehicles typified by trucks or passenger cars, trains, ships, or airplanes deteriorate with the passage of operation time, and thus require appropriate maintenance. In performing such maintenance, it is necessary to make an efficient maintenance plan by taking an operation state, improvement of an operation rate, a cost reduction, and the like into consideration.
For example, PTL 1 discloses a technique in which the failure occurrence in a facility is fixedly evaluated, then the optimal maintenance cycle is calculated, and a failure which is different from a secular change is also analyzed on the basis of an operation record.
For example, PTL 2 discloses a technique in which the reliability of a component or an apparatus over the future is calculated assuming that a failure rate of each facility is constant, and an appropriate maintenance plan is created.
PTL 1: Japanese Patent No. 4237610
PTL 2: JP-A-2011-60088
There are various ways of occurrence of problems and failures which require maintenance, and a failure may occur even if maintenance is performed preventively. In other words, it is necessary to evaluate the occurrence of a problem or a failure and execution of maintenance by using a failure probability distribution (failure time distribution) of a system of a facility. In a case where the occurrence of a problem or a failure is probabilistic, maintenance cost or profits on business obtained through a facility operation also has a probabilistic variation.
However, in the technique disclosed in each of PTLs 1 and 2, a maintenance plan cannot be made by supposing various failure rates for each facility.
The present invention has been made in consideration of the circumstances, and an object thereof is to enable an optimal maintenance plan to be made by supposing various failure rates for each facility.
The present application includes a plurality of means for solving at least some of the above-described problems, and examples thereof are as follows. In order to solve the above problem, according to an aspect of the present invention, there is provided a maintenance planning apparatus including a storage unit that stores, as information which is possibly a condition, business entity information regarding a business entity including a customer company and a maintenance company, possessing information regarding an operation & maintenance (O&M) asset possessed by the customer company, configuration information regarding a configuration of the O&M asset possessed by the customer company, and maintenance method information regarding a maintenance method for the O&M asset; a failure rate model generation unit that generates a failure rate model on the basis of failure probability information which is set for the O&M asset by a user; a simulation execution unit that executes simulation regarding a failure which possibly occurs in the O&M asset in a plurality of different conditions on the basis of the generated failure rate model; a KPI computation unit that computes a key performance indicator (KPI) corresponding to each of the plurality of different conditions on the basis of results of the simulation; and an analysis unit that analyzes the plurality of different conditions and KPIs respectively corresponding to the plurality of different conditions, so as to determine an optimal condition corresponding to the best KPI.
According to the present invention, it is possible to make an optimal maintenance plan.
Problems, configurations, and effects other than those described above will become clear through description of the following embodiments.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The same reference numeral is given to the same member throughout all of the drawings for explaining an embodiment as a principle, and repeated description will be omitted. In the following embodiment, needless to say, a constituent element thereof (including an element step or the like) is not necessarily essential except for a case where the constituent element is particularly explicitly shown and a case where the constituent element is clearly essential in principle. Needless to say, the phrase “configured from A”, “configured with A”, “having A”, or “including A” is not intended to exclude other elements except for a case where only an element is particularly explicitly shown. Similarly, in the following embodiment, a case where a shape, a positional relationship, or the like of a constituent element is described is assumed to include substantial approximates or similarities to the shape or the like except for a case where the shape or the like is particularly explicitly shown and a case where the constituent element does not clearly have approximates or similarities to the shape or the like in principle.
<Summary of Maintenance Planning Apparatus According to Embodiment of Present Invention>
First, a description will be made of a summary of a maintenance planning apparatus according to an embodiment of the present invention.
The maintenance planning apparatus makes an efficient maintenance plan for making a key performance indicator (KPI) best as business by evaluating profits obtained through a facility operation and cost of maintenance with respect to a plurality of types of maintenance methods in operation & maintenance (O&M) service business performed by a business entity which performs business by operating a facility, a maintenance business entity which performs maintenance, or a parts business entity which supplies maintenance parts.
As the plurality of types of maintenance methods, four types of methods such as breakdown maintenance (repair), scheduled maintenance, condition-based maintenance, and predictive maintenance are supposed.
A business entity performing facility operation business is a customer from the viewpoint of a maintenance business entity, and will thus be hereinafter referred to as a customer company. A facility is an asset which is an O&M target, and will thus be hereinafter referred to as an O&M asset. The O&M asset deteriorates due an operation thereof, and undergoes the occurrence of a problem or a failure.
The maintenance planning apparatus sets various maintenance methods and a problem occurrence probability in order to evaluate profits and cost of business. The maintenance planning apparatus obtains profits and cost of business by using an O&M service simulator which performs multi-agent simulation on promotion of business in a time series.
The maintenance planning apparatus sets an operation rate of an O&M asset, profits obtained through an operation, and cost required for maintenance as a KPI, and makes a maintenance plan by obtaining a condition in which maintenance makes the KPI best. In order to realize the condition-based maintenance and the predictive maintenance, a diagnosis service company (maintenance business entity) which monitors a facility state and performs anomaly detection and diagnosis services is set as a maintenance plan target.
A plurality of systems are set in an O&M asset, and the extent of deterioration and a failure rate are defined in each system. Various ways of the occurrence of failures are present in terms of probability, and are thus defined by a piecewise failure rate model (piecewise linear failure rate or a piecewise Weibull failure rate) in which a failure rate for any operation time is settable. A way of the occurrence of a failure is recognized as an operation time at the time at which the failure occurs and is generated as data in an actual facility operation environment, and thus a piecewise failure rate model is defined by setting a failure probability (time-to-failure probability) for operation time.
The O&M service simulator plans an operation of an O&M asset or a schedule of maintenance in a maintenance worker of a maintenance business entity, and simulates business according to the plan. A maintenance schedule is planned according to a plan of work or the occurrence of a problem or a failure, and thus all of the repair, the scheduled maintenance, the condition-based maintenance, and the predictive maintenance can be simultaneously performed in parallel in each O&M asset.
The occurrence of a problem or a failure in an O&M asset is probabilistic depending on a failure rate. As the occurrence of expenses varies due to the occurrence of a problem or a failure in a facility in reality, a result also varies for each execution of O&M service simulation. Thus, a relationship between a condition set in O&M service simulation and a KPI is modeled. A parameter of the model is obtained statistically through machine learning, and is used as a representative value. A variation range of the KPI obtained for the condition. An evaluation KPI model for evaluation is defined by using the representative value and the variation range in order to evaluate the good of the KPI in terms of an expected value and a risk of fluctuation. An optimal condition making the KPI best is explored on the basis of the evaluation KPI model.
As mentioned above, it is possible to make maintenance plans which are the optimum for business of various customers, O&M assets and maintenance business entities, systems of parts business entities, and business methods.
<Configuration Example of Maintenance Planning Apparatus According to One Embodiment of Present Invention>
The maintenance planning apparatus 1 includes a control unit 10, a simulation execution unit 20, an analysis unit 30, and a display control unit 40.
The control unit 10 controls each unit configuring the maintenance planning apparatus 1, and includes a process execution portion 101, a condition setting portion 102, a KPI computation portion 103, and a failure rate calculation portion 104.
The process execution portion 101 requests the simulation execution unit 20 to execute O&M service simulation (hereinafter, referred to as simulation as appropriate). The process execution portion 101 requests the analysis unit 30 to analyze a result of the simulation.
The condition setting portion 102 receives various conditions in simulation, which are entered from a user to a user interface such as a failure rate setting screen (
The KPI computation portion 103 computes a KPI 21 such as profits of a customer company or cost of maintenance on the basis of an execution result in an O&M service simulator 210, and outputs the KPI 21 to the analysis unit 30 via the simulation execution unit 20. The KPI computation portion 103 may be included in the simulation execution unit 20 instead of the control unit 10.
The failure rate calculation portion (corresponding to a failure rate model generation unit of the present invention) 104 generates a piecewise failure rate model by using failure rates corresponding to failure probabilities as various conditions in simulation.
The simulation execution unit 20 includes the O&M service simulator 210 and a storage portion 220. The simulation execution unit 20 executes simulation by using the O&M service simulator 210 in response to a request from the process execution portion 101. The simulation execution unit 20 acquires the KPI 21 corresponding to a simulation execution result from the KPI computation portion 103 of the control unit 10, and outputs the KPI 21 to the analysis unit 30. The simulation execution unit 20 outputs animation data 33 as an execution result of the O&M service simulation to the display control unit 40. The storage portion 220 stores various databases used for simulation.
The analysis unit 30 performs machine learning of the KPI 21 for the condition data 11, obtained from the simulation execution unit 20, so as to define a condition-KPI relationship model 1452 (
The display control unit 40 displays various pieces of information based on the optimal condition data 31 or the like on a display (not illustrated), so as to present the information to the user. The display control unit 40 includes a graph drawing portion 41 and an animation drawing portion 42. The graph drawing portion 41 displays a graph based on the graph data 32 on the display. The animation drawing portion 42 displays an animation based on the animation data 33 on the display.
Next,
The O&M service simulator 210 has seven functions described below.
The seven functions are a first function of defining configurations of a business entity which is a simulation target agent, an O&M asset, and a maintenance worker; a second function of defining a system of an O&M asset; a third function of defining a system state and anomaly detection; a fourth function of planning a schedule of a customer task indicating an operation of an O&M asset which is work of a customer company and a schedule of a repair task indicating maintenance or repair of an O&M asset which is work of a maintenance service company; a fifth function of defining a customer task and causing a customer company to perform the customer task; a sixth function of defining a repair task and causing a maintenance service company to perform the repair task; and a seventh function of managing, supplying, and procuring parts used for maintenance.
In order to realize the above-described seven functions, the O&M service simulator 210 includes a condition acquisition processing section 211, an asset deterioration/signal generation/failure rate/failure processing section 212, an anomaly detection/diagnosis processing section 213, a customer task schedule plan processing section 214, a customer task execution processing section 215, a repair task schedule plan processing section 216, a repair task execution processing section 217, and a parts supply/inventory management processing section 218.
The first function is realized by the condition acquisition processing section 211. The second function is realized by the asset deterioration/signal generation/failure rate/failure processing section 212. The third function is realized by the asset deterioration/signal generation/failure rate/failure processing section 212 and the anomaly detection/diagnosis processing section 213. The fourth function is realized by the customer task schedule plan processing section 214 and the repair task schedule plan processing section 216. The fifth function is realized by the customer task schedule plan processing section 214 and the customer task execution processing section 215. The sixth function is realized by the repair task schedule plan processing section 216 and the repair task execution processing section 217. The seventh function is realized by the parts supply/inventory management processing section 218.
Each processing section such as the condition acquisition processing section 211 configuring the O&M service simulator 210 performs each process by referring to information accumulated in each database stored in the storage portion 220.
The condition acquisition processing section 211 registers various conditions which are set by the user by using the condition setting portion 102, in the databases of the storage portion 220.
The asset deterioration/signal generation/failure rate/failure processing section 212 processes detection in an O&M asset due to an operation of the asset and generates a signal in which the detection is reflected. A process of determining a problem or a failure by using a failure rate is performed.
The anomaly detection/diagnosis processing section 213 processes anomaly detection and diagnosis of a system of an O&M asset in a diagnosis service company. In a case where an anomaly is detected, a schedule for predictive maintenance is planned.
The customer task schedule plan processing section 214 plans a schedule for an operation of an O&M asset. The customer task execution processing section 215 processes an operation of the O&M asset according to the planned operation schedule.
The repair task schedule plan processing section 216 plans a schedule for a repair task of a maintenance worker of an O&M asset according to the occurrence of a problem or a failure or anomaly detection. The repair task execution processing section 217 processes execution of maintenance according to the planned schedule for the repair task. The parts supply/inventory management processing section 218 processes parts supply and inventory management in a maintenance business entity or a parts business entity.
The storage portion 220 of the simulation execution unit 20 includes a plurality of databases storing various pieces of information. Specifically, the storage portion 220 stores a business entity/O&M asset definition database (DB) 221, an O&M asset system definition DB 222, a failure/anomaly control limit information DB 223, a deterioration function/signal generation definition DB 224, a failure probability/failure rate definition DB 225, an O&M asset schedule DB 226, a maintenance menu DB 227, a maintenance business entity (worker) schedule DB 228, a customer task DB 229, a repair task DB 230, a parts list DB 231, and a parts inventory DB 232.
Information defining a configuration of a business entity or an O&M asset is registered in the business entity/O&M asset definition DB 221. Information defining a system belonging to an O&M asset is registered in the O&M asset system definition DB 222. Information indicating a control limit for determining a failure or an anomaly of an O&M asset is registered in the failure/anomaly control limit information DB 223.
Information defining a deterioration function indicating the progress of deterioration in an O&M asset and a signal which is output according thereto is registered in the deterioration function/signal generation definition DB 224. A failure probability of an O&M asset set by the user and a failure rate calculated in correspondence therewith are registered in the failure probability/failure rate definition DB 225.
Information indicating an operation plan schedule for an O&M asset is registered in the O&M asset schedule DB 226. Information indicating a specific content of maintenance work for an O&M asset is registered in the maintenance menu DB 227. A maintenance plan schedule of a maintenance worker for an O&M asset is registered in the maintenance business entity (worker) schedule DB 228.
A customer task planned for an O&M asset is registered in the customer task DB 229. A repair task planned for an O&M asset is registered in the repair task DB 230. A list of parts used for repair of an O&M asset is registered in the parts list DB 231. Information indicating a parts inventory situation is registered in the parts inventory DB 232.
<Summary of Process of Obtaining Condition for Maintenance Method Making KPI Best in Maintenance Planning Apparatus>
Next,
First, the simulation execution unit 20 acquires information regarding a business entity and an O&M asset from the control unit 10 (step 51). Specifically, information indicating a relationship among a customer company, an O&M asset, a maintenance company, a worker, and the like is acquired.
Next, the simulation execution unit 20 acquires a failure probability for any operation time with respect to a configuration of the O&M asset (step S2). The O&M asset is configured with one or more systems in which a problem or a failure may occur, and thus the failure probability is acquired as information for calculating a failure rate for determining the occurrence of a problem or a failure with respect to each system.
Next, the simulation execution unit 20 acquires a plurality of conditions in various maintenance methods from the control unit 10 (step S3). Specifically, for example, a maintenance interval of scheduled maintenance, a control limit in condition-based maintenance, or a threshold value for predictive maintenance is acquired.
Next, the simulation execution unit 20 sequentially employs one of the plurality of conditions in various maintenance methods, acquired in step S3 (step S4), and causes the O&M service simulator 210 to perform simulation a plurality of times under the employed identical condition (steps S5 to S7). The simulation is performed a plurality of items, and then the simulation execution unit 20 returns the process to step S4 . All of the plurality of conditions in various methods, acquired in step S3, are sequentially employed, and simulation is repeatedly performed a plurality of times under an identical condition (steps S4 to S8).
Here, a description will be made of a content of simulation executed by the O&M service simulator 210.
A business entity, an O&M asset, and the number of maintenance workers are set in the O&M service simulator 210, configurations of systems are defined in the O&M asset, and control limit information for state monitoring and anomaly detection and a failure rate are set in each system. A content of maintenance for a problem or a failure is set in a maintenance business entity, and a list and an inventory of parts are set in the maintenance business entity and a parts business entity.
In simulation, a process is performed in a time-series repetition. Before the time-series repetition, an operation state of the O&M asset and a schedule for maintenance are set and are initialized. In the time-series repetition, the O&M asset is operated according to the plan. It is determined whether or not a problem or a failure occurs in the O&M asset. In a case where a problem or a failure occurs, predictive maintenance or a repair is planned and is performed for the O&M asset and in the maintenance business entity.
Scheduled maintenance or condition-based maintenance is planned and performed according to settings for the O&M asset and in the maintenance business entity. In a case where parts of the O&M asset are exchanged through maintenance, an inventory of parts is reduced, and, if parts are insufficient, the maintenance business entity orders parts to a warehouse or a manufacturer. The warehouse supplies parts, and orders parts to another warehouse or the manufacturer if parts are insufficient. The manufacturer produces parts if parts are insufficient.
After the simulation target period elapses, and the time-series repetition is finished, the O&M service simulator 210 collects and outputs results such as the number of times of maintenance or an operation rate of the O&M asset as a postprocess. The KPI computation portion 103 computes a KPI such as a profit, an operation rate, or maintenance cost on the basis of the output information. As mentioned above, the content of the simulation performed by the O&M service simulator 210 has been described.
Finally, the analysis unit 30 explores a condition making a KPI best (step S10). For example, in a case where importance is put on a profit as a KPI, a condition making the KPI the maximum is explored, and, for example, in a case where importance is put on maintenance cost as a KPI, a condition making the KPI the minimum is explored. In the exploration, evaluation is performed in light of not only a representative KPI value but also the size of variation. As mentioned above, a description has been made of the summary of a process of obtaining a condition of a maintenance method of making a KPI best.
<Summary of O&M Service Simulation>
Next, with reference to
A building (customer company) 302 manages an office building, and operates and manages a facility 303 as an O&M asset provided in the building 302.
The facility 303 is, for example, an air conditioner or an elevator provided in the building 302. For example, the air conditioner is roughly configured with an indoor unit, a piping system, and an outdoor unit, which have different structures and functions, and deterioration thereof progresses in various ways. The facility 303 is not limited to an air conditioner or an elevator, and may be, for example, a home electric appliance, a vehicle, or a production machine or a plant in a factory. The facility 303 may employ a so-called Internet of Things (IoT) technique in which a maintenance service company 304 is notified of a detection signal from a built-in sensor via the Internet.
The maintenance service company 304 employs a maintenance worker 305 who performs maintenance of the facility 303. The maintenance worker 305 stands by in the maintenance service company 304 in a case where maintenance or the like is not performed.
A diagnosis service company 306 is a business entity which monitors the facility 303, and diagnoses the occurrence of anomaly or the like. A warehouse 307 is a parts business entity which distributes parts for maintenance. A manufacturer 308 is a parts business entity which produces parts. In the simulation, business entities, O&M assets, and persons may be set to any number or any place.
Three facilities 3031 are provided in a first building 3021. Maintenance of the facilities 3031 is performed by a maintenance service company 3041. Monitoring of the facilities 3031 is performed by a diagnosis service company 3061.
Two facilities 3032 is provided in a second building 3022 . Maintenance of the facilities 3032 is performed by a maintenance service company 3042. Monitoring of the facilities 3032 is performed by the diagnosis service company 3061. In a case where the occurrence of anomaly in the facilities 3032 is detected, the diagnosis service company 3061 notifies the building 3022 of a diagnosis report 316, and also notifies the maintenance service company 3042 in charge of maintenance of the facilities 3032.
The maintenance service company 3042 plans a schedule for maintenance (predictive maintenance) of the facilities 3032 of the building 3022 on the basis of the diagnosis report 316 which is sent via the diagnosis service company 3061. A maintenance worker 3052 of the maintenance service company 3042 performs the predictive maintenance according to the planned schedule. The predictive maintenance of the facilities 3032 is not necessarily planned and performed via the diagnosis service company 3061.
A facility 3033 is provided in a third building 3023. The building 3023 makes a contract with a maintenance service company 3043 for scheduled maintenance. A maintenance worker 3053 of the maintenance service company 3043 performs scheduled maintenance of the facility 3033 of the building 3023 according to a plan of the scheduled maintenance. In a case where the facility 3033 fails, the building 3023 directly requests a repair to the maintenance service company 3043, and the maintenance worker 3053 repairs the facility 3033 in response to the request.
In a case where maintenance is performed, parts are exchanged, and thus an inventory of a part which is a new product for replacement is reduced. The maintenance service company 3043 manages an inventory, and orders parts to a warehouse 3072 if the parts are insufficient. The warehouse 3072 sends the parts to the maintenance service company 3043 in response to the order. The maintenance service company 3043 accepts the sent parts, and manages the parts as a new inventory.
The warehouse 3072 manages an inventory of parts, and orders parts to the manufacturer 308 in a case where the parts are insufficient. The manufacturer 308 produces parts in a case where an inventory of the parts is insufficient. In other words, the manufacturer 308 issues a production order, manufactures parts in a predetermined period, and manages the parts as a new inventory.
In the simulation, as premise thereof, a business entity, an O&M asset and an operation condition thereof, the number of maintenance workers, a failure probability for an operation of the O&M asset, various maintenance methods and condition, and conditions such as parts cost are set. In the simulation, contents are simulated that the O&M asset is operated every day in a time series in tracking of elapse of time, a problem or a failure occurs due to deterioration in the O&M asset, a schedule for various pieces of maintenance is adjusted, and maintenance is performed. After the simulation is finished, profits, operation rates, and costs are collected. As mentioned above, a description has been made of the summary of a simulation target and a process.
<Summaries of Plans and Execution of Various Maintenance Methods>
Next, with reference to
In the scheduled maintenance, as illustrated in
As illustrated in
In the condition-based maintenance, as illustrated in
In predictive maintenance, as illustrated in
<Failure Probability and Failure Rate in Each System of O&M Asset>
Next, with reference to
Next,
The occurrence of a failure for the failure rate λ is determined by using the following Expressions (1) and (2).
In Expression (1), U indicates generation of uniform random numbers, and [a,b) is a symbol indicating a range of a or more and below b. Therefore, U[a,b) indicates generation of uniform random numbers in a range of a or more and below b.
In a case where the unit of the failure rate λ is (probability/day), the O&M asset may be operated for 24 hours per day, and the failure rate may be λ/24 in a case where failure occurrence is determined every hour. In a case where the O&M asset is operated for 12 hours per day, and a failure does not occur during non-operation, the failure rate per hour during an operation may be λ/12. In other words, the time unit of the failure rate may be converted with respect to a determination time interval.
A failure probability graph of the probability-based model is expressed to be divided into a problem (dotted line) and a failure (solid line) as illustrated on the right in
The probability base is used to evaluate the occurrence of a problem or a failure in reality compared with the operation time base, and, thus, in the present embodiment, the probability-based problem occurrence and failure probability are employed.
<Problems Expected in Failure Probability and Failure Rate>
Here, with reference to
A failure probability distribution 801 indicated by a solid line in
The failure rate is the number of failures at a predetermined time interval at a certain time point. For example, the failure rate is a probability that a failure occurs once a year at a time point of half a year of an operation, and, in this case, a unit system is the number/year. A graph of the failure rate in
On the other hand, a graph of a failure probability distribution (failure distribution) illustrated in
Since a theoretical relationship in reliability engineering is established between the failure probability and the failure rate, in the present embodiment, the failure rate calculation portion 104 of the control unit 10 calculates a failure rate on the basis of a set failure probability such that a user can easily understand the failure probability. Various distributions may be set for a failure probability, and a failure rate calculated on the basis thereof has various distributions. Thus, a piecewise linear failure rate model is defined in which a failure rate is divided into short time segments, and a failure rate change is indicated by a line segment in each segment.
<Piecewise Linear Failure Rate Model>
Next,
λ=at+b (3)
A value of the intercept b in Equation (3) may be set such that the failure rate λ is in the range of [0,1) (0 or more and less than 1) as can be seen from the relationship of Expressions (1) and (2). A straight-line segment 911 illustrated in
As described above with reference to
Generally, an O&M asset is considered to reach a failure after a problem occurs, and thus a problem is assumed to more easily occur than a failure. In a case where a critical piecewise linear failure rate is set as a reference, that is, one time (X1), an urgent piecewise linear failure rate may be set to be two times (X2), and an alert piecewise linear failure rate may be set to be four times (X4).
In the piecewise linear failure rate model, critical may be determined in a range of the failure rate λ from 0 to the critical piecewise linear failure rate. Urgent may be determined in a range of the failure rate λ from the critical piecewise linear failure rate to the urgent piecewise linear failure rate. Alert may be determined in a range of the failure rate λ from the urgent piecewise linear failure rate to the alert piecewise linear failure rate. Normal may be determined in a range of the failure rate λ from the alert piecewise linear failure rate to 1.
In the above description, piecewise linear failure rate models for the respective determinations are set to be integer multiples of the critical piecewise linear failure rate, but the respective failure rates may be set to be parallel to each other by adding predetermined differences to the critical piecewise linear failure rate. The piecewise linear failure rate models for the respective determinations may be set separately from each other.
<Method of Obtaining Piecewise Linear Failure Rate Model on the Basis of Failure Probability>
A failure rate is necessary in order to determine failure occurrence, but it is hard to set a judgment criterion in the failure rate. On the other hand, it is easy to set a judgment criterion for determining failure in a failure probability. There is a theoretical relationship in reliability engineering between the failure probability and the failure rate. Therefore, a description will be made of a method of obtaining a piecewise linear failure rate by setting a failure probability.
First, a description will be made of a theory regarding a failure rate in reliability engineering. Reliability R(t), a failure probability (failure distribution) F(t), and a failure density f(t) are defined by the following Expressions (4) to (6).
Here, Pr is a function for obtaining a value of a range in distribution function, and may be expressed as in the following Equation (7).
Pr(a<T≤b)=∫abf(x)dx (7)
The failure rate λ is a probability that a failure may occur with respect to a time range at a certain time point t, and may be expressed as in the following Equation (8).
A relationship between reliability and a failure rate is understood from Equation (8). In a case where a function of the failure rate is defined, the reliability R(t) may be determined according to the following Equation (9).
A failure probability may be determined from Equation (5).
In the segment i, the failure rate λ(t) is expressed by the following Equation (10).
λi(t)=ait+bi (10)
However, the failure rate λ(t) is required to have a value of 0 or more. In a case where the relationship of Equation (9) is used, in the segment i, the reliability R(t) is expressed by the following Equation (11).
The failure probability F (t) and the failure density f (t) may be obtained from the above-described relationship so as to be set.
A piecewise linear failure rate model is obtained on the basis of the set failure probability F(t). Data regarding the piecewise linear failure rate model is given by a failure rate Fi for a time point ti.
Next, a description will be made of a method of obtaining parameters ai and bi of the piecewise linear failure rate model and ci shown in Equation (11) in a case of the reliability Ri=1−Fi.
The parameters of the piecewise linear failure rate model are sequentially obtained from the segment 0, and from the segment 1 to the segment n.
A method of obtaining parameters in the segment 0 is as follows. In the segment 0, data regarding reliability is the following two points.
The failure probability F0 at the start point t0=0 is 0, that is, the reliability R0 is 1. From Equation (11), 1=exp(c0), and thus c0 is 0.
In a case where logarithm is taken for both sides of Equation (11), and the segment 0 is handled as a constant failure rate, the parameters may be obtained as in the following Equation (13).
The failure rate λ at the start point to may be set, and the parameters may be obtained. Particularly, the occurrence of an initial failure may be based on a decreasing failure rate DFR. In other words, a relationship of a0<0 may be established, and thus there may be a case where the failure rate λ is 0. This time point may be set to t0*, and parameters in a section [t0,t0*) and a section [t0*,t1) may be respectively obtained.
This indicates that the section [t0,t1) of the segment 0 is divided into the section [t0,t0*) and the section [t0*,t1). Therefore, 1 is added to index values after the original segment 1, and the section [t0*,t1) is set as a new segment 1. Parameters in the new segment 1 are obtained as in the following Equation (14).
Next, a description will be made of a method of obtaining parameters in the intermediate segment i. Reliability data of the segment is given by the following Expression (15).
Simultaneous equations of the following Equation (16) may be obtained on the basis of logarithmic conversion shown in Equation (11).
As illustrated in
a
i−1
t
i
+b
i'11
=a
i
t
i
+b
i (17)
Since the parameters of the piecewise linear failure rate model are sequentially obtained from a segment with a smaller index, ai−1 and bi−1 in Equation (17) are obtained, and thus values of the left side are already obtained. Therefore, simultaneous equations regarding the parameters ai, bi, and ci may be obtained on the basis of Equations (16) and (17).
If Equations (16) and (17) are expressed as in the following Equation (18) by using vectors Vf and Va, and a matrix MF, the parameters may be obtained according to the following Equation (19).
Vf=MFVa (18)
[aibici]T=Va=MF−1Vf (19)
The presence of the parameters is clearly shown on the left side of Equation (19), and the upper right suffix T of the vector indicates transposition. A determinant of the matrix MF is not 0, and thus there is necessarily an inverse matrix thereof.
In a case where there is no change in reliability as in Ri(ti)=Ri(ti+1), the failure rate λ in a segment thereof is 0. Therefore, since ai=bi=0, and Ri−1(ti)=Ri(ti), the parameters may be obtained according to the following Equation (20).
In a case where a failure rate is desired to be set to a constant failure rate, ai may be set to 0. Then, the simultaneous equations of Equation (16) may be solved.
In this case, an inverse matrix is necessarily obtained, and thus b0 and c0 may also be obtained. As mentioned above, a description has been made of a method of obtaining parameters in the intermediate segment
Next, a description will be made of a method of obtaining parameters in the terminal segment n. The terminal segment n has the same parameters as those in the segment n−1. In other words, the parameters are as in the following Equation (21).
However, it is necessary to set an, bn, and cn such that a failure probability is necessarily 1 up to infinite time. The above description relates to a method of obtaining parameters in the terminal segment n.
<Setting of Failure Probability>
Next, a description will be made of a method of setting a failure probability. A failure probability may be set to a start point of each segment, for example, values such as 0.0, 0.1, 0.2, 0.5, and 0.9 may be respectively set for 0-th day, 50-th day, 100-th day, 180-th day, and 210-th day. An initial value of a failure rate may be set for 0-th day of operation time by using an FR0 command. A constant failure rate may be set to any segment by using a CFR command.
<Display Example of Failure Probability Setting Screen>
Next,
A failure probability setting screen 1301 is displayed on the display by the display control unit 40 on the basis of an instruction from the condition setting portion 102. The user may set a failure probability by performing table entry on the failure probability setting screen 1301.
The failure probability setting screen 1301 is provided with a table setting field 1302 and an operation field 1306.
The user may set a failure probability by entering a numerical value or a command in the table setting field 1302. Specifically, in a case of
The table setting field 1302 is provided with an add button 1303 and a delete button 1304. The user may press the add button 1303 so as to add the number of day and thus to increase the number of segments. The user may select a checkbox 1305 and then press the delete button 1304 so as to delete a row and thus to reduce the number of segments.
A failure probability is an increase function in a broad sense, and thus the user may be prompted to enter the failure probability again in a case where entry is not appropriate through judgment whether or not the failure probability increases.
The operation field 1306 is provided with a setting check button 1307, a cancel button 1308, and an OK button 1309. In a case where the setting check button 1307 is pressed, a graph of a piecewise linear failure rate model which is computed on the basis of entry on the table setting field 1302 is displayed. In a case where the cancel button 1308 is pressed, entry on the table setting field 1302 is invalidated, and the failure probability setting screen 1301 is closed. In a case where the OK button 1309 is pressed, a failure probability is set according to entry on the table setting field 1302.
In a case where the setting check button 1307 is pressed, a graph of a failure probability corresponding to entry on the table setting field 1302 may be displayed.
Next,
A failure probability setting screen 1311 is displayed on the display by the display control unit 40 on the basis of an instruction from the condition setting portion 102. The user may set a failure probability by drawing a graph on the failure probability setting screen 1311.
The failure probability setting screen 1311 is provided with a drawing setting field 1312, a scale adjustment field 1313, and an operation field 1314.
In the drawing setting field 1312, the user may draw a graph of a failure probability by generating a point by left-clicking on an operation device such as a mouse, and moving the point with a shift button and through drag and drop operations. The user may perform a menu display operation such as option setting or deletion by right-clicking on the mouse.
In the scale adjustment field 1313, scales on graph axes displayed in the drawing setting field 1312 may be adjusted.
The operation field 1314 is provided with a setting check button 1315, a cancel button 1316, and an OK button 1317. In a case where the setting check button 1315 is pressed, a graph of a piecewise linear failure rate model which is computed on the basis of entry on the drawing setting field 1312 is displayed. In a case where the cancel button 1316 is pressed, entry on the drawing setting field 1312 is invalidated, and the failure probability setting screen 1311 is closed. In a case where the OK button 1317 is pressed, a failure probability is set according to entry on the drawing setting field 1312.
<Piecewise Weibull Failure Rate Model>
In the above description, a piecewise linear failure rate is employed in an O&M asset, but a piecewise Weibull failure rate using a Weibull distribution indicating a deterioration phenomenon with the passage of time may be employed instead of the piecewise linear failure rate. A piecewise Weibull failure rate using a Weibull type cumulative hazard method of estimating a straight line of a failure rate from failure time data may be employed.
Specifically, a failure probability for operation times at two points (a start point and an end point) in each segment is set, and is interpolated between the two points according to a Weibull distribution. A failure probability based on the Weibull distribution monotonously increases in a broad sense, and thus the failure probability is 1 when time is infinite. Therefore, even if a failure probability is divided into segments, a failure probability may be defined in a time domain after the time of 0. Therefore, a piecewise Weibull failure rate model may be defined by profiling a piecewise linear failure rate model.
In a case where the piecewise Weibull failure rate model is employed, a user may set a failure probability for operation times at two points (a start point and an end point) in each segment, and thus it is possible to reduce the number of parameters required to be set by the user compared with the piecewise linear failure rate model.
<Method of Obtaining Condition of Maintenance Method of Making KPI Best>
Next, a description will be made of a method of obtaining a condition of a maintenance method of making a KPI best.
In O&M service simulation, a business entity, an O&M asset, and a maintenance worker are set, configurations of systems are defined in the O&M asset, and control limit information for anomaly detection and a failure rate are set in each system. An operation time or an operation plan is set in the O&M asset. A content of maintenance, a list, and an inventory of parts are set.
As the maintenance methods, four types of methods such as scheduled maintenance, a repair, condition-based maintenance, and predictive maintenance are planned. For example, in the scheduled maintenance, an execution cycle is set as a condition. In the condition-based maintenance, a control limits are set as a condition. In the predictive maintenance, a threshold value is set.
Various conditions are set, and a result such as the number of times of execution of maintenance or an operation rate of the O&M asset is collected as a result of the O&M service simulation. A KPI indicating a business record of the business entity is computed on the basis of the result.
In the optimal condition exploration, a relationship between a condition and a KPI is required to be modeled. It is hard to mathematically obtain a relationship between a condition and a KPI (by applying algebraic transformation or a combinatorial optimization theory) as long as a content of O&M service business is not simplified.
Therefore, simulation is executed under various conditions, a KPI is calculated on the basis of results thereof, a machine learning technique is applied in terms of data, and a relationship between a condition and a KPI is modeled. Since a failure rate is set for each system of an O&M asset, and a problem or a failure is caused to occur in a probabilistic manner, even if simulation is executed under an identical condition, results thereof are different from each other. Therefore, a plurality of conditions are set, simulation is executed a plurality of times under each condition such that a plurality of KPIs are calculated, and machine learning is performed by using, as data, a combination of a condition as input and a KPI as output.
The machine learning indicates obtaining parameters of a mathematical model defining a relationship of output (KPI) for input (condition), and a learning performance index or statistics for data. A model correlating input (condition) with output (KPI) may be obtained as a result of the machine learning. Hereinafter, the model will be referred to as a condition-KPI relationship model.
A single KPI may be determined for a condition according to the condition-KPI relationship model indicated by a thick solid line. There is a variation in the condition-KPI relationship model, and the variation indicates a range in which a KPI varies for a condition. According to the condition-KPI relationship model, a KPI can be predicated, and thus a value of the best KPI can be obtained. On the other hand, a condition may be explored from a KPI through optimization. Therefore, a condition for the best KPI may be adjusted through optimization. In a case where the condition-KPI relationship model is a quadratic function which is a downward convex, a condition in which a KPI is the minimum value may be simply computed.
Next,
In a case where both of the histograms are compared with each other, the histogram (
As mentioned above, it is necessary to first define the best KPI in order to determine an optimal condition in a situation in which there is a change in a KPI for a condition, and there is also a variation.
As in the condition-KPI relationship model indicated by the thick solid line in
With reference to
A change in a KPI for a condition is indicated by a line 1611 which connects representative values which are values of representative KPIs in respective conditions to each other among the conditions. Regarding a representative value, the centers of boxes in the box plots are connected to each other via the line, and thus the representative value indicates a median value (cumulative probability of 0.5). However, a representative value may be a mean value or a most frequent value. A representative value may be any mathematical model such as a polynomial, giving an expression of a condition-KPI relationship model.
On the other hand, in order to express a variation in a KPI, an upper value and a lower value in a distribution are defined. A change of the upper value for a condition is indicated by a line 1612, and a change of the lower value for a condition is indicated by a line 1613. A difference between the upper value and the lower value is used as a variation range. The variation range changes for a condition.
A representative value KPIrepresentative changes for a condition x, and a variation range range is a function which also changes for the condition x. Therefore, the representative value KPIrepresentative and the variation range range are combined with each other, and an evaluation KPI model KPIeval(x) is defined as in the following Equation (22).
KPIeval(x)=KPIrepresentative(x)+range(x) (22)
In the examples illustrated in
According to the evaluation KPI model, a condition CBest making the evaluation KPI the minimum may be explored according to the following Equation (23).
The above exploration may also be performed in a case where the evaluation KPI best value is the maximum value.
A representative value of a KPI may be obtained in various methods, for example, by calculating a specific probability value such as a mean value, a most frequent value, or a median value, or by using regression statistics (regression line) based on a mathematical model . An upper value and a lower value indicating a variation range of a KPI may be obtained in various methods, for example, by calculating a standard deviation of KPIs in respective conditions, upper/lower standard deviations using upper and lower data with respect to representative values, or a KPI for a specific probability value in a probability distribution of the KPI.
<Evaluation KPI Setting Screen>
Next,
The evaluation KPI setting screen 1701 is displayed on the display by the display control unit 40 on the basis of an instruction from the condition setting portion 102. A user may perform settings regarding an evaluation KPI model on the evaluation KPI setting screen 1701.
The evaluation KPI setting screen 1701 is provided with a KPI/condition display field 1702, an evaluation KPI selection field 1703, a graph display field 1704, a distribution check field 1705, and an operation field 1707.
An item of a KPI (in a case of
In the evaluation KPI selection field 1703, any one of both-side standard deviations, upper and lower standard deviations, and a probability distribution may be selected as an evaluation KPI model from the viewpoint of a variation range by using a radio button.
In a case where the both-side standard deviations are selected, a mean value, a most frequent value, or a median value in a condition-KPI relationship model is selected as a representative value. A magnification of a standard deviation for determining a variation range is entered as a magnification λ.
In a case where the upper and lower standard deviations are selected, a mean value, a most frequent value, or a median value in a condition-KPI relationship model is selected as a representative value. An upper and lower magnifications of a standard deviation for determining a variation range are entered as a magnification λ.
In a case where the probability distribution is selected, cumulative probability values used as a representative value, an upper value, and a lower value are set.
In the graph display field 1704, representative/variation or an evaluation KPI may be selected as a display target by using a radio button. A scatter diagram of a KPI is drawn by checking a plot checkbox. A horizontal axis of the graph display field 1704 expresses an interval (unit: day) of scheduled maintenance, and a vertical axis expresses cost (unit: million yen (M¥)).
In the distribution check field 1705, a range of a condition (in a case of
The operation field 1707 is provided with an optimal exploration button 1708, a result print button 1709, and a completion button 1710. In a case where the user presses the optimal exploration button 1708, an optimal condition screen 1731 (
A radio button for selecting a cumulative probability distribution or a histogram and an OK button 1723 are provided in the KPI probability distribution screen 1721. In a case where the user selects the cumulative probability distribution or the histogram in a selection field 1722, a display method of a distribution of KPIs in a range of a condition designated in the distribution check field 1705 (
A selection (the both-side standard deviations, the upper and lower standard deviations, or the probability distribution) in the evaluation KPI selection field 1703 (FIG. 16), an optimal condition (in a case of
As an optimal condition, in addition to a scheduled maintenance interval, at least one of maintenance worker information (the number of maintenance workers), O&M asset possessing information (the number of facilities), and a failure probability may be displayed on the optimal condition screen 1731.
<Optimal Condition Exploration Method in Case Where Evaluation KPI Model is Defined by Using Standard Deviation for Variation Range of KPI>
In the above description, an evaluation KPI model has been defined by using a difference between an upper value and a lower value of a KPI for a variation range of the KPI. An evaluation KPI model may be defined by using a standard deviation for a variation range of a KPI.
Next, a description will be made of an optimal condition exploration method in a case where an evaluation KPI model is defined by employing a mean value or a regression statistic in a representative value of a KPI and using a standard deviation for a variation range of the KPI.
In a case where a mean value is employed in the representative value KPIrepresentative of a KPI, a mean of KPIs under an identical condition may be taken as shown in the following Equation (24). In a case where conditions have identity, but the conditions are distributed in a continuous range, a condition may be determined by taking the vicinity of a certain condition value. A condition may be a discrete value such as an integer. A condition may be a classification item instead of a value. A domain may not be consecutive variables in order to explore the best KPI.
# in Equation (24) indicates an operation for obtaining the number of elements, and #iKPIi(x) indicates obtaining the number of pieces of KPI data for the condition x.
On the other hand, in a case where a regression statistic is employed in the representative value KPIrepresentative of a KPI, a mathematical model for fitting (obtaining parameters of the mathematical model) is defined. In this case, since the minimum value or the maximum value of a KPI is desired to be obtained, a polynomial of a second order or more is used, but a formula obtained through a combination of a plurality of pieces of discrete data, such as a random forest regression model or a support vector regression model may be used, and a parametric or a nonparametric equation may be used. A mathematical model in which a single KPI is obtained for a single condition may be used. Hereinafter, the mathematical model is indicated by fKPI (x) In this case, the representative value KPIrepresentative is an estimated value using the mathematical model fKPI (x) and is added with “estimated” indicating estimation as an upper right suffix as expressed in the following Equation (25).
KPIrepresentative(x)KPIestimated(x)=fKPI(x) (25)
As described above, a representative value curve 1801 indicating the representative value KPIrepresentative may be obtained from Equation (24) or Equation (25). In a case where a mean value is employed, the representative value curve 1801 may be obtained by connecting mean values of KPIs for respective conditions to each other. A variation includes an upper variation and a lower variation with respect to the representative value curve 1801. In a case where an upper variation and a lower variation are not particularly differentiated from each other, a standard deviation σ(x) for a condition may be obtained according to the following Equation (26).
In a case where an upper variation and a lower variation are obtained separately from each other, data of a KPI is divided into data pieces, and a standard deviation of each data piece is calculated, as shown in the following Equations (27) to (30).
“/” included in the suffix upper/lower in Equations (29) and (30) indicates an identical order between variables before and after “/”. The sign of inequality in Equations (27) and (28) may include a sign of equality.
In
range(x)=λσ(x) (31)
range(x)=λupperσupper(x)+λlowerσlower(x) (32)
In a case where the representative value shown in Equation (25) and the variation range range shown in Equation (31) or Equation (32) are assigned to Equation (22) representing the evaluation KPI model, an evaluation KPI model 1806 indicated by a dashed line in
An optimal condition CBEST based on the evaluation KPI model 1806 is expressed as shown in the following Equation (33).
As mentioned above, a description has been made of an optimal condition exploration method in a case where an evaluation KPI model is defined by using a standard deviation for a variation range of a KPI.
<Optimal Condition Exploration Method in Case Where Evaluation KPI Model is Defined with Representative Value, Upper Value, or Lower Value as KPI for Specific Probability Value>
Next, a description will be made of an optimal condition exploration method in a case where an evaluation KPI model is defined with a representative value, an upper value, and a lower value as KPIs for a specific probability value.
First, with reference to
Therefore, in a case where a KPI which is generated in many cases is desired to be known, a most frequent value may be evaluated. In a case where an expected KPI is desired to be known, a mean value may be evaluated.
In the evaluation KPI model shown in Equation (22), it is important to determine an upper range and a lower range of a distribution, and a representative value which is used as a reference for dividing the distribution into the upper side and the lower side. Regarding a standard deviation, in a case where a distribution is not a normal distribution, a mathematical model of a distribution is required to be determined with respect to a relationship between a standard deviation and a generated probability.
Therefore, in a case where a representative value, an upper value, and a lower value are directly set on the basis of a probability value, a relationship between a generated probability and a range becomes clear. A median value causing a cumulative generation probability to be 0.5 may be set as a representative value.
A KPI may be interpreted as a control limit when an O&M service is performed, and, in a case where the control limit is handled as ±2σ of a normal distribution by profiling quality control, an upper probability is 0.97725, and a lower probability is 0.02275. In a case where the control limit is handled as ±3σ of a normal distribution by profiling quality control, an upper probability is 0.99865, and a lower probability is 0.00135. An easily understood value may be set, and, for example, 0.9, 0.95, or 0.99 may be set as an upper probability.
Next, a description will be made of a distribution of KPIs for probability values in respective conditions with reference to
As illustrated in
In a case where the representative values KPIbase in the respective conditions are connected to each other via a line segment, a graph for the representative value KPIbase may be obtained. Similarly, a graph for the lower value KPIlower and a graph for the upper value KPIupper may be obtained. A representative value and a variation range obtained in the above-described way are respectively as shown in the following Equations (34) and (35).
KPIrepresentative(x)=KPIbase(x) (34)
range(x)=KPIupper(x)−KPIlower(x) (35)
As shown in the following Equations (36) and (37), a relationship between a probability value and a KPI is determined by a distribution function FKPI(KPI|x), and KPIp giving a probability p may be obtained by using an inverse function of the distribution function.
P|
x
=F
KPI(KPI|x) (36)
KPIp(x)=FKPI−1(p|x) (37)
In a case where data of a KPI is used, the data of a KPI may be sorted in an increasing order, numbers in an increasing order may be divided by the number of pieces of data so as to be used as a probability value, and a KPI with the probability value may be obtained. In a case where probabilities for a representative value, a lower value, and an upper value are respectively indicated by phase, plower, and pupper, KPIs therefor may be expressed as in the following Equations (38) to (40).
KPIbase(x)=KPIp
KPIlower(x)=KPIp
KPIupper(x)=KPIp
A case of the example illustrated in
As mentioned above, a description has been made of an optimal condition exploration method in a case where an evaluation KPI model is defined with a representative value, an upper value, and a lower value as KPIs for a specific probability value.
<Summary>
Finally, with reference to
Various business entities related to O&M service business and an operated O&M asset are set as agents for the O&M service simulator (a business entity or an O&M asset) 210.
The business entities are a customer company which makes profits by operating an O&M asset, a maintenance business entity which performs maintenance of the O&M asset, a diagnosis service company which monitors the O&M asset so as to perform anomaly detection and diagnosis, and a parts business entity which supplies maintenance parts. The O&M asset may be a facility provided in a building or a moving object such as a truck performing transportation.
A configuration of a business entity or an O&M asset may be variously set, and a condition regarding an O&M service such as an interval of scheduled maintenance or the number of maintenance workers may also be variously set. A maintenance method may be set to various methods such as scheduled maintenance, a repair (breakdown maintenance), condition-based maintenance, and predictive maintenance, and parallel methods may also be employed.
A problem or a failure in an O&M asset does not necessarily occur at a fixed time but accidentally. In other words, a problem or a failure occurs in a probabilistic manner. Therefore, the O&M service simulator 210 determines the occurrence of a problem or a failure on the basis of a random number by using a failure rate. A failure rate differs depending on an O&M asset and a structure of a system thereof, and thus the failure rate is defined by using a piecewise linear failure rate model in which a change in various failure rates for an operation time can be expressed. The failure rate is a failure probability per unit time.
In order for a person to perform setting on the basis of data, the person can more easily understand a failure probability for an operation time, that is, management of a proportion of failed assets to all assets than a failure rate. The piecewise linear failure rate model is obtained on the basis of a failure probability. Therefore, a failure rate of an O&M asset, which is one of simulation conditions, is calculated on the basis of a failure probability set by a user. In other words, a condition of the occurrence of a problem or a failure in an O&M simulator is based on setting 2302 of a failure rate for an O&M asset (system).
In a case where maintenance of an asset is planned, a condition making a KPI such as a business profit or cost best is desired to be found by comparing various conditions with each other. Therefore, simulation is executed under respective conditions, and results thereof are compared with each other. The occurrence of a problem or a failure is probabilistic even under an identical condition, and thus simulation is executed a plurality of times under an identical condition. A condition making a KPI best is found from a plurality of simulation results 2303 under the respective conditions. This process is an optimal condition exploration.
Next, a model 2304 indicating a relationship between a condition and a KPI is generated by using machine learning on the basis of the plurality of simulation results 2303 under the respective conditions. In a graph indicating the model, a condition is set to a scheduled maintenance interval of a maintenance condition, a KPI is set to maintenance cost, a horizontal axis expresses the condition, and a vertical axis expresses the KPI, and the results are plotted. A representative value and a variation range are obtained by using a KPI relationship model. The representative value is a value used as a reference, and preferably becomes smaller in a case of cost. A variation is a risk of loss occurrence, and, if the variation is great, a great loss may occur.
Next, an evaluation KPI 2305 is defined by using the representative value and the variation range. The evaluation KPI is generated as a single index by combining the representative value with the variation range. In a case where a KPI is cost, the representative value preferably becomes smaller, and the variation range preferably becomes narrower, and thus the minimum evaluation KPI is best. If a maintenance condition in this case is explored, an optimal condition may be obtained.
The above description relates to a summary of a process of obtaining a condition of a maintenance method making a KPI best in a case where various maintenance methods are applied to an operation of an O&M asset in the maintenance planning apparatus 1.
<Configuration for Realizing Maintenance Planning Apparatus 1 by Using Software>
Meanwhile, the maintenance planning apparatus 1 may be configured with hardware, and may be realized by software. In a case where the maintenance planning apparatus 1 is realized by software, a program configuring the software is installed in a computer. Here, the computer includes a computer incorporated into dedicated hardware, and, for example, a general purpose personal computer which can execute various functions as a result of various programs being installed therein.
In this computer 3000, a central processing unit (CPU) 3001, a read only memory (ROM) 3002, and a random access memory (RAM) 3003 are connected to each other via a bus 3004.
The bus 3004 is further connected to an input/output interface 3005. The input/output interface 3005 is connected to an input unit 3006, an output unit 3007, a storage unit 3008, a communication unit 3009, and a drive 3010.
The input unit 3006 is configured with a keyboard, a mouse, a microphone, or the like. The output unit 3007 is configured with a display, a speaker, or the like. The storage unit 3008 is configured with a hard disk, a nonvolatile memory, or the like. The communication unit 3009 is configured with a network interface, or the like. The drive 3010 drives a removable medium 3011 such as a magnetic disk, an optical disc, a magnetooptical disk, or a semiconductor memory.
In the computer 3000 configured in the above-described way, the CPU 3001 loads, for example, a program stored in the storage unit 3008 to the RAM 3003 via the input/output interface 3005 and the bus 3004, and executes the program, and thus the control unit 10, the simulation execution unit 20, the analysis unit 30, and the display control unit 40 which are constituent elements of the maintenance planning apparatus 1 illustrated in
The program executed by the computer 3000 (CPU 3001) may be recorded on the removable medium 3011 such as a package medium, so as to be provided. The program may be provided via a wired or wireless transmission medium such as a local area network, the Internet, or a digital satellite broadcast.
In the computer 3000, the program may be installed in the storage unit 3008 via the input/output interface 3005 by attaching the removable medium 3011 to the drive 3010. The program may be received by the communication unit 3009 via a wired or wireless transmission medium so as to be installed in the storage unit 3008. The program may be installed in the ROM 3002 or the storage unit 3008 in advance.
The program executed by the computer 3000 may be a program for performing processes in a time series according to the order described in the present specification, and may be a program for performing processes in parallel or at a necessary timing such as the time at which the program is called.
The effects described in the present specification are only examples, and are not limited, and other effects may be achieved.
The present invention is not limited to the above-described embodiments, and includes various modification examples. For example, each of the embodiments has been described in detail for better understanding of the present invention, and the present invention is not limited to necessarily including all of the above-described constituent elements. Some configurations of a certain embodiment may be replaced with configurations of another embodiment, and configurations of another embodiment may be added to configurations of a certain embodiment. The configurations of other embodiments may be added to, deleted from, and replaced with some of the configurations of each embodiment.
Some or all of the above-described respective configurations, functions, processing units, and the like may be designed as, for example, integrated circuits so as to be realized in hardware. The above-described respective configurations and functions may be realized in software by a processor interpreting and executing a program for realizing each function. Information regarding a program, a table, a file, and the like for realizing each function may be stored in a recording device such as a memory, a hard disk, or a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD. A control line or an information line which is necessary for description is illustrated, and all control lines or information lines on a product may not necessarily be illustrated. Actually, it may be considered that almost all of the configurations are connected to each other.
The present invention may be provided not only as a maintenance planning apparatus and a maintenance planning method but also in various aspects such as a system configured with a plurality of apparatus or a computer readable program.
10 CONTROL UNIT
11 CONDITION DATA
20 SIMULATION EXECUTION UNIT
30 ANALYSIS UNIT
31 OPTIMAL CONDITION DATA
32 GRAPH DATA
33 ANIMATION DATA
40 DISPLAY CONTROL UNIT
41 GRAPH DRAWING PORTION
42 ANIMATION DRAWING PORTION
101 PROCESS EXECUTION PORTION
102 CONDITION SETTING PORTION
103 KPI COMPUTATION PORTION
104 FAILURE RATE CALCULATION PORTION
210 SERVICE SIMULATOR
211 CONDITION ACQUISITION PROCESSING SECTION
212 ASSET DETERIORATION/SIGNAL GENERATION/FAILURE RATE/FAILURE PROCESSING SECTION
213 ANOMALY DETECTION/DIAGNOSIS PROCESSING SECTION
214 CUSTOMER TASK SCHEDULE PLAN PROCESSING SECTION
215 CUSTOMER TASK EXECUTION PROCESSING SECTION
216 REPAIR TASK SCHEDULE PLAN PROCESSING SECTION
217 REPAIR TASK EXECUTION PROCESSING SECTION
218 PARTS SUPPLY/INVENTORY MANAGEMENT PROCESSING SECTION
220 STORAGE PORTION
302 BUILDING
303 FACILITY
304 MAINTENANCE SERVICE COMPANY
305 MAINTENANCE WORKER
306 DIAGNOSIS SERVICE COMPANY
307 WAREHOUSE
308 MANUFACTURER
316 DIAGNOSIS REPORT
1301 FAILURE PROBABILITY SETTING SCREEN
1302 TABLE SETTING FIELD
1303 ADD BUTTON
1304 DELETE BUTTON
1305 CHECKBOX
1306 OPERATION FIELD
1307 SETTING CHECK BUTTON
1308 CANCEL BUTTON
1309 OK BUTTON
1311 FAILURE PROBABILITY SETTING SCREEN
1312 DRAWING SETTING FIELD
1313 SCALE ADJUSTMENT FIELD
1314 OPERATION FIELD
1315 SETTING CHECK BUTTON
1316 CANCEL BUTTON
1317 OK BUTTON
1452 CONDITION-KPI RELATIONSHIP MODEL
1701 EVALUATION KPI SETTING SCREEN
1702 CONDITION DISPLAY FIELD
1703 SELECTION FIELD
1704 GRAPH DISPLAY FIELD
1705 DISTRIBUTION CHECK FIELD
1706 DISPLAY BUTTON
1707 OPERATION FIELD
1708 OPTIMAL EXPLORATION NUMBER
1709 RESULT PRINT BUTTON
1710 COMPLETION BUTTON
1721 KPI PROBABILITY DISTRIBUTION SCREEN
1722 SELECTION FIELD
1723 OK BUTTON
1731 OPTIMAL CONDITION SCREEN
1732 OK BUTTON
3000 COMPUTER
3001 CPU
3002 ROM
3003 RAM
3004 BUS
3005 INPUT/OUTPUT INTERFACE
3006 INPUT UNIT
3007 OUTPUT UNIT
3008 STORAGE UNIT
3009 COMMUNICATION UNIT
3010 DRIVE
3011 REMOVABLE MEDIUM
Number | Date | Country | Kind |
---|---|---|---|
2018-015109 | Jan 2018 | JP | national |