MAIZE MICRORNA SEQUENCES AND TARGETS THEREOF FOR AGRONOMIC TRAITS

Information

  • Patent Application
  • 20160017349
  • Publication Number
    20160017349
  • Date Filed
    March 13, 2014
    10 years ago
  • Date Published
    January 21, 2016
    8 years ago
Abstract
Methods and compositions for maize target gene suppression and improving an agronomic trait through microRNAs or target gene modulation are disclosed. Polynucleotide constructs useful for gene silencing, or upregulation or modulation as well as cells, plants and seeds comprising the polynucleotides and methods for using microRNAs to silence a target gene are also described.
Description
FIELD

The field relates generally to plant molecular biology in relation to methods of suppressing gene expression.


BACKGROUND

MicroRNAs (miRNAs) were first identified only a few years ago, but already it is clear that they play an important role in regulating gene activity. These short nucleotide noncoding RNAs have the ability to hybridize via base-pairing with specific target mRNAs and down-regulate the expression of these transcripts, by mediating either RNA cleavage or translational repression. Recent studies have indicated that miRNAs have important functions during development. In plants, they have been shown to control a variety of developmental processes including flowering time, leaf morphology, organ polarity, floral morphology, and root development. Given the established regulatory role of miRNAs, it is likely that they are also involved in the control of some of the major crop traits such drought tolerance and disease resistance.


Improving crop plants for water use efficiency or nitrogen use efficiency and yield, among others, are needed to improve crop productivity necessary to feed a growing population. MicroRNAs are key regulators of plant processes, and thus effort to develop the use of microRNAs to improving crop plants is of high interest and potential value. They are believed to regulate diverse processes in plants from development to environmental adaptations.


BRIEF DESCRIPTION OF THE TABLES

Table 1 lists the SEQ ID NOS of the microRNA core sequences (Column A), the microRNA precursor genes (Column B) and the corresponding microRNA target genes (Column C) for the microRNA sequences of Column A. In column C, the transcript SEQ ID NO and any corresponding peptide SEQ ID NO for each target gene are listed separated by a comma (,). Every target gene transcript and its associated peptide SEQ ID NOs are separated by a semi-colon (;) in Column C from another transcript-peptide pair. If a particular transcript does not have an associated peptide sequence, then the designation “No_Pept” was used (see e.g., for microRNA SEQ ID NO: 32). The sequences for the SEQ ID NOs listed in Columns A-C are provided in the accompanying sequence listing, incorporated herein by reference in its entirety. As shows in Table 1, a particular core microRNA may have more than precursor gene and more than one target gene.


Table 2 lists the relative trait values for drought (Column D), nitrogen use efficiency (nitrogen; Column E), and yield (Column F) with respect to each target gene (Column A) and the translated peptide sequence (Column B) for the target gene. The relevant traits are indicated as such (Column C). For example, some target genes have high relative trait values for all the three referenced traits. Some target genes are represented under only of the traits (e.g., drought or nitrogen or yield).


BRIEF DESCRIPTION OF THE SEQUENCE LISTING

A sequence listing is provided herewith in electronic medium. The contents of the sequence listing are hereby incorporated by reference in compliance with 37 CFR 1.52(e).


SEQ ID NOS: 1-197 are core microRNA sequences. SEQ ID NOS: 198-1126 are microRNA precursor genes. SEQ ID NOS: 1127-2495 are microRNA target gene nucleotide sequences (transcripts). SEQ ID NOS: 2496-3804 are microRNA target gene translated amino acid sequences (peptides).


SUMMARY

A method of improving an agronomic trait of a maize plant, the method includes providing a transgenic maize plant comprising in its genome a recombinant DNA having at least one DNA element for modulating the expression of at least one target gene, wherein the at least one DNA element is selected from the group consisting of nucleotide sequences that are at least 90% identical to SEQ ID NOS: 1-197. In an embodiment, the agronomic trait is drought tolerance. In an embodiment, the agronomic trait is nitrogen use efficiency. In an embodiment, the agronomic trait is yield increase.


In an embodiment, the DNA elements whose sequences are disclosed herein, for example in Table 1 and in the accompanying Sequence Listing, modulate the expression of a target gene sequence selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703. In an embodiment, the DNA element modulates the expression of a gene sequence encoding a target peptide sequence selected from the group consisting of SEQ ID NOS: 2497, 2499, 2505, 2507, 2514, 2516, 2526, 2530, 2536, 2542, 2623, 2634, 2676, 2753, 2831, 2832, 2888, 2892, 2895, 2943, 2947, 2955, 2975, and 3054.


A method of improving an agronomic trait of a maize plant, the method includes providing a transgenic maize plant comprising in its genome a recombinant DNA for modulating the expression of at least one target gene, wherein the target gene sequence is selected from the group consisting of SEQ ID NOS: 1127-2495. In an embodiment, the target gene sequence is selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703 and wherein the agronomic trait is one of drought tolerance, nitrogen use efficiency or yield. In an embodiment, the target gene sequence is selected from the group consisting of SEQ ID NOS: 1168, 1178, 1179, 1185, 1194, 1220, 1710, 1716, 1733, 1738, 1771, 1784, 1795, 1807, 1823, 1872, 1892, 1926, 1936, 1937, 1938, 1942, 1970, 2001, 2003, 2006, 2026, 2074, 2105, 2109, 2110, 2130, 2145, 2152, 2174, 2175, 2189, 2192, 2199, 2200, 2202, 2240, 2245, 2246, 2291, 2299, 2310, 2313, 2340, 2341, 2371, 2412, 2413, 2414, 2417, 2429, 2430, 2431, 2443, 2468 and wherein the agronomic trait is one of nitrogen use efficiency or yield.


In an embodiment, the target gene sequence for modulation by a DNA element encoding an interfering RNA is selected from the group consisting of SEQ ID NOS: 1135, 1137, 1141, 1142, 1143, 1146, 1153, 1154, 1160, 1164, 1166, 1169, 1183, 1190, 1192, 1195, 1208, 1231, 1255, 1256, 1258, 1267, 1275, 1278, 1279, 1283, 1290, 1299, 1307, 1322, 1336, 1339, 1342, 1347, 1353, 1355, 1361, 1362, 1363, 1373, 1378, 1409, 1415, 1430, 1431, 1432, 1437, 1448, 1449, 1452, 1453, 1468, 1487, 1498, 1505, 1552, 1562, 1575, 1615, 1643, 1655, 1662, 1664, 1680, 1684 and wherein the agronomic trait is one of drought tolerance or yield.


A method of improving an agronomic trait of a maize plant, the method includes providing a transgenic maize plant comprising in its genome a recombinant DNA for modulating the expression of at least one target gene, wherein the target gene sequence encodes a target polypeptide sequence selected from the group consisting of SEQ ID NOS: 2496-3804. In an embodiment, the target polypeptide sequence is selected from the group consisting of SEQ ID NOS: 2497, 2499, 2505, 2507, 2514, 2516, 2526, 2530, 2536, 2542, 2623, 2634, 2676, 2753, 2831, 2832, 2888, 2892, 2895, 2943, 2947, 2955, 2975, and 3054 and wherein the agronomic trait is one of drought tolerance, nitrogen use efficiency or yield. In an embodiment, the target polypeptide sequence is selected from the group consisting of SEQ ID NOS: 2498, 2501, 2503, 2524, 2568, 2602, 2606, 2613, 2618, 2629, 2632, 2640, 2652, 2660, 2664, 2685, 2695, 2720, 2742, 2752, 2757, 2759, 2770, 2780, 2790, 2795, 2796, 2797, 2799, 2802, 2811, 2814, 2818, 2819, 2820, 2822, 2833, 2834, 2835, 2836, 2837, 2842, 2847, 2849, 2857, 2884, 2918, 2936, 2939, 2942, 2948, 2954, 2956, 2957, 2958, 2959, 2965, 2966, 2967, 2983, 2995, 2996, 3035, 3037, 3055, 3058 and wherein the agronomic trait is one of drought tolerance or nitrogen use efficiency.


In an embodiment, the target gene sequence that is modulated by a nucleic acid encodes a target peptide sequence selected from the group consisting of SEQ ID NOS: 2537, 2547, 2548, 2554, 2563, 2589, 3061, 3067, 3084, 3089, 3121, 3134, 3145, 3156, 3172, 3220, 3239, 3271, 3281, 3282, 3283, 3287, 3311, 3287, 3341, 3344, 3364, 3409, 3438, 3461, 3476, 3482, 3503, 3504, 3518, 3521, 3528, 3529, 3531, 3568, 3573, 3574, 3618, 3625, 3636, 3639, 3666, 3667, 3696, 3731, 3732, 3733, 3734, 3743, 3744, 3756, 3780, and wherein the agronomic trait is one of nitrogen use efficiency or yield.


An isolated polynucleotide includes a microRNA selected from the group consisting of SEQ ID NOS: 1-197, wherein the microRNA modulates the expression of a target gene in maize involved in an agronomic trait, the target gene selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703.


A recombinant DNA construct includes the polynucleotides disclosed herein, for example, the polynucleotides encoding the miRNAs of Table 1, wherein the DNA construct includes a plant expressible regulatory element.


An isolated polynucleotide comprising a microRNA selected from the group consisting of SEQ ID NOS: 1-197, wherein the microRNA modulates the expression of a target gene in maize involved in an agronomic trait, the target gene selected from the group consisting of SEQ ID NOS: 1168, 1178, 1179, 1185, 1194, 1220, 1710, 1716, 1733, 1738, 1771, 1784, 1795, 1807, 1823, 1872, 1892, 1926, 1936, 1937, 1938, 1942, 1970, 2001, 2003, 2006, 2026, 2074, 2105, 2109, 2110, 2130, 2145, 2152, 2174, 2175, 2189, 2192, 2199, 2200, 2202, 2240, 2245, 2246, 2291, 2299, 2310, 2313, 2340, 2341, 2371, 2412, 2413, 2414, 2417, 2429, 2430, 2431, 2443, 2468 and wherein the agronomic trait is one of nitrogen use efficiency or yield.


In an embodiment, the transgenic maize plant includes the DNA constructs disclosed herein. In an embodiment, the transgenic seed includes the DNA constructs disclosed herein.


A transgenic maize plant, wherein the expression of a target gene is reduced compared to a control plant, the target gene sequence is selected from the group consisting of SEQ ID NOS: 1127-2495, and wherein the transgenic maize plant exhibits drought tolerance, nitrogen use efficiency, or increased yield or a combination thereof.


A transgenic maize plant, wherein the expression of a target gene is reduced compared to a control plant, the target gene sequence is 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NOS: 1127-2495, and wherein the transgenic maize plant exhibits drought tolerance, nitrogen use efficiency, or increased yield or a combination thereof.


A recombinant DNA construct includes a microRNA precursor gene selected from the group consisting of SEQ ID NOS: 198-1126 or a fragment thereof to modulate the expression of a target gene. In an embodiment, the DNA constructs disclosed herein modulate the expression of a target gene selected from the group consisting of SEQ ID NOS: 1127-2495, and wherein the target gene modulates drought tolerance, nitrogen use efficiency, or increased yield or a combination thereof.


A method of developing a maize plant, the method includes selecting a maize plant using marker assisted selection from a plurality of maize plants by detecting a molecular marker, wherein the molecular marker is derived from a polynucleotide sequence selected from the group consisting of (i) SEQ ID NOS: 198-1126 or a complement thereof or (ii) SEQ ID NOS: 1127-2495 or a complement thereof. In an embodiment, a maize plant produced by the method of marker assisted selection is disclosed herein. In an embodiment, a maize plant cell produced by the method of marker assisted selection is disclosed herein. In an embodiment, the maize seed produced by the method of marker assisted selection is disclosed herein.


An artificial or a synthetic nucleic acid molecule encoding a single stranded or double stranded RNA molecule is disclosed, wherein the nucleic acid molecule is designed based on the complementarity to one of (i) the miRNA sequences of SEQ ID NOS: 1-197; (ii) the miRNA precursor genes of SEQ ID NOS: 198-1126; or (iii) the target genes of SEQ ID NOS: 1127-2495.







DETAILED DESCRIPTION

Regulatory activity of microRNAs (miRNA) is specific towards certain sets of genes depending on the sequence similarity of the target genes. The site of action for these miRNAs within the target gene can vary, and can affect for example, promoter function, mRNA stability or translation, thus affecting the overall expression and activity of the target genes. Often the miRNAs have negative regulatory function upon the target gene. The target genes are often regulators of a pathway or a network hub or a node, and depending upon whether they have intrinsic negative or positive regulations of the neighboring or downstream genes in their respective networks, the net effect upon the pathway-network system of the microRNA regulation can be either positive or negative.


Based on a comprehensive survey of maize microRNAs, their source genes, and the likely target genes they regulate, methods and compositions are disclosed herein that modulate gene functions and improve crop productivity through water use efficiency, or nitrogen use efficiency or yield.


Relative trait values were assigned to the various target genes depending on the likelihood of their role in association with relevant agronomic traits, such as water use efficiency (WUE, drought), nitrogen use efficiency (NUE, Nitrogen), and yield. The miRNA sequences and the corresponding target gene sequences establish relationships among the miRNAs and their target genes for trait efficacy. These miRNAs and/or their target genes can be used, for example by recombinant technology to induce gene suppression or as tools to enable marker-assisted selection for breeding purposes towards crop improvement.


In an embodiment, modulating the expression of the miRNA or the interaction of the miRNA with the target gene, results in improving one or more agronomic traits in the crop plants. Depending on the anti-correlated nature of the microRNAs relative to the target genes, for example, a down-regulation of a microRNA would equate to an upregulation of the target gene. Therefore, it is possible to upregulate the expression of a target gene transgenically without expressing a recombinant nucleic acid of the target encoding the target peptide. In an embodiment, for example, by changing the expression of an endogenous miRNA either through transgenic suppression methods or by engineering a site-specific change in the precursor gene for the endogenous miRNA, expression and/or activity of the corresponding target gene(s) can be modulated.


In an embodiment, to modulate the expression of one or more genes involved in a pathway or those genes that share sequence similarity, one or a few miRNAs can be expressed to affect the expression of multiple genes. For example, one microRNA (SEQ ID NO: 46) can affect the expression of a number of genes involved in drought or nitrogen or yield (see Table 1; target gene SEQ ID NOS: 1128, 1147, 1289, 1311, 1314, 1316, 1338, and others).


Methods and compositions useful for suppressing targeted sequences are disclosed. The compositions can be employed in any type of plant cell, and in other cells which comprise the appropriate processing components (e.g., RNA interference components), including invertebrate and vertebrate animal cells. The compositions and methods are based on an endogenous miRNA silencing process discovered in Arabidopsis, a similar strategy can be used to extend the number of compositions and the organisms in which the methods are used. The methods can be adapted to work in any eukaryotic cell system. Additionally, the compositions and methods described herein can be used in individual cells, cells or tissue in culture, or in vivo in organisms, or in organs or other portions of organisms.


The compositions selectively suppress the target gene by encoding a miRNA having substantial complementarity to a region of the target gene. The miRNA is provided in a nucleic acid construct which, when transcribed into RNA, is predicted to form a hairpin structure which is processed by the cell to generate the miRNA, which then suppresses expression of the target gene.


Nucleic acid sequences are disclosed that encode miRNAs from maize. Backbone hairpins containing the individual miRNA sequences are also disclosed. Constructs are described for transgenic expression of miRNAs and their backbones. Alternatively, constructs are described wherein backbone sequences and miRNA sequences are exchanged thereby altering the expression pattern of the miRNA, and its subsequent specific target gene in the transgenic host. Any miRNA can be exchanged with any other backbone to create a new miRNA/backbone hybrid.


A method for suppressing a target gene is provided. The method employs any of the constructs above, in which a miRNA is designed to identify a region of the target sequence, and inserted into the construct. Upon introduction into a cell, the miRNA produced suppresses expression of the targeted sequence. The target sequence can be an endogenous plant sequence, or a heterologous transgene in the plant.


There can also be mentioned as the target gene, for example, a gene from a plant pathogen, such as a pathogenic virus, nematode, insect, or mold or fungus.


Another aspect concerns a plant, cell, and seed comprising the construct and/or the miRNA. Typically, the cell will be a cell from a plant, but other prokaryotic or eukaryotic cells are also contemplated, including but not limited to viral, bacterial, yeast, insect, nematode, or animal cells. Plant cells include cells from monocots and dicots. The disclosure also provides plants and seeds comprising the construct and/or the miRNA.


“Plant” includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same. Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.


The term “plant parts” includes differentiated and undifferentiated tissues including, but not limited to the following: roots, stems, shoots, leaves, pollen, seeds, tumor tissue and various forms of cells and culture (e.g., single cells, protoplasts, embryos and callus tissue). The plant tissue may be in plant or in a plant organ, tissue or cell culture.


The term “plant organ” refers to plant tissue or group of tissues that constitute a morphologically and functionally distinct part of a plant.


The term “genome” refers to the following: (1) the entire complement of genetic material (genes and non-coding sequences) present in each cell of an organism, or virus or organelle; (2) a complete set of chromosomes inherited as a (haploid) unit from one parent.


“Progeny” comprises any subsequent generation of a plant. Progeny will inherit, and stably segregate, genes and transgenes from its parent plant(s).


Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5′ to 3′ orientation; amino acid sequences are written left to right in amino to carboxyl orientation, respectively. Numeric ranges recited within the specification are inclusive of the numbers defining the range and include each integer within the defined range. Amino acids may be referred to herein by either commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. Unless otherwise provided for, software, electrical, and electronics terms as used herein are as defined in The New IEEE Standard Dictionary of Electrical and Electronics Terms (5th edition, 1993). The terms defined below are more fully defined by reference to the specification as a whole.


The terms “recombinant construct”, “expression construct”, “chimeric construct”, “construct”, and “recombinant DNA construct” are used interchangeably herein. A recombinant construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature. For example, a chimeric construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. Such a construct may be used by itself or may be used in conjunction with a vector. If a vector is used, then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. Screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, immunoblotting analysis of protein expression, or phenotypic analysis, among others.


This construct may comprise any combination of deoxyribonucleotides, ribonucleotides, and/or modified nucleotides. The construct may be transcribed to form an RNA, wherein the RNA may be capable of forming a double-stranded RNA and/or hairpin structure. This construct may be expressed in the cell, or isolated or synthetically produced. The construct may further comprise a promoter, or other sequences which facilitate manipulation or expression of the construct.


As used here “suppression” or “silencing” or “inhibition” are used interchangeably to denote the down-regulation of the expression of a product of a target sequence relative to its normal expression level in a wild type organism. Suppression includes expression that is decreased by about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% relative to the wild type expression level.


As used herein, “encodes” or “encoding” refers to a DNA sequence which can be processed to generate an RNA and/or polypeptide.


As used herein, “expression” or “expressing” refers to production of a functional product, such as, the generation of an RNA transcript from an introduced construct, an endogenous DNA sequence, or a stably incorporated heterologous DNA sequence. The term may also refer to a polypeptide produced from an mRNA generated from any of the above DNA precursors. Thus, expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or other functional RNA) and/or translation of RNA into a precursor or mature protein (polypeptide).


As used herein, “heterologous” with respect to a sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, with respect to a nucleic acid, it can be a nucleic acid that originates from a foreign species, or is synthetically designed, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. A heterologous protein may originate from a foreign species or, if from the same species, is substantially modified from its original form by deliberate human intervention.


The term “host cell” refers to a cell which contains or into which is introduced a nucleic acid construct and supports the replication and/or expression of the construct. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as fungi, yeast, insect, amphibian, nematode, or mammalian cells. Alternatively, the host cells are monocotyledonous or dicotyledonous plant cells. An example of a monocotyledonous host cell is a maize host cell.


The term “introduced” means providing a nucleic acid (e.g., expression construct) or protein into a cell. Introduced includes reference to the incorporation of a nucleic acid into a eukaryotic or prokaryotic cell where the nucleic acid may be incorporated into the genome of the cell, and includes reference to the transient provision of a nucleic acid or protein to the cell. Introduced includes reference to stable or transient transformation methods, as well as sexually crossing. Thus, “introduced” in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct/expression construct) into ac ell, means “transfection” or “transformation” or “transduction” and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).


The term “genome” as it applies to a plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.


The term “isolated” refers to material, such as a nucleic acid or a protein, which is: (1) substantially or essentially free from components which normally accompany or interact with the material as found in its naturally occurring environment or (2) if the material is in its natural environment, the material has been altered by deliberate human intervention to a composition and/or placed at a locus in the cell other than the locus native to the material.


As used herein, microRNA or “miRNA” refers to an oligoribonucleic acid, which regulates expression of a polynucleotide comprising the target gene. A “mature miRNA” refers to the miRNA generated from the processing of a miRNA precursor. A “miRNA template” is an oligonucleotide region, or regions, in a nucleic acid construct which encodes the miRNA. A portion of a polynucleotide construct is substantially complementary to the miRNA template and is predicted to base pair with the miRNA template. The miRNA template and a portion of the construct may form a double-stranded polynucleotide, including a hairpin structure.


As used herein, “domain” or “functional domain” refer to nucleic acid sequence(s) that are capable of eliciting a biological response in plants. A domain could refer to a portion within either individual miRNA or groups of miRNAs. Also, miRNA sequences associated with their backbone sequences could be considered domains useful for processing the miRNA into its active form. As used herein, “subdomains” or “functional subdomains” refer to subsequences of domains that are capable of eliciting a biological response in plants. A miRNA could be considered a subdomain of a backbone sequence. “Contiguous” sequences or domains refer to sequences that are sequentially linked without added nucleotides intervening between the domains.


The phrases “target sequence”, “target gene”, “target gene sequence” and “sequence of interest” may be used interchangeably. Target sequence is used to mean the nucleic acid sequence that is selected for alteration (e.g., suppression) of expression, and is not limited to polynucleotides encoding polypeptides. The target sequence comprises a sequence that is substantially or fully complementary to the miRNA. The target sequence includes, but is not limited to, RNA, DNA, or a polynucleotide comprising the target sequence. As discussed in Bartel and Bartel (2003) Plant Phys. 132:709-719, most microRNA sequences are 20-22 nucleotides with anywhere from 0-3 mismatches when compared to their target sequences.


It is understood that microRNA sequences include for example, 21 nucleotide sequences, or shorter (e.g., 18, 19, 20 mer) or longer (22, 23, 24-mer) sequences. In addition, some nucleotide substitutions, particularly at the last two nucleotides of the 3′ end of the microRNA sequence, may be useful in retaining at least some microRNA function.


As used herein, “nucleic acid” means a polynucleotide and includes single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases. Nucleic acids may also include fragments and modified nucleotides. Thus, the terms “polynucleotide”, “nucleic acid sequence”, “nucleotide sequence” or “nucleic acid fragment” are used interchangeably and is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. Nucleotides (usually found in their 5′-monophosphate form) are referred to by their single letter designation as follows: “A” for adenylate or deoxyadenylate (for RNA or DNA, respectively), “C” for cytidylate or deosycytidylate, “G” for guanylate or deoxyguanylate, “U” for uridlate, “T” for deosythymidylate, “R” for purines (A or G), “Y” for pyrimidiens (Cor T), “K” for G or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.


By “nucleic acid library” is meant a collection of isolated DNA or RNA molecules which comprise and substantially represent the entire transcribed fraction of a genome of a specified organism or of a tissue from that organism. Construction of exemplary nucleic acid libraries, such as genomic and cDNA libraries, is taught in standard molecular biology references such as Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol. 152, Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning—A Laboratory Manual, 2nd ed., Vol. 1-3 (1989); and Current Protocols in Molecular Biology, F. M. Ausubel et al., Eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc. (1994).


As used herein “operably linked” includes reference to a functional linkage of at least two sequences. Operably linked includes linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.


As used herein, “plant” includes plants and plant parts including but not limited to plant cells, plant tissue such as leaves, stems, roots, flowers, and seeds.


As used herein, “polypeptide” means proteins, protein fragments, modified proteins, amino acid sequences and synthetic amino acid sequences. The polypeptide can be glycosylated or not.


As used herein, “promoter” refers to a nucleic acid fragment, e.g., a region of DNA, that is involved in recognition and binding of an RNA polymerase and other proteins to initiate transcription. In other words, this nucleic acid fragment is capable of controlling transcription of another nucleic acid fragment.


The term “selectively hybridizes” includes reference to hybridization, under stringent hybridization conditions, of a nucleic acid sequence to a specified nucleic acid target sequence to a detectably greater degree (e.g., at least 2-fold over background) than its hybridization to non-target nucleic acid sequences and to the substantial exclusion of non-target nucleic acids. Selectively hybridizing sequences typically have about at least 80% sequence identity, or 90% sequence identity, up to and including 100% sequence identity (i.e., fully complementary) with each other.


The term “stringent conditions” or “stringent hybridization conditions” includes reference to conditions under which a probe will selectively hybridize to its target sequence. Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which are 100% complementary to the probe (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optionally less than 500 nucleotides in length.


Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1×SSC at 55 to 60° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60 to 65° C.


Specificity is typically the function of post-hybridization washes, the relevant factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl, Anal. Biochem., 138:267-284 (1984): Tm=81.5° C.+16.6 (log M)+0.41 (% GC)−0.61 (% form)−500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1° C. for each 1% of mismatching; thus, Tm, hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with ≧90% identity are sought, the Tm can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4° C. lower than the thermal melting point (Tm); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10° C. lower than the thermal melting point (Tm); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20° C. lower than the thermal melting point (Tm). Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45° C. (aqueous solution) or 32° C. (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, Part I, Chapter 2 “Overview of principles of hybridization and the strategy of nucleic acid probe assays”, Elsevier, New York (1993); and Current Protocols in Molecular Biology, Chapter 2, Ausubel et al., Eds., Greene Publishing and Wiley-Interscience, New York (1995). Hybridization and/or wash conditions can be applied for at least 10, 30, 60, 90, 120, or 240 minutes.


The terms “reliable detection” and “reliably detected” are defined herein to mean the reproducible detection of measurable, sequence-specific signal intensity above background noise.


As used herein, “transgenic” refers to a plant or a cell which comprises within its genome a heterologous polynucleotide. Preferably, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on, or heritable, to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of an expression construct. Transgenic is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term “transgenic” as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.


As used herein, “vector” refers to a small nucleic acid molecule (plasmid, virus, bacteriophage, artificial or cut DNA molecule) that can be used to deliver a polynucleotide into a host cell. Vectors are capable of being replicated and contain cloning sites for introduction of a foreign polynucleotide. Thus, expression vectors permit transcription of a nucleic acid inserted therein.


Polynucleotide sequences may have substantial identity, substantial homology, or substantial complementarity to the selected region of the target gene. As used herein “substantial identity” and “substantial homology” indicate sequences that have sequence identity or homology to each other. Generally, sequences that are substantially identical or substantially homologous will have about 75%, 80%, 85%, 90%, 95%, or 100% sequence identity wherein the percent sequence identity is based on the entire sequence and is determined by GAP alignment using default parameters (GCG, GAP version 10, Accelrys, San Diego, Calif.). GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48:443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of sequence gaps. Sequences which have 100% identity are identical. “Substantial complementarity” refers to sequences that are complementary to each other, and are able to base pair with each other. In describing complementary sequences, if all the nucleotides in the first sequence will base pair to the second sequence, these sequences are fully or completely complementary.


Computational identification of miRNAs was accomplished from size selected small RNA libraries from leaf, drought-stressed leaf, seed, and various other tissues.


In some embodiments, the miRNA template, (i.e. the polynucleotide encoding the miRNA), and thereby the miRNA, may comprise some mismatches relative to the target sequence. In some embodiments the miRNA template has ≧1 nucleotide mismatch as compared to the target sequence, for example, the miRNA template can have 1, 2, 3, 4, 5, or more mismatches as compared to the target sequence. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the target sequence. For example, the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the target sequence.


In some embodiments, the miRNA template, (i.e. the polynucleotide encoding the miRNA) and thereby the miRNA, may comprise some mismatches relative to the miRNA containing construct. In some embodiments the miRNA template has ≧1 nucleotide mismatch as compared to the miRNA construct, for example, the miRNA template can have 1, 2, 3, 4, 5, or more mismatches as compared to the miRNA construct. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the miRNA construct. For example, the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the miRNA construct.


In some embodiments, the target sequence is selected from a plant pathogen. Plants or cells comprising a miRNA directed to the target sequence of the pathogen are expected to have decreased sensitivity and/or increased resistance to the pathogen. In some embodiments, the miRNA is encoded by a nucleic acid construct further comprising an operably linked promoter. In some embodiments, the promoter is a pathogen-inducible promoter.


In another embodiment, there is provided a nucleic acid construct for suppressing a target sequence. The nucleic acid construct encodes a miRNA substantially complementary to the target. In some embodiments, the nucleic acid construct further comprises a promoter operably linked to the polynucleotide encoding the miRNA. In some embodiments, the nucleic acid construct lacking a promoter is designed and introduced in such a way that it becomes operably linked to a promoter upon integration in the host genome. In some embodiments, the nucleic acid construct is integrated using recombination, including site-specific recombination. See, for example, WO 99/25821, herein incorporated by reference. In some embodiments, the nucleic acid construct is an RNA. In some embodiments, the nucleic acid construct comprises at least one recombination site, including site-specific recombination sites. In some embodiments the nucleic acid construct comprises at least one recombination site in order to facilitate integration, modification, or cloning of the construct. In some embodiments the nucleic acid construct comprises two site-specific recombination sites flanking the miRNA precursor. In some embodiments the site-specific recombination sites include FRT sites, lox sites, or att sites, including attB, attL, attP or attR sites. See, for example, WO 99/25821, and U.S. Pat. Nos. 5,888,732, 6,143,557, 6,171,861, 6,270,969, and 6,277,608, herein incorporated by reference.


In an embodiment, a DNA expression construct includes any of the isolated polynucleotides discussed herein operably linked to at least one regulatory sequence.


In an embodiment, the a plant includes in its genome the DNA expression constructs discussed herein. Such plants can be selected from the group consisting of corn, rice, sorghum, sunflower, millet, soybean, canola, wheat, barley, oat, beans, and nuts.


In an embodiment, transgenic seeds obtained from a plant includes in its genome the DNA expression constructs discussed herein. Also within the scope are transformed plant tissue or a plant cell comprising in its genome the DNA expression constructs discussed herein. In an embodiment, by-products and progeny plants obtained from such transgenic seeds.


In an embodiment, the nucleic acid construct comprises an isolated polynucleotide comprising a polynucleotide which encodes a modified plant miRNA precursor, the modified precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide comprises a miRNA substantially complementary to the target sequence, wherein the precursor is capable of forming a hairpin.


In some embodiments there are provided cells, plants, and seeds comprising the introduced polynucleotides, and/or produced by the methods disclosed herein. The cells include prokaryotic and eukaryotic cells, including but not limited to bacteria, yeast, fungi, viral, invertebrate, vertebrate, and plant cells. Plants, plant cells, and seeds include gynosperms, monocots and dicots, including but not limited to, for example, rice, wheat, oats, barley, millet, sorghum, soy, sunflower, safflower, canola, alfalfa, cotton, Arabidopsis, and tobacco.


As used herein, “by-products” refer to any product, fraction, or material produced from the processing of the seed. Corn kernels (seeds) are subjected to both wet and dry milling. The goal of both processes is to separate the germ, the endosperm, and the pericarp (hull). Wet milling separates the chemical constituents of corn into starch, protein, oil, and fiber fractions.


Methods and compositions useful in suppression of a target sequence and/or validation of function are disclosed. The disclosure also relates to a method for using microRNA (miRNA) mediated RNA interference (RNAi) to silence or suppress a target sequence to evaluate function, or to validate a target sequence for phenotypic effect and/or trait development. Constructs comprising small nucleic acid molecules, miRNAs, capable of inducing silencing, and methods of using these miRNAs to selectively silence target sequences are disclosed.


RNA interference refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire et al., Nature 391:806 1998). The corresponding process in plants is commonly referred to as post-transcriptional gene silencing (PTGS) or RNA silencing and is also referred to as quelling in fungi. The process of post-transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 1999). Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.


The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as “dicer”. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 2001) and/or pre miRNAs into miRNAs. Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 2001). Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., 2001, Science 293:834). The RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex (Elbashir et al., Genes Dev. 15:188 2001). In addition, RNA interference can also involve small RNA (e.g., microRNA, or miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 2002; Volpe et al., Science 297:1833-1837 2002; Jenuwein, Science 297:2215-2218 2002; and Hall et al., Science 297:2232-2237 2002). As such, miRNA molecules are used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transcriptional level.


RNAi has been studied in a variety of systems. Fire et al. (Nature 391:806 1998) were the first to observe RNAi in C. elegans. Wianny and Goetz (Nature Cell Biol. 2:70 1999) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 2000) describe RNAi in Drosophila cells transfected with dsRNA. Elbashir et al., (Nature 411:494 2001) describe RNAi induced by introduction of duplexes of synthetic 21-nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells.


Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.


Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited.


MicroRNAs (miRNAs) are noncoding RNAs of about 18 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 2001, Lagos-Quintana et al., Curr. Biol. 12:735-739 2002; Lau et al., Science 294:858-862 2001; Lee and Ambros, Science 294:862-864 2001; Llave et al., Plant Cell 14:1605-1619 2002; Mourelatos et al., Genes. Dev. 16:720-728 2002; Park et al., Curr. Biol. 12:1484-1495 2002; Reinhart et al., Genes. Dev. 16:1616-1626 2002). They are processed from longer precursor transcripts that range in size from approximately 70 to 200 nt, and these precursor transcripts have the ability to form stable hairpin structures.


The methods provided can be practiced in any organism in which a method of transformation is available, and for which there is at least some sequence information for the target sequence, or for a region flanking the target sequence of interest. It is also understood that two or more sequences could be targeted by sequential transformation, co-transformation with more than one targeting vector, or the construction of a DNA construct comprising more than one miRNA sequence. The methods are also implemented by a combinatorial nucleic acid library construction in order to generate a library of miRNAs directed to random target sequences. The library of miRNAs could be used for high-throughput screening for gene function validation.


General categories of sequences of interest include, for example, those genes involved in regulation or information, such as zinc fingers, transcription factors, homeotic genes, or cell cycle and cell death modulators, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins.


Target sequences further include coding regions and non-coding regions such as promoters, enhancers, terminators, introns and the like, which may be modified in order to alter the expression of a gene of interest. For example, an intron sequence can be added to the 5′ region to increase the amount of mature message that accumulates (see for example Buchman and Berg, Mol. Cell Biol. 8:4395-4405 (1988); and Callis et al., Genes Dev. 1:1183-1200 (1987)).


The target sequence may be an endogenous sequence, or may be an introduced heterologous sequence, or transgene. For example, the methods may be used to alter the regulation or expression of a transgene, or to remove a transgene or other introduced sequence such as an introduced site-specific recombination site. The target sequence may also be a sequence from a pathogen, for example, the target sequence may be from a plant pathogen such as a virus, a mold or fungus, an insect, or a nematode. A miRNA could be expressed in a plant which, upon infection or infestation, would target the pathogen and confer some degree of resistance to the plant.


In plants, other categories of target sequences include genes affecting agronomic traits, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and commercial products. Genes of interest also included those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting, for example, kernel size, sucrose loading, and the like. The quality of grain is reflected in traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, and levels of cellulose. Any target sequence could be suppressed in order to evaluate or confirm its role in a particular trait or phenotype, or to dissect a molecular, regulatory, biochemical, or proteomic pathway or network.


A number of promoters can be used, these promoters can be selected based on the desired outcome. It is recognized that different applications will be enhanced by the use of different promoters in plant expression cassettes to modulate the timing, location and/or level of expression of the miRNA. Such plant expression cassettes may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible, constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.


Constitutive, tissue-preferred or inducible promoters can be employed. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumefaciens, the ubiquitin 1 promoter, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683,439), the Nos promoter, the pEmu promoter, the rubisco promoter, the GRP1-8 promoter and other transcription initiation regions from various plant genes known to those of skill. If low level expression is desired, weak promoter(s) may be used. Weak constitutive promoters include, for example, the core promoter of the Rsyn7 promoter (WO 99/43838 and U.S. Pat. No. 6,072,050), the core 35S CaMV promoter, and the like. Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; and 5,608,142. See also, U.S. Pat. No. 6,177,611, herein incorporated by reference.


Examples of inducible promoters are the Adh1 promoter which is inducible by hypoxia or cold stress, the Hsp70 promoter which is inducible by heat stress, the PPDK promoter and the pepcarboxylase promoter which are both inducible by light. Also useful are promoters which are chemically inducible, such as the In2-2 promoter which is safener induced (U.S. Pat. No. 5,364,780), the ERE promoter which is estrogen induced, and the Axig1 promoter which is auxin induced and tapetum specific but also active in callus (PCT US01/22169).


Examples of promoters under developmental control include promoters that initiate transcription preferentially in certain tissues, such as leaves, roots, fruit, seeds, or flowers. An exemplary promoter is the anther specific promoter 5126 (U.S. Pat. Nos. 5,689,049 and 5,689,051). Examples of seed-preferred promoters include, but are not limited to, 27 kD gamma zein promoter and waxy promoter, Boronat, A. et al. (1986) Plant Sci. 47:95-102; Reina, M. et al. Nucl. Acids Res. 18(21):6426; and Kloesgen, R. B. et al. (1986) Mol. Gen. Genet. 203:237-244. Promoters that express in the embryo, pericarp, and endosperm are disclosed in U.S. Pat. No. 6,225,529 and PCT publication WO 00/12733. The disclosures each of these are incorporated herein by reference in their entirety.


In some embodiments it will be beneficial to express the gene from an inducible promoter, particularly from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi et al. (1983) Neth. J. Plant Pathol. 89:245-254; Uknes et al. (1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. Virol. 4:111-116. See also WO 99/43819, herein incorporated by reference.


Of interest are promoters that are expressed locally at or near the site of pathogen infection. See, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Molecular Plant-Microbe Interactions 2:325-331; Somsisch et al. (1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988) Mol. Gen. Genet. 2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al. (1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA 91:2507-2511; Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S. Pat. No. 5,750,386 (nematode-inducible); and the references cited therein. Of particular interest is the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarium moniliforme (see, for example, Cordero et al. (1992) Physiol. Mol. Plant Path. 41:189-200).


Additionally, as pathogens find entry into plants through wounds or insect damage, a wound-inducible promoter may be used in the constructions of the polynucleotides. Such wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev. Phytopath. 28:425-449; Duan et al. (1996) Nature Biotech. 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford et al. (1989) Mol. Gen. Genet. 215:200-208); systemin (McGurl et al. (1992) Science 225:1570-1573); WIP1 (Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Lett. 323:73-76); MPI gene (Corderok et al. (1994) Plant J. 6(2):141-150); and the like, herein incorporated by reference.


Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference.


Tissue-preferred promoters can be utilized to target enhanced expression of a sequence of interest within a particular plant tissue. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression.


Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590. In addition, the promoters of cab and rubisco can also be used. See, for example, Simpson et al. (1958) EMBO J 4:2723-2729 and Timko et al. (1988) Nature 318:57-58.


Root-preferred promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3(1):11-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa are described. The promoters of these genes were linked to a β-glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus comiculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2′ gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TR1′ gene, fused to nptII (neomycin phosphotransferase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179. The phaseolin gene (Murai et al. (1983) Science 23:476-482 and Sengopta-Gopalen et al. (1988) PNAS 82:3320-3324.


Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing the DNA construct include microinjection (Crossway et al. (1986) Biotechniques 4:320-334; and U.S. Pat. No. 6,300,543), sexual crossing, electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium-mediated transformation (Townsend et al., U.S. Pat. No. 5,563,055; and U.S. Pat. No. 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Pat. No. 4,945,050; Tomes et al., U.S. Pat. No. 5,879,918; Tomes et al., U.S. Pat. No. 5,886,244; Bidney et al., U.S. Pat. No. 5,932,782; Tomes et al. (1995) “Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment,” in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. (1988) Biotechnology 6:923-926). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); Tomes, U.S. Pat. No. 5,240,855; Buising et al., U.S. Pat. Nos. 5,322,783 and 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; Bowen et al., U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); and U.S. Pat. No. 5,736,369 (meristem transformation), all of which are herein incorporated by reference.


The nucleotide constructs may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct within a viral DNA or RNA molecule. Further, it is recognized that useful promoters encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing nucleotide constructs into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Pat. Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367 and 5,316,931; herein incorporated by reference.


In some embodiments, transient expression may be desired. In those cases, standard transient transformation techniques may be used. Such methods include, but are not limited to viral transformation methods, and microinjection of DNA or RNA, as well other methods well known in the art.


The cells from the plants that have stably incorporated the nucleotide sequence may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic imparted by the nucleotide sequence of interest and/or the genetic markers contained within the target site or transfer cassette. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved.


In an embodiment, a method for altering expression of a stably introduced nucleotide sequence in a plant includes:

    • a) making a DNA expression construct comprising a stably introduced nucleotide sequence and at least one sequence capable of hybridizing to the isolated polynucleotide;
    • b) transforming a plant with the DNA expression construct of part (a); and
    • c) selecting a transformed plant which comprises the DNA expression construct of part (a) in its genome and which has altered expression of the stably introduced nucleotide sequence when compared to a plant transformed with a modified version of the DNA expression construct of part (a) wherein the modified construct lacks the sequence capable of hybridizing to the isolated polynucleotide disclosed herein.









TABLE 1







MicroRNA sequences and targets thereof









Micro




RNA


Core


Seq.


(SEQ


ID
MicroRNA Precursor Genes (SEQ ID
MicroRNA Target Genes SEQ ID NOs (Transcript,


NO)
NOs)
Peptide; Transcript, Peptide)












1
298, 659, 660
1379, 2742; 2368, 3693;


2
917


3
414


4
537


5
735
2001, 3287;


6
198, 199, 200, 201, 202, 203, 273, 274, 275, 276,
1248, 2617; 1835, 3183;



277, 278, 279, 280, 281, 282, 283, 284, 285,



286, 287, 288, 289, 423, 426, 427, 428, 429,



430, 431, 432, 433, 434, 435, 436, 437, 438,



439, 440, 441, 442, 443, 444, 445, 446, 447, 448,



449, 450, 451, 453, 454, 455, 456, 457, 547,



548, 549, 550, 551, 552, 553, 554, 555, 556,



557, 558, 559, 560, 561, 562, 563, 564, 565,



566, 567, 638, 639, 640, 641, 642, 643, 644, 645,



646, 647, 648, 649, 650, 651, 652, 653, 654,



655, 656, 739, 740, 741, 742, 743, 744, 745,



746, 747, 748, 749, 750, 751, 752, 753, 754,



756, 757, 840, 841, 842, 843, 844, 845, 846, 847,



848, 849, 850, 851, 890, 891, 892, 893, 894,



895, 896, 897, 898, 899, 900, 901, 902, 903,



904, 905, 906, 907, 908, 977, 978, 979, 980,



981, 982, 983, 984, 985, 988, 1009, 1010, 1011,



1012, 1013, 1014, 1015, 1072, 1073, 1074,



1075, 1076, 1077, 1078, 1079, 1080


7
420, 635
1942, 3287; 2026, 3364; 2484, 3796;


8
5, 201, 092
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2470, 3782;


9
3, 554, 716, 991, 037
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2319, 3645; 2470,




3782;


10
589
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2470, 3782;


11
208, 209, 223, 224, 225, 226, 227, 228, 229, 230,
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2470, 3782;



231, 232, 233, 234, 235, 237, 238, 239, 240,



241, 242, 243, 244, 245, 246, 247, 248, 249,



250, 251, 252, 253, 255, 256, 257, 258, 259,



260, 261, 262, 263, 310, 311, 312, 313, 314, 315,



316, 318, 319, 320, 321, 322, 323, 324, 325,



326, 327, 328, 329, 330, 331, 332, 333, 334,



335, 336, 337, 338, 339, 340, 341, 342, 343,



344, 345, 346, 347, 348, 349, 350, 351, 352, 353,



354, 356, 358, 359, 360, 361, 362, 363, 364,



365, 366, 367, 368, 369, 370, 371, 372, 373,



374, 375, 376, 377, 378, 379, 380, 381, 382,



383, 384, 385, 386, 387, 389, 390, 391, 392, 393,



394, 395, 396, 397, 398, 399, 400, 401, 402,



403, 404, 406, 472, 473, 474, 475, 476, 477,



478, 479, 480, 481, 482, 483, 484, 485, 486,



487, 488, 489, 490, 491, 492, 493, 494, 495, 496,



497, 498, 499, 500, 501, 502, 503, 504, 505,



506, 507, 508, 509, 510, 511, 512, 513, 514,



515, 516, 517, 518, 519, 521, 577, 578, 580,



581, 582, 583, 584, 585, 586, 587, 588, 590, 591,



592, 593, 594, 595, 596, 597, 598, 599, 600,



601, 602, 603, 604, 605, 606, 607, 608, 609,



610, 611, 612, 613, 614, 615, 616, 617, 669,



670, 671, 672, 673, 674, 675, 676, 677, 678, 679,



680, 681, 682, 683, 684, 685, 686, 687, 688,



689, 690, 691, 692, 693, 694, 695, 696, 697,



698, 700, 701, 702, 703, 704, 705, 706, 707,



708, 709, 710, 711, 712, 713, 714, 715, 716, 717,



772, 773, 774, 775, 776, 777, 778, 779, 780,



781, 782, 783, 784, 785, 786, 787, 788, 789,



790, 791, 792, 793, 794, 795, 796, 797, 798,



799, 800, 801, 802, 803, 804, 805, 806, 807, 808,



809, 810, 811, 812, 813, 814, 859, 860, 861,



862, 863, 864, 865, 866, 867, 868, 869, 870,



871, 872, 873, 874, 875, 876, 877, 878, 879,



880, 923, 924, 925, 926, 927, 928, 929, 930, 931,



932, 933, 934, 935, 936, 937, 938, 939, 940,



941, 942, 943, 944, 945, 946, 947, 948, 949,



950, 951, 952, 953, 954, 955, 956, 957, 958,



959, 960, 1017, 1019, 1020, 1021, 1022, 1023,



1024, 1025, 1026, 1027, 1028, 1029, 1030,



1031, 1032, 1033, 1034, 1035, 1036, 1038,



1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046,



1047, 1048, 1049, 1050, 1051, 1081, 1082,



1083, 1084, 1085, 1086, 1087, 1088, 1089,



1090, 1091, 1093, 1094, 1095, 1096, 1097,



1098, 1099, 1100, 1101, 1102, 1103


12
405
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2470, 3782;


13
835
1211, 2580; 1288, 2656; 1323, 2689; 1324, 2690; 1356, 2720; 1380,




2743; 1391, 2754; 1447, 2808; 1853, 3201; 1879, 3227; 1910, 3255;




1987, 3326; 2236, 3564; 1401, No_Pept;


14
264, 357
1273, 2642; 1281, 2649; 1340, 2706; 1635, 2989; 1907, 3252; 2074,




3409; 2275, 3603; 2372, 3697; 2470, 3782;


15
308


16
888
1205, 2574; 1221, 2590; 1628, 2982; 1661, 3014;


17
626


18
538
2423, No_Pept;


19
569, 997
1395, 2758; 1489, 2845; 1657, 3010; 2299, 3625; 2427, 3741;


20
665


21
425
1660, 3013; 1676, 3028;


22
6, 571, 016
1662, 3015; 1940, 3285; 2132, 3463; 2397, 3719; 2481, 3793;


23
852
1662, 3015; 1690, 3042; 1940, 3285; 2132, 3463; 2397, 3719; 2481,




3793;


24
733


25
732
1924, 3269;


26
909
1260, 2629; 1934, 3279;


27
291


28
910
1212, 2581; 1344, 2708; 2105, 3438; 2253, 3581; 2269, 3597; 2464,




3776;


29
540
1662, 3015; 2132, 3463; 2249, 3577;


30
317, 579
1635, 2989; 1716, 3067; 2265, 3593; 2275, 3603; 2470, 3782;


31
73, 111, 051, 106, 110, 700, 000, 000
1680, 3032; 1928, 3273;


32
542
1213, 2582; 2100, 3433; 2493, 3803; 2494, No_Pept;


33
410


34
218, 219, 221, 407, 408, 409, 523, 524, 526, 527,



528, 620, 621, 622, 623, 624, 625, 723, 724,



725, 727, 820, 821, 822, 823, 824, 855, 918,



919, 920, 1000, 1001, 1002, 1057, 1058, 1060,



1061, 1062


35
856
2240, 3568;


36
729, 966


37
267


38
881


39
719
1150, 2519; 1151, 2520; 1179, 2548; 1183, 2552; 1277, 2645; 1473,




2833; 1588, 2943; 1643, 2997; 1732, 3083; 1828, 3177; 1876, 3224;




2009, 3347; 2158, 3488; 2294, 3620; 2448, 3761;


40
815
1150, 2519; 1151, 2520; 1179, 2548; 1183, 2552; 1277, 2645; 1473,




2833; 1588, 2943; 1643, 2997; 1732, 3083; 1773, 3123; 1828, 3177;




1876, 3224; 2009, 3347; 2079, 3414; 2158, 3488; 2294, 3620; 2334,




3660; 2375, 3699; 2448, 3761; 2471, 3783;


41
886
1166, 2535; 1255, 2624; 1280, 2648; 1336, 2702; 1464, 2824; 1487,




2843; 1550, 2905; 1611, 2965; 1630, 2984; 1778, 3128; 1975, 3316;




1983, 3322; 1993, 3332; 2042, 3379; 2077, 3412; 2156, 3486; 2165,




3495; 2171, 3500; 2178, 3507; 2180, 3509; 2261, 3589; 2283, 3610;




2284, 3611; 2329, 3655; 2345, 3671; 2361, 3686; 2403, 3724;




2411, 3730; 2430, 3743; 2450, 3762; 2480, 3792; 2031, No_Pept; 2429,




No_Pept;


42
969
1416, 2777; 1420, 2781; 1478, 2834; 1612, 2966; 1956, 3300; 2368,




3693; 2408, 3729;


43
236
1564, 2919; 1635, 2989; 1703, 3054; 1769, 3119; 1926, 3271; 2319,




3645; 2470, 3782;


44
388
1313, 2681; 1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 1926,




3271; 2470, 3782;


45
1066 
1386, 2749; 1662, 3015; 1690, 3042; 1940, 3285; 2132, 3463; 2139,




3470; 2249, 3577;


46
309
1128, 2497; 1147, 2516; 1289, 2657; 1311, 2679; 1314, 2682; 1316,




2684; 1338, 2704; 1415, 2776; 1416, 2777; 1456, 2816; 1488, 2844;




1498, 2854; 1547, 2902; 1570, 2925; 1574, 2929; 1589, 2944; 1590,




2945; 1623, 2977; 1647, 3000; 1655, 3008; 1697, 3049; 1717, 3068;




1734, 3085; 1843, 3191; 1867, 3215; 1920, 3265; 2075, 3410;




2091, 3426; 2092, 3427; 2094, 3429; 2107, 3440; 2123, 3454; 2127,




3458; 2175, 3504; 2190, 3519; 2223, 3551; 2321, 3647; 2447, 3760;


47
990
1731, 3082; 1912, 3257;


48
911
1168, 2537; 1731, 3082; 1748, 3098; 1912, 3257;


49
307
1159, 2528; 1360, 2724; 2350, 3675;


50
838
1939, 3284; 2131, 3462;


51
424
1248, 2617; 1407, 2769; 1744, 3094; 1782, 3132;


52
760
1484, 2840; 1901, 3246; 2201, 3530; 2483, 3795;


53
271
1185, 2554; 1329, 2695; 1381, 2744; 1425, 2786; 1437, 2798; 1451,




2811; 1494, 2850; 1503, 2859; 1554, 2909; 1718, 3069; 1903, 3248;




1921, 3266; 1958, 3302; 2023, 3361; 2067, 3402; 2113, 3444; 2126,




3457; 2130, 3461; 2222, 3550;


54
299
1129, 2498; 1223, 2592; 1280, 2648; 1404, 2766; 1443, 2804; 1484,




2840; 1625, 2979; 1650, 3003; 1674, 3026; 1715, 3066; 1801, 3150;




1950, 3294; 1951, 3295; 2144, 3475; 2185, 3514; 2198, 3527; 2296,




3622; 2336, 3662; 2365, 3690; 2366, 3691; 2390, 3712; 2402, 3723;




2435, 3748; 2459, 3771;


55
418
2273, 3601; 1401, No_Pept;


56
469
1315, 2683; 2222, 3550;


57
220, 726, 825
1443, 2804;


58
465
1268, 2637; 1533, 2888; 1616, 2970;


59
827
1392, 2755; 1585, 2940; 1673, 3025; 2002, 3340;


60
755
1248, 2617;


61
976
1248, 2617;


62
460
1192, 2561; 1215, 2584; 1731, 3082; 1989, 3328; 1959, No_Pept; 2208,




No_Pept;


63
206, 633
1303, 2671; 1362, 2726; 1406, 2768; 1515, 2870; 1653, 3006; 2013,




3351; 2220, 3548; 2251, 3579; 2381, 3703; 2395, 3717; 2064, No_Pept;




2146, No_Pept; 2487, No_Pept;


64
1003 
1132, 2501; 1149, 2518; 1222, 2591; 1343, 2707; 1353, 2717; 1579,




2934; 1640, 2994; 1686, 3038; 1745, 3095; 1819, 3168; 1844, 3192;




1847, 3195; 1868, 3216; 1902, 3247; 1923, 3268; 1938, 3283; 2348,




3674; 2355, 3680; 2377, 3701;


65
1070 
1188, 2557; 1381, 2744; 1414, 2775; 1503, 2859; 2222, 3550;


66
618
1657, 3010;


67
2, 174, 665, 715, 729, 160, 000
2089, 3424; 2311, 3637; 2368, 3693;


68
52, 581, 910, 591, 063
2240, 3568;


69
8, 821, 005


70
4, 154, 177, 281, 068
1261, 2630; 1516, 2871; 2347, 3673; 2466, 3778;


71
268, 269, 270, 416, 828, 829, 967, 968
1261, 2630; 1516, 2871; 2347, 3673; 2466, 3778;


72
834
1153, 2522; 1365, 2729; 1974, 3315; 2230, 3558;


73
630, 833
1153, 2522; 1365, 2729; 1974, 3315; 2230, 3558;


74
412
1153, 2522; 1365, 2729; 2230, 3558; 1645, No_Pept;


75
1052 
1153, 2522; 1365, 2729; 1974, 3315; 2086, 3421; 2113, 3444; 2230,




3558; 1645, No_Pept;


76
720, 816
1205, 2574; 1221, 2590; 1628, 2982; 1661, 3014;


77
1018 
1349, 2713; 1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2176,




3505; 2272, 3600; 2319, 3645; 2406, 3727; 2470, 3782;


78
996
1229, 2598; 1283, 2651; 1418, 2779; 1525, 2880; 1597, 2952; 1764,




3114; 1863, 3211; 1905, 3250; 2121, 3452; 2141, 3472; 2151, 3481;




2278, 3606; 2444, 3757; 2457, 3769; 2463, 3775; 2472, 3784;


79
568
2382, 3704;


80
913
1402, 2764; 1462, 2822; 1946, 3291; 1949, 3293; 2191, 3520; 2475,




3787;


81
912
1645, No_Pept;


82
413
1365, 2729;


83
629
1335, 2701; 1855, 3203; 2149, 3479; 2221, 3549; 1645, No_Pept;


84
539
1386, 2749; 1469, 2829; 1535, 2890; 1662, 3015; 1690, 3042; 1940,




3285; 2085, 3420; 2132, 3463; 2249, 3577;


85
306, 667, 770, 884
1162, 2531; 1225, 2594; 1241, 2610; 1287, 2655; 1308, 2676; 1534,




2889; 1691, 3043; 1694, 3046; 1724, 3075; 1838, 3186; 1860, 3208;




1866, 3214; 1951, 3295; 2007, 3345; 2045, 3382; 2058, 3394; 2129,




3460; 2137, 3468; 2140, 3471; 2199, 3528; 2207, 3536; 2271, 3599;




2437, 3750; 2464, 3776; 2467, 3779; 2473, 3785; 2399, No_Pept;


86
470
1162, 2531; 1225, 2594; 1287, 2655; 1308, 2676; 1325, 2691; 1534,




2889; 1691, 3043; 1694, 3046; 1724, 3075; 1798, 3147; 1838, 3186;




1860, 3208; 1866, 3214; 1951, 3295; 2007, 3345; 2045, 3382; 2058,




3394; 2129, 3460; 2137, 3468; 2140, 3471; 2199, 3528; 2200, 3529;




2207, 3536; 2249, 3577; 2271, 3599; 2437, 3750; 2464, 3776;




2467, 3779; 2473, 3785; 2399, No_Pept;


87
887
1821, 3170; 1857, 3205; 2362, 3687; 2491, 3801;


88
632
1441, 2802; 1720, 3071; 1885, 3233; 2058, 3394;


89
817
1322, 2688; 1736, 3087;


90
722


91
215
2323, 3649;


92
734
1259, 2628; 1327, 2693; 1354, 2718; 1513, 2868; 1803, 3152; 2285,




3612; 2303, 3629;


93
631
1606, 2960; 1752, 3102;


94
858
1265, 2634; 1270, 2639; 1498, 2854; 1499, 2855; 1790, 3140; 1867,




3215; 1925, 3270; 1944, 3289; 1997, 3336; 2101, 3434; 2167, 3497;




2303, 3629; 2310, 3636; 2328, 3654; 2436, 3749; 2168, No_Pept;


95
831
1537, 2892; 1960, 3303; 2270, 3598;


96
290, 296, 297, 461, 462, 463, 464, 570, 658, 762,



763, 914, 1055


97
1118 
1662, 3015; 1672, 3024; 1758, 3108; 1780, 3130; 1810, 3159; 1832,




3180; 1834, 3182; 1837, 3185; 1892, 3239; 1916, 3261; 1999, 3338;




2004, 3342; 2102, 3435; 2106, 3439; 2197, 3526; 2434, 3747;


98
459


99
293, 759
2177, 3506; 2291, 3618; 2309, 3635;


100
961
1348, 2712; 2420, 3737; 2482, 3794;


101
1008 
1200, 2569; 1388, 2751; 1501, 2857; 1848, 3196; 1932, 3277; 2065,




3400; 2189, 3518; 2226, 3554; 2239, 3567; 2360, 3685;


102
737
1174, 2543; 1296, 2664; 1317, 2685; 1650, 3003; 1967, 3310; 2394,




3716; 2476, 3788;


103
204, 205, 986, 987
1203, 2572; 1248, 2617; 1660, 3013; 1822, 3171; 2142, 3473;


104
452
1203, 2572; 1248, 2617; 1660, 3013; 1676, 3028; 1822, 3171; 2142,




3473; 2184, 3513;


105
1117 
1133, 2502; 1220, 2589; 1233, 2602; 1240, 2609; 1244, 2613; 1291,




2659; 1305, 2673; 1368, 2732; 1372, 2736; 1386, 2749; 1449, 2809;




1500, 2856; 1510, 2865; 1512, 2867; 1521, 2876; 1529, 2884; 1543,




2898; 1565, 2920; 1613, 2967; 1646, 2999; 1659, 3012; 1708, 3059;




1727, 3078; 1733, 3084; 1740, 3090; 1750, 3100; 1767, 3117;




1781, 3131; 1789, 3139; 1825, 3174; 1839, 3187; 1859, 3207; 1863,




3211; 1891, 3238; 1893, 3240; 1897, 3242; 1927, 3272; 1936, 3281;




1970, 3311; 1985, 3324; 2012, 3350; 2018, 3356; 2025, 3363; 2054,




3390; 2056, 3392; 2059, 3395; 2063, 3399; 2067, 3402; 2081, 3416;




2102, 3435; 2196, 3525; 2211, 3539; 2244, 3572; 2251, 3579;




2254, 3582; 2268, 3596; 2281, 3608; 2289, 3616; 2297, 3623; 2308,




3634; 2337, 3663; 2357, 3682; 2367, 3692; 2383, 3705; 2387, 3709;




2426, 3740; 2458, 3770; 2461, 3773; 2473, 3785; 2478, 3790;


106
1113 
1134, 2503; 1142, 2511; 1165, 2534; 1172, 2541; 1177, 2546; 1184,




2553; 1196, 2565; 1214, 2583; 1224, 2593; 1238, 2607; 1267, 2636;




1279, 2647; 1309, 2677; 1326, 2692; 1339, 2705; 1360, 2724; 1390,




2753; 1460, 2820; 1462, 2822; 1470, 2830; 1484, 2840; 1509, 2864;




1523, 2878; 1528, 2883; 1560, 2915; 1572, 2927; 1591, 2946;




1600, 2955; 1601, 2956; 1609, 2963; 1615, 2969; 1624, 2978; 1641,




2995; 1642, 2996; 1664, 3017; 1677, 3029; 1683, 3035; 1684, 3036;




1687, 3039; 1694, 3046; 1706, 3057; 1749, 3099; 1760, 3110; 1775,




3125; 1777, 3127; 1788, 3138; 1793, 3143; 1800, 3149; 1801, 3150;




1804, 3153; 1884, 3232; 1888, 3235; 1915, 3260; 1970, 3311;




1971, 3312; 1991, 3330; 1996, 3335; 2033, 3370; 2043, 3380; 2061,




3397; 2062, 3398; 2067, 3402; 2114, 3445; 2119, 3450; 2122, 3453;




2164, 3494; 2209, 3537; 2237, 3565; 2257, 3585; 2288, 3615; 2315,




3641; 2342, 3668; 2358, 3683; 2370, 3695; 2376, 3700; 1321, No_Pept;




1341, No_Pept; 1448, No_Pept; 1474, No_Pept; 1476, No_Pept;




1477, No_Pept; 1508, No_Pept; 1605, No_Pept; 1702, No_Pept;




1830, No_Pept; 1887, No_Pept; 1895, No_Pept; 1948, No_Pept;




1968, No_Pept; 1976, No_Pept; 1978, No_Pept; 2098, No_Pept;




2109, No_Pept; 2280, No_Pept; 2293, No_Pept; 2379, No_Pept;




2415, No_Pept; 2425, No_Pept; 2449, No_Pept;


107
1, 110, 111, 111, 121, 110
1135, 2504; 1142, 2511; 1153, 2522; 1157, 2526; 1171, 2540; 1172,




2541; 1177, 2546; 1178, 2547; 1204, 2573; 1214, 2583; 1218, 2587;




1224, 2593; 1236, 2605; 1237, 2606; 1238, 2607; 1242, 2611; 1250,




2619; 1251, 2620; 1262, 2631; 1267, 2636; 1297, 2665; 1300, 2668;




1306, 2674; 1339, 2705; 1347, 2711; 1383, 2746; 1390, 2753;




1399, 2762; 1411, 2773; 1422, 2783; 1426, 2787; 1433, 2794; 1436,




2797; 1442, 2803; 1454, 2814; 1460, 2820; 1462, 2822; 1470, 2830;




1480, 2836; 1484, 2840; 1485, 2841; 1496, 2852; 1509, 2864; 1523,




2878; 1527, 2882; 1528, 2883; 1552, 2907; 1560, 2915; 1568, 2923;




1570, 2925; 1573, 2928; 1576, 2931; 1591, 2946; 1592, 2947;




1596, 2951; 1598, 2953; 1599, 2954; 1600, 2955; 1601, 2956; 1609,




2963; 1615, 2969; 1622, 2976; 1624, 2978; 1627, 2981; 1632, 2986;




1634, 2988; 1642, 2996; 1664, 3017; 1668, 3020; 1677, 3029; 1683,




3035; 1684, 3036; 1687, 3039; 1694, 3046; 1700, 3052; 1709, 3060;




1711, 3062; 1714, 3065; 1723, 3074; 1749, 3099; 1754, 3104;




1775, 3125; 1777, 3127; 1788, 3138; 1800, 3149; 1804, 3153; 1807,




3156; 1808, 3157; 1820, 3169; 1878, 3226; 1880, 3228; 1888, 3235;




1970, 3311; 1980, 3319; 1982, 3321; 1984, 3323; 1991, 3330; 1992,




3331; 1995, 3334; 1996, 3335; 2016, 3354; 2030, 3368; 2033, 3370;




2043, 3380; 2055, 3391; 2057, 3393; 2062, 3398; 2087, 3422;




2114, 3445; 2119, 3450; 2122, 3453; 2124, 3455; 2128, 3459; 2133,




3464; 2143, 3474; 2164, 3494; 2182, 3511; 2186, 3515; 2209, 3537;




2210, 3538; 2219, 3547; 2231, 3559; 2237, 3565; 2250, 3578; 2257,




3585; 2279, 3607; 2288, 3615; 2292, 3619; 2304, 3630; 2315, 3641;




2317, 3643; 2333, 3659; 2340, 3666; 2342, 3668; 2354, 3679;




2358, 3683; 2369, 3694; 2386, 3708; 2393, 3715; 2407, 3728; 2414,




3733; 2422, 3739; 2455, 3767; 2460, 3772; 2474, 3786; 2477, 3789;




1321, No_Pept; 1341, No_Pept; 1448, No_Pept; 1474, No_Pept;




1476, No_Pept; 1477, No_Pept; 1508, No_Pept; 1605, No_Pept;




1702, No_Pept; 1830, No_Pept; 1887, No_Pept; 1895, No_Pept; 1948,




No_Pept; 1968, No_Pept; 1976, No_Pept; 1978, No_Pept; 2098,




No_Pept; 2109, No_Pept; 2280, No_Pept; 2293, No_Pept; 2379,




No_Pept; 2415, No_Pept; 2425, No_Pept; 2449, No_Pept;


108
1115 
1135, 2504; 1142, 2511; 1153, 2522; 1157, 2526; 1175, 2544; 1214,




2583; 1237, 2606; 1238, 2607; 1242, 2611; 1245, 2614; 1250, 2619;




1251, 2620; 1262, 2631; 1267, 2636; 1279, 2647; 1294, 2662; 1297,




2665; 1300, 2668; 1307, 2675; 1309, 2677; 1328, 2694; 1347, 2711;




1390, 2753; 1399, 2762; 1419, 2780; 1422, 2783; 1433, 2794;




1436, 2797; 1453, 2813; 1454, 2814; 1460, 2820; 1462, 2822; 1480,




2836; 1483, 2839; 1484, 2840; 1496, 2852; 1509, 2864; 1523, 2878;




1527, 2882; 1528, 2883; 1543, 2898; 1551, 2906; 1552, 2907; 1560,




2915; 1571, 2926; 1576, 2931; 1577, 2932; 1591, 2946; 1596, 2951;




1598, 2953; 1600, 2955; 1601, 2956; 1608, 2962; 1609, 2963;




1610, 2964; 1624, 2978; 1642, 2996; 1644, 2998; 1658, 3011; 1664,




3017; 1666, 3019; 1668, 3020; 1678, 3030; 1683, 3035; 1684, 3036;




1687, 3039; 1694, 3046; 1700, 3052; 1709, 3060; 1738, 3089; 1749,




3099; 1757, 3107; 1775, 3125; 1776, 3126; 1777, 3127; 1785, 3135;




1788, 3138; 1800, 3149; 1807, 3156; 1820, 3169; 1861, 3209;




1880, 3228; 1888, 3235; 1913, 3258; 1970, 3311; 1982, 3321; 1984,




3323; 1992, 3331; 1994, 3333; 1995, 3334; 1996, 3335; 2011, 3349;




2033, 3370; 2048, 3385; 2055, 3391; 2057, 3393; 2096, 3431; 2114,




3445; 2119, 3450; 2122, 3453; 2133, 3464; 2164, 3494; 2181, 3510;




2182, 3511; 2209, 3537; 2210, 3538; 2218, 3546; 2237, 3565;




2250, 3578; 2257, 3585; 2279, 3607; 2287, 3614; 2288, 3615; 2304,




3630; 2317, 3643; 2323, 3649; 2333, 3659; 2340, 3666; 2342, 3668;




2354, 3679; 2358, 3683; 2359, 3684; 2386, 3708; 2394, 3716; 2404,




3725; 2451, 3763; 2455, 3767; 2460, 3772; 2474, 3786; 1321, No_Pept;




1341, No_Pept; 1373, No_Pept; 1448, No_Pept; 1474, No_Pept;




1476, No_Pept; 1477, No_Pept; 1508, No_Pept; 1605, No_Pept;




1702, No_Pept; 1830, No_Pept; 1887, No_Pept; 1895, No_Pept;




1948, No_Pept; 1968, No_Pept; 1976, No_Pept; 1978, No_Pept;




2098, No_Pept; 2109, No_Pept; 2280, No_Pept; 2293, No_Pept;




2379, No_Pept; 2415, No_Pept; 2425, No_Pept; 2449, No_Pept;


109
1114 
1134, 2503; 1135, 2504; 1137, 2506; 1141, 2510; 1142, 2511; 1153,




2522; 1157, 2526; 1158, 2527; 1172, 2541; 1178, 2547; 1182, 2551;




1190, 2559; 1195, 2564; 1228, 2597; 1236, 2605; 1237, 2606; 1238,




2607; 1243, 2612; 1247, 2616; 1251, 2620; 1262, 2631; 1272, 2641;




1275, 2644; 1281, 2649; 1294, 2662; 1297, 2665; 1299, 2667;




1309, 2677; 1314, 2682; 1326, 2692; 1327, 2693; 1331, 2697; 1332,




2698; 1347, 2711; 1351, 2715; 1363, 2727; 1390, 2753; 1397, 2760;




1398, 2761; 1410, 2772; 1411, 2773; 1419, 2780; 1424, 2785; 1426,




2787; 1433, 2794; 1436, 2797; 1453, 2813; 1454, 2814; 1456, 2816;




1460, 2820; 1462, 2822; 1480, 2836; 1483, 2839; 1484, 2840;




1490, 2846; 1494, 2850; 1496, 2852; 1504, 2860; 1509, 2864; 1520,




2875; 1528, 2883; 1530, 2885; 1538, 2893; 1543, 2898; 1545, 2900;




1549, 2904; 1553, 2908; 1562, 2917; 1566, 2921; 1576, 2931; 1582,




2937; 1591, 2946; 1592, 2947; 1598, 2953; 1600, 2955; 1601, 2956;




1608, 2962; 1609, 2963; 1619, 2973; 1622, 2976; 1627, 2981;




1632, 2986; 1642, 2996; 1644, 2998; 1646, 2999; 1654, 3007; 1664,




3017; 1683, 3035; 1684, 3036; 1687, 3039; 1696, 3048; 1700, 3052;




1701, 3053; 1709, 3060; 1711, 3062; 1712, 3063; 1713, 3064; 1719,




3070; 1723, 3074; 1730, 3081; 1749, 3099; 1754, 3104; 1757, 3107;




1767, 3117; 1777, 3127; 1779, 3129; 1783, 3133; 1784, 3134;




1788, 3138; 1800, 3149; 1801, 3150; 1807, 3156; 1808, 3157; 1809,




3158; 1815, 3164; 1823, 3172; 1826, 3175; 1827, 3176; 1836, 3184;




1865, 3213; 1869, 3217; 1880, 3228; 1881, 3229; 1882, 3230; 1883,




3231; 1884, 3232; 1888, 3235; 1914, 3259; 1915, 3260; 1931, 3276;




1935, 3280; 1963, 3306; 1970, 3311; 1979, 3318; 1980, 3319;




1981, 3320; 1982, 3321; 1985, 3324; 1996, 3335; 1998, 3337; 2019,




3357; 2030, 3368; 2036, 3373; 2043, 3380; 2046, 3383; 2055, 3391;




2062, 3398; 2087, 3422; 2089, 3424; 2096, 3431; 2103, 3436; 2114,




3445; 2126, 3457; 2133, 3464; 2136, 3467; 2142, 3473; 2143, 3474;




2147, 3477; 2161, 3491; 2164, 3494; 2169, 3498; 2206, 3535;




2209, 3537; 2210, 3538; 2214, 3542; 2219, 3547; 2231, 3559; 2234,




3562; 2235, 3563; 2250, 3578; 2257, 3585; 2287, 3614; 2317, 3643;




2325, 3651; 2332, 3658; 2333, 3659; 2335, 3661; 2342, 3668; 2354,




3679; 2358, 3683; 2359, 3684; 2364, 3689; 2369, 3694; 2376, 3700;




2385, 3707; 2393, 3715; 2398, 3720; 2414, 3733; 2418, 3735;




2445, 3758; 2452, 3764; 2455, 3767; 2460, 3772; 2462, 3774; 2474,




3786; 2477, 3789; 2485, 3797; 1276, No_Pept; 1320, No_Pept; 1321,




No_Pept; 1341, No_Pept; 1342, No_Pept; 1448, No_Pept; 1474,




No_Pept; 1475, No_Pept; 1476, No_Pept; 1477, No_Pept; 1508,




No_Pept; 1605, No_Pept; 1702, No_Pept; 1830, No_Pept; 1887,




No_Pept; 1894, No_Pept; 1895, No_Pept; 1948, No_Pept; 1968, No_Pept;




1969, No_Pept; 1976, No_Pept; 1978, No_Pept; 2097, No_Pept;




2098, No_Pept; 2109, No_Pept; 2110, No_Pept; 2280, No_Pept;




2293, No_Pept; 2378, No_Pept; 2379, No_Pept; 2409, No_Pept;




2410, No_Pept; 2415, No_Pept; 2416, No_Pept; 2425, No_Pept;




2449, No_Pept;


110
661
1127, 2496; 1519, 2874; 1695, 3047; 1746, 3096; 1922, 3267; 1947,




3292; 1972, 3313; 2000, 3339; 2015, 3353; 2072, 3407; 2193, 3522;




2374, 3698;


111
854
1319, 2687; 1405, 2767; 1620, 2974; 1682, 3034; 1707, 3058; 1728,




3079; 1746, 3096; 1787, 3137; 1845, 3193; 1945, 3290; 1739, No_Pept;


112
771
1269, 2638; 1502, 2858; 1575, 2930; 1664, 3017; 1693, 3045; 1829,




3178; 1909, 3254; 2040, 3377; 2462, 3774;


113
467
1162, 2531; 1293, 2661; 1481, 2837; 1517, 2872; 1557, 2912; 1608,




2962; 1610, 2964; 1663, 3016; 1670, 3022; 1943, 3288; 1965, 3308;




1977, 3317; 1986, 3325; 2041, 3378; 2209, 3537; 2243, 3571; 2284,




3611; 2331, 3657; 2469, 3781;


114
546
1170, 2539; 1173, 2542; 1202, 2571; 1334, 2700; 1382, 2745; 1457,




2817; 1464, 2824; 1466, 2826; 1471, 2831; 1472, 2832; 1495, 2851;




1541, 2896; 1593, 2948; 1604, 2959; 1649, 3002; 1675, 3027; 1721,




3072; 1766, 3116; 1771, 3121; 1774, 3124; 1814, 3163; 1824, 3173;




1840, 3188; 1841, 3189; 1852, 3200; 1925, 3270; 1964, 3307;




2006, 3344; 2008, 3346; 2076, 3411; 2084, 3419; 2093, 3428; 2111,




3442; 2112, 3443; 2142, 3473; 2166, 3496; 2173, 3502; 2179, 3508;




2194, 3523; 2217, 3545; 2290, 3617; 2314, 3640; 2339, 3665; 2341,




3667; 2343, 3669; 2352, 3677; 2353, 3678; 2428, 3742; 2433, 3746;




2442, 3755; 2455, 3767; 2464, 3776; 2466, 3778;


115
921
1143, 2512; 1153, 2522; 1258, 2627; 1355, 2719; 1371, 2735; 1385,




2748; 1417, 2778; 1461, 2821; 1532, 2887; 1638, 2992; 1639, 2993;




1743, 3093; 1811, 3160; 1889, 3236; 1898, 3243; 2033, 3370; 2090,




3425; 2095, 3430; 2150, 3480; 2216, 3544; 2228, 3556; 2248, 3576;




2252, 3580; 2283, 3610; 2400, 3721; 2405, 3726; 2419, 3736;




2492, 3802;


116
975
1129, 2498; 1130, 2499; 1131, 2500; 1136, 2505; 1138, 2507; 1140,




2509; 1144, 2513; 1153, 2522; 1156, 2525; 1161, 2530; 1163, 2532;




1165, 2534; 1169, 2538; 1186, 2555; 1191, 2560; 1192, 2561; 1197,




2566; 1198, 2567; 1204, 2573; 1207, 2576; 1208, 2577; 1209, 2578;




1210, 2579; 1227, 2596; 1235, 2604; 1246, 2615; 1255, 2624;




1264, 2633; 1282, 2650; 1285, 2653; 1286, 2654; 1290, 2658; 1292,




2660; 1295, 2663; 1301, 2669; 1330, 2696; 1333, 2699; 1346, 2710;




1350, 2714; 1358, 2722; 1367, 2731; 1370, 2734; 1384, 2747; 1387,




2750; 1400, 2763; 1403, 2765; 1408, 2770; 1413, 2774; 1427, 2788;




1438, 2799; 1439, 2800; 1440, 2801; 1445, 2806; 1446, 2807;




1455, 2815; 1456, 2816; 1458, 2818; 1459, 2819; 1465, 2825; 1482,




2838; 1483, 2839; 1511, 2866; 1518, 2873; 1522, 2877; 1524, 2879;




1532, 2887; 1533, 2888; 1539, 2894; 1542, 2897; 1559, 2914; 1589,




2944; 1602, 2957; 1607, 2961; 1615, 2969; 1626, 2980; 1631, 2985;




1636, 2990; 1641, 2995; 1652, 3005; 1663, 3016; 1668, 3020;




1669, 3021; 1689, 3041; 1699, 3051; 1704, 3055; 1705, 3056; 1710,




3061; 1756, 3106; 1759, 3109; 1762, 3112; 1765, 3115; 1794, 3144;




1795, 3145; 1805, 3154; 1806, 3155; 1818, 3167; 1833, 3181; 1842,




3190; 1846, 3194; 1847, 3195; 1849, 3197; 1850, 3198; 1871, 3219;




1875, 3223; 1877, 3225; 1889, 3236; 1890, 3237; 1899, 3244;




1902, 3247; 1911, 3256; 1918, 3263; 1919, 3264; 1929, 3274; 1947,




3292; 1954, 3298; 1973, 3314; 2003, 3341; 2014, 3352; 2027, 3365;




2028, 3366; 2035, 3372; 2039, 3376; 2044, 3381; 2047, 3384; 2049,




3386; 2050, 3387; 2063, 3399; 2071, 3406; 2090, 3425; 2099, 3432;




2117, 3448; 2122, 3453; 2145, 3476; 2160, 3490; 2162, 3492;




2170, 3499; 2183, 3512; 2192, 3521; 2202, 3531; 2210, 3538; 2213,




3541; 2224, 3552; 2225, 3553; 2233, 3561; 2245, 3573; 2255, 3583;




2256, 3584; 2268, 3596; 2274, 3602; 2276, 3604; 2291, 3618; 2302,




3628; 2307, 3633; 2312, 3638; 2316, 3642; 2320, 3646; 2322, 3648;




2327, 3653; 2330, 3656; 2338, 3664; 2346, 3672; 2351, 3676;




2363, 3688; 2412, 3731; 2432, 3745; 2443, 3756; 2454, 3766; 2455,




3767; 2456, 3768; 2465, 3777; 2489, 3799; 2495, 3804;


117
965
1154, 2523; 1378, 2741; 1966, 3309; 1990, 3329; 2260, 3588;


118
764
2423, No_Pept;


119
411
1155, 2524; 1312, 2680; 1384, 2747; 1428, 2789; 1489, 2845; 1614,




2968; 1621, 2975; 1741, 3091; 1755, 3105; 1786, 3136; 1856, 3204;




2015, 3353; 2138, 3469; 2172, 3501; 2179, 3508; 2187, 3516; 2205,




3534; 2358, 3683; 2439, 3752; 2484, 3796;


120
628


121
832
1386, 2749; 1662, 3015; 1940, 3285; 2132, 3463; 2249, 3577;


122
213
1187, 2556; 1396, 2759; 1434, 2795; 1904, 3249; 1959, No_Pept; 2208,




No_Pept;


123
5, 291, 126
1651, 3004;


124
530, 531, 532, 533, 534, 535
1651, 3004; 2462, 3774;


125
211, 292


126
767
1377, 2740; 1441, 2802; 1548, 2903; 1561, 2916; 1594, 2949; 1698,




3050; 1747, 3097; 2005, 3343; 2108, 3441; 2238, 3566; 2266, 3594;




2318, 3644; 2486, 3798;


127
768, 970
1130, 2499; 1135, 2504; 1146, 2515; 1160, 2529; 1164, 2533; 1231,




2600; 1304, 2672; 1361, 2725; 1374, 2737; 1375, 2738; 1376, 2739;




1377, 2740; 1430, 2791; 1450, 2810; 1452, 2812; 1486, 2842; 1567,




2922; 1688, 3040; 1725, 3076; 1802, 3151; 1812, 3161; 1859, 3207;




1873, 3221; 2015, 3353; 2017, 3355; 2020, 3358; 2024, 3362;




2140, 3471; 2152, 3482; 2157, 3487; 2188, 3517; 2237, 3565; 2238,




3566; 2295, 3621; 2321, 3647; 2324, 3650; 2371, 3696; 2388, 3710;




2389, 3711; 2396, 3718;


128
993, 994, 995


129
207


130
973
1188, 2557; 1206, 2575; 1381, 2744; 1394, 2757; 1500, 2856; 1726,




3077; 2154, 3484; 2222, 3550; 2267, 3595; 2384, 3706;


131
573
1130, 2499; 1139, 2508; 1238, 2607; 1357, 2721; 1358, 2722; 1376,




2739; 1536, 2891; 1742, 3092; 1751, 3101; 1761, 3111; 1772, 3122;




1797, 3146; 2135, 3466; 2326, 3652; 2417, 3734;


132
7, 188, 261, 064
2424, No_Pept;


133
222


134
265
1249, 2618;


135
536


136
266
1189, 2558; 1799, 3148; 1872, 3220;


137
974
1193, 2562; 1217, 2586; 1393, 2756; 1563, 2918; 1628, 2982; 2277,




3605; 2401, 3722;


138
254
1366, 2730; 1635, 2989; 1769, 3119; 1862, 3210; 2470, 3782;


139
636, 637
1386, 2749; 1930, 3275; 2249, 3577; 2373, No_Pept;


140
422
1386, 2749; 1618, 2972; 2032, 3369; 2249, 3577; 2263, 3591;


141
989


142
212


143
1053 
2034, 3371;


144
634
2120, 3451;


145
576
1192, 2561; 1215, 2584; 1603, 2958; 1763, 3113; 1989, 3328; 1959,




No_Pept; 2208, No_Pept;


146
758
2423, No_Pept; 2424, No_Pept;


147
721


148
666
1176, 2545; 1254, 2623; 1257, 2626; 1479, 2835; 1722, 3073; 1766,




3116; 1791, 3141; 1962, 3305; 2060, 3396; 2115, 3446; 2212, 3540;




2305, 3631; 2314, 3640; 2413, 3732; 2479, 3791;


149
11, 201, 121
1177, 2546; 1226, 2595; 1854, 3202;


150
419, 662, 663, 883
1177, 2546; 1226, 2595; 1584, 2939; 2241, 3569;


151
300, 301, 302, 303, 304
1177, 2546; 1226, 2595; 1584, 2939; 2241, 3569;


152
836
1177, 2546; 1226, 2595; 1369, 2733; 1584, 2939; 1854, 3202; 1870,




3218; 1898, 3243; 2241, 3569; 2246, 3574;


153
5, 741, 119
1177, 2546; 1226, 2595; 1369, 2733; 1584, 2939; 1870, 3218; 1898,




3243; 2241, 3569; 2246, 3574; 2262, 3590; 2490, 3800;


154
853
1153, 2522; 1365, 2729; 1941, 3286; 2086, 3421; 2113, 3444; 2230,




3558; 2301, 3627; 1645, No_Pept;


155
544, 545, 837
1303, 2671; 1362, 2726; 1406, 2768; 1515, 2870; 1653, 3006; 2013,




3351; 2220, 3548; 2381, 3703; 2395, 3717; 2064, No_Pept; 2146,




No_Pept; 2487, No_Pept;


156
915
1303, 2671; 1362, 2726; 1406, 2768; 1515, 2870; 1653, 3006; 2013,




3351; 2184, 3513; 2220, 3548; 2381, 3703; 2395, 3717; 2438, 3751;




2064, No_Pept; 2146, No_Pept; 2487, No_Pept;


157
761
1681, 3033; 2177, 3506; 2291, 3618;


158
214
1681, 3033; 1908, 3253; 2177, 3506; 2291, 3618;


159
2, 951, 054
2177, 3506; 2291, 3618; 2309, 3635;


160
738
1145, 2514; 2184, 3513;


161
458
1167, 2536; 1216, 2585; 2073, 3408;


162
668, 857


163
1123 
1497, 2853; 1648, 3001; 1831, 3179;


164
1122 


165
7, 651, 069
1497, 2853; 1514, 2869; 1583, 2938; 1648, 3001;


166
421, 839
1180, 2549; 1278, 2646; 1287, 2655; 1308, 2676; 1429, 2790; 1534,




2889; 1633, 2987; 1724, 3075; 1816, 3165; 1838, 3186; 1866, 3214;




1896, 3241; 2104, 3437; 2129, 3460; 2356, 3681; 2464, 3776; 2399,




No_Pept;


167
736
1298, 2666; 1429, 2790; 1534, 2889; 1569, 2924; 1633, 2987; 1685,




3037; 1724, 3075; 1816, 3165; 1896, 3241; 2129, 3460; 2249, 3577;




2282, 3609; 2464, 3776; 2399, No_Pept;


168
922
1161, 2530; 1201, 2570; 1253, 2622; 1256, 2625; 1266, 2635; 1282,




2650; 1352, 2716; 1359, 2723; 1410, 2772; 1423, 2784; 1470, 2830;




1492, 2848; 1493, 2849; 1540, 2895; 1587, 2942; 1595, 2950; 1617,




2971; 1637, 2991; 1679, 3031; 1692, 3044; 1735, 3086; 1770, 3120;




1792, 3142; 1917, 3262; 1952, 3296; 1957, 3301; 2010, 3348;




2053, 3389; 2082, 3417; 2083, 3418; 2125, 3456; 2134, 3465; 2153,




3483; 2165, 3495; 2227, 3555; 2313, 3639; 2314, 3640; 2385, 3707;




2468, 3780;


169
1065 
1148, 2517; 1225, 2594; 1234, 2603; 1239, 2608; 1284, 2652; 1318,




2686; 1357, 2721; 1364, 2728; 1414, 2775; 1435, 2796; 1463, 2823;




1506, 2862; 1526, 2881; 1531, 2886; 1558, 2913; 1580, 2935; 1586,




2941; 1813, 3162; 1900, 3245; 1937, 3282; 1955, 3299; 2068, 3403;




2070, 3405; 2148, 3478; 2163, 3493; 2180, 3509; 2203, 3532;




2204, 3533; 2242, 3570; 2380, 3702; 2392, 3714; 2441, 3754; 2455,




3767;


170
8, 851, 007
1199, 2568; 1232, 2601; 1337, 2703; 1467, 2827; 1715, 3066; 1988,




3327; 2037, 3374; 2051, 3388; 2300, 3626; 2306, 3632; 2429, No_Pept;


171
522
1141, 2510; 1181, 2550; 1184, 2553; 1190, 2559; 1219, 2588; 1263,




2632; 1345, 2709; 1389, 2752; 1403, 2765; 1451, 2811; 1467, 2827;




1468, 2828; 1491, 2847; 1546, 2901; 1665, 3018; 1874, 3222; 2037,




3374; 2051, 3388; 2078, 3413; 2080, 3415; 2136, 3467; 2159, 3489;




2174, 3503; 2215, 3543; 2229, 3557; 2232, 3560; 2306, 3632;




2368, 3693; 2440, 3753; 2031, No_Pept; 2429, No_Pept;


172
889
1141, 2510; 1181, 2550; 1184, 2553; 1190, 2559; 1194, 2563; 1219,




2588; 1263, 2632; 1271, 2640; 1323, 2689; 1345, 2709; 1389, 2752;




1392, 2755; 1403, 2765; 1451, 2811; 1467, 2827; 1468, 2828; 1491,




2847; 1544, 2899; 1546, 2901; 1665, 3018; 1671, 3023; 1817, 3166;




1874, 3222; 1988, 3327; 2021, 3359; 2022, 3360; 2037, 3374;




2051, 3388; 2078, 3413; 2080, 3415; 2136, 3467; 2159, 3489; 2174,




3503; 2215, 3543; 2229, 3557; 2232, 3560; 2306, 3632; 2368, 3693;




2391, 3713; 2440, 3753; 2031, No_Pept; 2429, No_Pept;


173
1067 
1275, 2644; 1933, 3278; 2247, 3575; 2286, 3613;


174
962
1275, 2644; 1409, 2771; 1421, 2782; 1431, 2792; 1432, 2793; 1933,




3278; 2069, 3404;


175
963, 964
1275, 2644; 1409, 2771; 1431, 2792; 1432, 2793; 1933, 3278; 2069,




3404; 2431, 3744;


176
972
2222, 3550; 2264, 3592;


177
575, 971
2066, 3401; 2222, 3550; 2264, 3592; 2481, 3793;


178
305, 769
2264, 3592;


179
541
1252, 2621; 1302, 2670; 1444, 2805; 1578, 2933; 1729, 3080; 1886,




3234; 1906, 3251; 2029, 3367; 2088, 3423; 2195, 3524; 2258, 3586;




2259, 3587; 2453, 3765;


180
294


181
1006 


182
818
1737, 3088;


183
272, 664


184
216
1505, 2861; 1629, 2983; 1753, 3103; 1768, 3118; 2116, 3447; 2298,




3624; 2300, 3626; 2344, 3670; 2424, No_Pept;


185
1125 
1858, 3206;


186
543
1152, 2521; 1483, 2839; 1507, 2863; 2038, 3375; 2118, 3449; 2446,




3759;


187
1124 
1483, 2839; 1656, 3009; 1851, 3199; 1858, 3206; 2118, 3449;


188
210
1274, 2643; 1483, 2839; 2038, 3375; 2118, 3449; 2238, 3566;


189
998
1310, 2678; 1555, 2910; 1556, 2911; 1581, 2936; 1657, 3010; 2421,




3738;


190
6, 277, 308, 301, 004
1872, 3220; 1953, 3297; 1961, 3304; 2155, 3485;


191
991, 992
1973, 3314;


192
1104 


193
1071 
1230, 2599; 1657, 3010; 1864, 3212;


194
619
1230, 2599; 1657, 3010;


195
999
1230, 2599; 1657, 3010;


196
468


197
766
















TABLE 2







Trait values for microRNA targets and associated traits












Target
Target






Gene
Gene


Relative


DNA
Peptide

Relative
Nitro-
Relative


SEQ
SEQ ID
Relevant Traits for
Drought
gen
Yield


ID No:
No:
miRNA Targets
Value
Value
Value





1128
2497
Drought-Nitrogen-Yield
0.745
1.000
1.000


1130
2499
Drought-Nitrogen-Yield
0.745
1.000
1.000


1136
2505
Drought-Nitrogen-Yield
0.780
0.517
0.757


1138
2507
Drought-Nitrogen-Yield
0.555
0.654
0.979


1145
2514
Drought-Nitrogen-Yield
0.786
0.762
0.877


1147
2516
Drought-Nitrogen-Yield
1.000
0.763
0.784


1157
2526
Drought-Nitrogen-Yield
0.549
0.647
0.950


1161
2530
Drought-Nitrogen-Yield
0.923
0.621
0.678


1167
2536
Drought-Nitrogen-Yield
0.513
0.606
0.710


1173
2542
Drought-Nitrogen-Yield
0.688
0.830
0.716


1254
2623
Drought-Nitrogen-Yield
0.919
0.991
0.844


1265
2634
Drought-Nitrogen-Yield
0.726
0.554
0.651


1308
2676
Drought-Nitrogen-Yield
0.614
0.538
0.843


1342
N.A.
Drought-Nitrogen-Yield
0.481
0.609
0.699


1390
2753
Drought-Nitrogen-Yield
0.544
0.804
0.713


1471
2831
Drought-Nitrogen-Yield
0.522
0.591
0.668


1472
2832
Drought-Nitrogen-Yield
0.522
0.591
0.668


1533
2888
Drought-Nitrogen-Yield
0.504
0.618
0.678


1537
2892
Drought-Nitrogen-Yield
0.502
0.688
0.653


1540
2895
Drought-Nitrogen-Yield
0.502
0.618
0.773


1588
2943
Drought-Nitrogen-Yield
0.485
0.609
0.720


1592
2947
Drought-Nitrogen-Yield
0.483
0.609
0.699


1600
2955
Drought-Nitrogen-Yield
0.481
0.609
0.740


1605
N.A.
Drought-Nitrogen-Yield
0.481
0.609
0.699


1621
2975
Drought-Nitrogen-Yield
0.477
0.779
0.755


1703
3054
Drought-Nitrogen-Yield
0.461
0.541
0.659


1129
2498
Drought-Nitrogen
0.745
0.000
1.000


1132
2501
Drought-Nitrogen
0.745
0.435
1.000


1134
2503
Drought-Nitrogen
0.593
0.582
0.507


1155
2524
Drought-Nitrogen
0.645
0.500
0.543


1199
2568
Drought-Nitrogen
0.466
0.580
0.615


1233
2602
Drought-Nitrogen
0.548
0.676
0.614


1237
2606
Drought-Nitrogen
0.485
0.612
0.631


1244
2613
Drought-Nitrogen
0.546
0.615
0.534


1249
2618
Drought-Nitrogen
0.462
0.600
0.582


1260
2629
Drought-Nitrogen
0.810
0.545
0.594


1263
2632
Drought-Nitrogen
0.736
0.490
0.489


1271
2640
Drought-Nitrogen
0.701
0.499
0.515


1284
2652
Drought-Nitrogen
0.652
0.550
0.549


1292
2660
Drought-Nitrogen
0.639
0.599
0.576


1296
2664
Drought-Nitrogen
0.631
0.506
0.594


1317
2685
Drought-Nitrogen
0.601
0.771
0.350


1329
2695
Drought-Nitrogen
0.586
0.589
0.528


1356
2720
Drought-Nitrogen
0.570
0.618
0.604


1379
2742
Drought-Nitrogen
0.550
0.626
0.249


1389
2752
Drought-Nitrogen
0.545
0.618
0.631


1394
2757
Drought-Nitrogen
0.543
0.501
0.510


1396
2759
Drought-Nitrogen
0.540
0.620
0.410


1408
2770
Drought-Nitrogen
0.535
0.507
0.533


1419
2780
Drought-Nitrogen
0.532
0.490
0.422


1429
2790
Drought-Nitrogen
0.529
0.686
0.619


1434
2795
Drought-Nitrogen
0.528
0.601
0.000


1435
2796
Drought-Nitrogen
0.528
0.629
0.419


1436
2797
Drought-Nitrogen
0.528
0.591
0.618


1438
2799
Drought-Nitrogen
0.528
0.498
0.587


1441
2802
Drought-Nitrogen
0.527
0.574
0.387


1451
2811
Drought-Nitrogen
0.525
0.591
0.568


1454
2814
Drought-Nitrogen
0.523
0.723
0.583


1458
2818
Drought-Nitrogen
0.523
0.501
0.510


1459
2819
Drought-Nitrogen
0.523
0.501
0.510


1460
2820
Drought-Nitrogen
0.523
0.591
0.618


1462
2822
Drought-Nitrogen
0.523
0.649
0.348


1473
2833
Drought-Nitrogen
0.522
0.591
0.618


1474
N.A.
Drought-Nitrogen
0.522
0.591
0.568


1475
N.A.
Drought-Nitrogen
0.522
0.591
0.568


1476
N.A.
Drought-Nitrogen
0.522
0.591
0.568


1477
N.A.
Drought-Nitrogen
0.522
0.591
0.568


1478
2834
Drought-Nitrogen
0.522
0.591
0.568


1479
2835
Drought-Nitrogen
0.522
0.591
0.568


1480
2836
Drought-Nitrogen
0.522
0.591
0.568


1481
2837
Drought-Nitrogen
0.522
0.591
0.568


1486
2842
Drought-Nitrogen
0.520
0.499
0.578


1491
2847
Drought-Nitrogen
0.518
0.516
0.620


1493
2849
Drought-Nitrogen
0.517
0.995
0.576


1501
2857
Drought-Nitrogen
0.513
0.626
0.304


1529
2884
Drought-Nitrogen
0.505
0.609
0.630


1563
2918
Drought-Nitrogen
0.497
0.589
0.491


1581
2936
Drought-Nitrogen
0.489
0.167
1.000


1584
2939
Drought-Nitrogen
0.488
0.612
0.630


1587
2942
Drought-Nitrogen
0.486
0.590
0.458


1593
2948
Drought-Nitrogen
0.482
0.597
0.534


1599
2954
Drought-Nitrogen
0.481
0.517
0.432


1601
2956
Drought-Nitrogen
0.481
0.609
0.630


1602
2957
Drought-Nitrogen
0.481
0.609
0.630


1603
2958
Drought-Nitrogen
0.481
0.609
0.630


1604
2959
Drought-Nitrogen
0.481
0.609
0.630


1611
2965
Drought-Nitrogen
0.480
0.554
0.361


1612
2966
Drought-Nitrogen
0.480
0.554
0.361


1613
2967
Drought-Nitrogen
0.480
0.554
0.560


1629
2983
Drought-Nitrogen
0.475
0.498
0.532


1641
2995
Drought-Nitrogen
0.472
0.541
0.604


1642
2996
Drought-Nitrogen
0.472
0.585
0.387


1683
3035
Drought-Nitrogen
0.464
0.541
0.469


1685
3037
Drought-Nitrogen
0.464
0.801
0.354


1704
3055
Drought-Nitrogen
0.461
0.541
0.469


1707
3058
Drought-Nitrogen
0.460
0.656
0.446


1168
2537
Nitrogen-Yield
0.305
0.548
0.705


1178
2547
Nitrogen-Yield
0.354
0.500
0.841


1179
2548
Nitrogen-Yield
0.440
0.983
0.767


1185
2554
Nitrogen-Yield
0.295
0.597
0.679


1194
2563
Nitrogen-Yield
0.357
0.500
0.683


1220
2589
Nitrogen-Yield
0.325
0.505
0.645


1710
3061
Nitrogen-Yield
0.456
0.569
0.652


1716
3067
Nitrogen-Yield
0.452
0.668
0.649


1733
3084
Nitrogen-Yield
0.438
0.572
0.652


1738
3089
Nitrogen-Yield
0.434
0.569
0.652


1771
3121
Nitrogen-Yield
0.415
0.580
0.662


1784
3134
Nitrogen-Yield
0.399
0.738
0.646


1795
3145
Nitrogen-Yield
0.388
0.767
0.654


1807
3156
Nitrogen-Yield
0.385
0.813
0.691


1823
3172
Nitrogen-Yield
0.374
0.492
0.732


1872
3220
Nitrogen-Yield
0.353
0.570
0.681


1892
3239
Nitrogen-Yield
0.345
0.536
0.771


1926
3271
Nitrogen-Yield
0.328
0.607
0.723


1936
3281
Nitrogen-Yield
0.322
0.681
0.729


1937
3282
Nitrogen-Yield
0.322
0.501
0.670


1938
3283
Nitrogen-Yield
0.322
0.501
0.670


1942
3287
Nitrogen-Yield
0.321
0.554
0.743


1970
3311
Nitrogen-Yield
0.306
0.528
0.668


2001
3287
Nitrogen-Yield
0.298
0.545
0.743


2003
3341
Nitrogen-Yield
0.297
0.554
0.735


2006
3344
Nitrogen-Yield
0.296
0.530
0.694


2026
3364
Nitrogen-Yield
0.287
0.545
0.743


2074
3409
Nitrogen-Yield
0.274
0.596
0.650


2105
3438
Nitrogen-Yield
0.259
0.593
0.656


2109
N.A.
Nitrogen-Yield
0.256
0.580
0.723


2110
N.A.
Nitrogen-Yield
0.256
0.580
0.723


2130
3461
Nitrogen-Yield
0.244
0.833
0.800


2145
3476
Nitrogen-Yield
0.227
0.490
0.735


2152
3482
Nitrogen-Yield
0.220
0.515
0.723


2174
3503
Nitrogen-Yield
0.204
0.692
0.692


2175
3504
Nitrogen-Yield
0.204
0.692
0.692


2189
3518
Nitrogen-Yield
0.190
0.779
0.755


2192
3521
Nitrogen-Yield
0.188
0.704
0.701


2199
3528
Nitrogen-Yield
0.179
0.490
0.751


2200
3529
Nitrogen-Yield
0.179
0.490
0.751


2202
3531
Nitrogen-Yield
0.176
0.911
0.659


2240
3568
Nitrogen-Yield
0.125
0.603
0.657


2245
3573
Nitrogen-Yield
0.119
0.569
0.714


2246
3574
Nitrogen-Yield
0.119
0.569
0.779


2291
3618
Nitrogen-Yield
0.045
0.510
0.699


2299
3625
Nitrogen-Yield
0.043
0.600
0.657


2310
3636
Nitrogen-Yield
0.013
0.496
0.789


2313
3639
Nitrogen-Yield
0.013
0.589
0.684


2340
3666
Nitrogen-Yield
0.000
0.754
0.670


2341
3667
Nitrogen-Yield
0.000
0.754
0.670


2371
3696
Nitrogen-Yield
0.000
0.711
0.650


2412
3731
Nitrogen-Yield
0.000
0.600
0.657


2413
3732
Nitrogen-Yield
0.000
0.600
0.657


2414
3733
Nitrogen-Yield
0.000
0.791
0.665


2417
3734
Nitrogen-Yield
0.000
0.511
0.725


2429
N.A.
Nitrogen-Yield
0.000
0.688
0.645


2430
3743
Nitrogen-Yield
0.000
0.688
0.653


2431
3744
Nitrogen-Yield
0.000
0.688
0.653


2443
3756
Nitrogen-Yield
0.000
0.779
0.755


2468
3780
Nitrogen-Yield
0.000
0.517
0.710


1135
2504
Drought-Yield
0.591
0.321
0.798


1137
2506
Drought-Yield
0.566
0.353
0.891


1141
2510
Drought-Yield
0.549
0.000
0.658


1142
2511
Drought-Yield
0.716
0.430
0.829


1143
2512
Drought-Yield
0.661
0.000
0.924


1146
2515
Drought-Yield
0.598
0.407
0.667


1153
2522
Drought-Yield
0.663
0.212
0.909


1154
2523
Drought-Yield
0.674
0.183
0.686


1160
2529
Drought-Yield
0.569
0.280
0.775


1164
2533
Drought-Yield
0.635
0.400
0.770


1166
2535
Drought-Yield
0.470
0.299
0.656


1169
2538
Drought-Yield
0.556
0.300
0.872


1183
2552
Drought-Yield
0.642
0.365
0.783


1190
2559
Drought-Yield
0.544
0.212
0.813


1192
2561
Drought-Yield
0.477
0.444
0.837


1195
2564
Drought-Yield
0.522
0.200
0.724


1208
2577
Drought-Yield
0.555
0.319
0.812


1231
2600
Drought-Yield
0.479
0.273
0.743


1255
2624
Drought-Yield
0.919
0.000
0.686


1256
2625
Drought-Yield
0.919
0.407
0.688


1258
2627
Drought-Yield
0.846
0.338
0.734


1267
2636
Drought-Yield
0.712
0.122
0.662


1275
2644
Drought-Yield
0.693
0.000
0.689


1278
2646
Drought-Yield
0.691
0.000
0.729


1279
2647
Drought-Yield
0.681
0.301
0.763


1283
2651
Drought-Yield
0.652
0.167
0.725


1290
2658
Drought-Yield
0.644
0.363
0.654


1299
2667
Drought-Yield
0.630
0.000
0.696


1307
2675
Drought-Yield
0.617
0.401
0.656


1322
2688
Drought-Yield
0.597
0.287
0.659


1336
2702
Drought-Yield
0.581
0.228
0.746


1339
2705
Drought-Yield
0.579
0.255
0.675


1342
N.A.
Drought-Yield
0.525
0.280
0.672


1347
2711
Drought-Yield
0.575
0.378
0.898


1353
2717
Drought-Yield
0.572
0.000
0.750


1355
2719
Drought-Yield
0.571
0.441
0.669


1361
2725
Drought-Yield
0.565
0.468
0.674


1362
2726
Drought-Yield
0.564
0.359
0.883


1363
2727
Drought-Yield
0.563
0.000
0.765


1373
N.A.
Drought-Yield
0.555
0.000
0.697


1378
2741
Drought-Yield
0.550
0.347
0.776


1409
2771
Drought-Yield
0.534
0.280
0.673


1415
2776
Drought-Yield
0.532
0.285
0.752


1430
2791
Drought-Yield
0.529
0.320
0.672


1431
2792
Drought-Yield
0.528
0.280
0.672


1432
2793
Drought-Yield
0.528
0.280
0.672


1437
2798
Drought-Yield
0.528
0.416
0.769


1448
N.A.
Drought-Yield
0.525
0.280
0.672


1449
2809
Drought-Yield
0.525
0.280
0.672


1452
2812
Drought-Yield
0.525
0.301
0.706


1453
2813
Drought-Yield
0.524
0.368
0.683


1468
2828
Drought-Yield
0.522
0.378
0.699


1487
2843
Drought-Yield
0.520
0.301
0.706


1498
2854
Drought-Yield
0.514
0.475
0.688


1505
2861
Drought-Yield
0.511
0.000
0.800


1552
2907
Drought-Yield
0.500
0.281
0.697


1562
2917
Drought-Yield
0.498
0.000
0.843


1575
2930
Drought-Yield
0.492
0.000
0.813


1615
2969
Drought-Yield
0.479
0.278
0.723


1643
2997
Drought-Yield
0.471
0.167
0.644


1655
3008
Drought-Yield
0.469
0.361
0.844


1662
3015
Drought-Yield
0.468
0.200
0.692


1664
3017
Drought-Yield
0.467
0.000
0.769


1680
3032
Drought-Yield
0.465
0.159
0.662


1684
3036
Drought-Yield
0.464
0.180
0.715


1177
2546
Nitrogen
0.460
0.500
0.634


1180
2549
Nitrogen
0.454
0.743
0.468


1198
2567
Nitrogen
0.279
0.505
0.607


1206
2575
Nitrogen
0.153
0.504
0.310


1207
2576
Nitrogen
0.176
0.503
0.315


1216
2585
Nitrogen
0.410
0.983
0.318


1218
2587
Nitrogen
0.294
0.643
0.492


1234
2603
Nitrogen
0.296
0.685
0.511


1246
2615
Nitrogen
0.349
0.523
0.467


1342
N.A.
Nitrogen
0.305
0.548
0.507


1342
N.A.
Nitrogen
0.047
0.546
0.617


1342
N.A.
Nitrogen
0.045
0.529
0.456


1342
N.A.
Nitrogen
0.000
0.747
0.542


1541
2896
Nitrogen
0.361
0.578
0.387


1711
3062
Nitrogen
0.454
0.561
0.578


1715
3066
Nitrogen
0.453
0.580
0.615


1717
3068
Nitrogen
0.450
0.499
0.528


1720
3071
Nitrogen
0.448
0.501
0.491


1721
3072
Nitrogen
0.448
0.578
0.531


1722
3073
Nitrogen
0.447
0.698
0.492


1726
3077
Nitrogen
0.441
0.586
0.479


1727
3078
Nitrogen
0.441
0.541
0.629


1728
3079
Nitrogen
0.441
0.569
0.474


1731
3082
Nitrogen
0.439
0.741
0.595


1734
3085
Nitrogen
0.437
0.513
0.555


1737
3088
Nitrogen
0.435
0.595
0.577


1739
N.A.
Nitrogen
0.434
0.569
0.474


1740
3090
Nitrogen
0.434
0.569
0.474


1741
3091
Nitrogen
0.434
0.569
0.474


1742
3092
Nitrogen
0.432
0.540
0.383


1745
3095
Nitrogen
0.430
0.623
0.535


1752
3102
Nitrogen
0.426
0.513
0.489


1753
3103
Nitrogen
0.425
0.710
0.469


1757
3107
Nitrogen
0.424
0.498
0.532


1759
3109
Nitrogen
0.422
0.498
0.532


1760
3110
Nitrogen
0.422
0.498
0.468


1761
3111
Nitrogen
0.421
0.676
0.445


1763
3113
Nitrogen
0.420
0.858
0.413


1764
3114
Nitrogen
0.419
0.498
0.555


1765
3115
Nitrogen
0.419
0.498
0.555


1766
3116
Nitrogen
0.419
0.498
0.555


1767
3117
Nitrogen
0.419
0.498
0.555


1775
3125
Nitrogen
0.408
0.738
0.595


1777
3127
Nitrogen
0.404
0.576
0.510


1778
3128
Nitrogen
0.404
0.576
0.510


1781
3131
Nitrogen
0.401
0.580
0.321


1783
3133
Nitrogen
0.399
0.738
0.595


1785
3135
Nitrogen
0.399
0.508
0.411


1786
3136
Nitrogen
0.398
0.504
0.514


1808
3157
Nitrogen
0.384
0.593
0.540


1809
3158
Nitrogen
0.384
0.768
0.304


1810
3159
Nitrogen
0.384
0.673
0.539


1812
3161
Nitrogen
0.381
0.706
0.380


1813
3162
Nitrogen
0.379
0.764
0.304


1814
3163
Nitrogen
0.378
0.556
0.491


1815
3164
Nitrogen
0.378
0.511
0.551


1820
3169
Nitrogen
0.375
0.677
0.447


1825
3174
Nitrogen
0.373
0.545
0.456


1826
3175
Nitrogen
0.371
0.589
0.462


1827
3176
Nitrogen
0.371
0.514
0.348


1832
3180
Nitrogen
0.370
0.511
0.363


1833
3181
Nitrogen
0.369
0.595
0.473


1834
3182
Nitrogen
0.369
0.537
0.411


1836
3184
Nitrogen
0.366
0.512
0.491


1842
3190
Nitrogen
0.362
0.608
0.597


1843
3191
Nitrogen
0.361
0.570
0.473


1844
3192
Nitrogen
0.361
0.548
0.507


1845
3193
Nitrogen
0.361
0.489
0.479


1847
3195
Nitrogen
0.360
0.541
0.451


1848
3196
Nitrogen
0.359
0.548
0.507


1852
3200
Nitrogen
0.358
0.525
0.442


1857
3205
Nitrogen
0.355
0.489
0.458


1858
3206
Nitrogen
0.355
0.489
0.456


1859
3207
Nitrogen
0.355
0.489
0.553


1860
3208
Nitrogen
0.355
0.489
0.456


1861
3209
Nitrogen
0.355
0.489
0.456


1862
3210
Nitrogen
0.355
0.489
0.456


1863
3211
Nitrogen
0.355
0.489
0.456


1866
3214
Nitrogen
0.354
0.529
0.456


1867
3215
Nitrogen
0.354
0.490
0.529


1868
3216
Nitrogen
0.353
0.567
0.514


1871
3219
Nitrogen
0.353
0.608
0.479


1873
3221
Nitrogen
0.352
0.514
0.470


1874
3222
Nitrogen
0.351
0.492
0.411


1880
3228
Nitrogen
0.348
0.568
0.417


1881
3229
Nitrogen
0.348
0.490
0.631


1882
3230
Nitrogen
0.345
0.636
0.481


1884
3232
Nitrogen
0.345
0.501
0.547


1888
3235
Nitrogen
0.345
0.570
0.473


1889
3236
Nitrogen
0.345
0.570
0.473


1890
3237
Nitrogen
0.345
0.570
0.473


1893
3240
Nitrogen
0.345
0.536
0.435


1894
N.A.
Nitrogen
0.345
0.574
0.572


1895
N.A.
Nitrogen
0.345
0.574
0.572


1896
3241
Nitrogen
0.345
0.574
0.560


1897
3242
Nitrogen
0.345
0.574
0.387


1898
3243
Nitrogen
0.345
0.574
0.387


1899
3244
Nitrogen
0.344
0.589
0.492


1901
3246
Nitrogen
0.343
0.576
0.459


1903
3248
Nitrogen
0.340
0.495
0.438


1911
3256
Nitrogen
0.336
0.498
0.555


1913
3258
Nitrogen
0.335
0.523
0.627


1914
3259
Nitrogen
0.334
0.841
0.271


1915
3260
Nitrogen
0.334
0.592
0.573


1916
3261
Nitrogen
0.334
0.592
0.573


1923
3268
Nitrogen
0.332
0.540
0.318


1924
3269
Nitrogen
0.332
0.545
0.344


1929
3274
Nitrogen
0.326
0.490
0.529


1930
3275
Nitrogen
0.326
0.490
0.507


1931
3276
Nitrogen
0.326
0.490
0.509


1933
3278
Nitrogen
0.325
0.552
0.507


1939
3284
Nitrogen
0.322
0.501
0.547


1940
3285
Nitrogen
0.322
0.501
0.547


1941
3286
Nitrogen
0.322
0.501
0.547


1945
3290
Nitrogen
0.320
0.493
0.379


1949
3293
Nitrogen
0.316
0.492
0.278


1952
3296
Nitrogen
0.316
0.664
0.575


1954
3298
Nitrogen
0.315
0.548
0.451


1955
3299
Nitrogen
0.315
0.541
0.451


1956
3300
Nitrogen
0.315
0.541
0.451


1958
3302
Nitrogen
0.312
0.574
0.402


1961
3304
Nitrogen
0.311
0.671
0.502


1966
3309
Nitrogen
0.308
0.841
0.420


1969
N.A.
Nitrogen
0.306
0.528
0.328


1971
3312
Nitrogen
0.306
0.528
0.384


1976
N.A.
Nitrogen
0.305
0.548
0.507


1977
3317
Nitrogen
0.305
0.548
0.507


1978
N.A.
Nitrogen
0.305
0.548
0.507


1979
3318
Nitrogen
0.305
0.548
0.507


1980
3319
Nitrogen
0.305
0.548
0.507


1981
3320
Nitrogen
0.305
0.548
0.519


1982
3321
Nitrogen
0.305
0.589
0.492


1983
3322
Nitrogen
0.305
0.589
0.492


1990
3329
Nitrogen
0.301
0.495
0.361


1991
3330
Nitrogen
0.301
0.827
0.425


1999
3338
Nitrogen
0.300
0.493
0.619


2000
3339
Nitrogen
0.299
0.592
0.539


2002
3340
Nitrogen
0.297
0.523
0.552


2004
3342
Nitrogen
0.296
0.535
0.318


2005
3343
Nitrogen
0.296
0.723
0.529


2007
3345
Nitrogen
0.296
0.496
0.561


2009
3347
Nitrogen
0.296
0.749
0.338


2014
3352
Nitrogen
0.294
0.580
0.327


2023
3361
Nitrogen
0.287
0.554
0.375


2025
3363
Nitrogen
0.287
0.701
0.399


2027
3365
Nitrogen
0.287
0.545
0.344


2028
3366
Nitrogen
0.287
0.545
0.594


2029
3367
Nitrogen
0.287
0.545
0.456


2029
3367
Nitrogen
0.287
0.545
0.456


2030
3368
Nitrogen
0.287
0.545
0.456


2031
N.A.
Nitrogen
0.287
0.545
0.344


2032
3369
Nitrogen
0.287
0.545
0.344


2033
3370
Nitrogen
0.287
0.669
0.533


2035
3372
Nitrogen
0.287
0.678
0.427


2038
3375
Nitrogen
0.286
0.493
0.318


2041
3378
Nitrogen
0.285
0.733
0.376


2042
3379
Nitrogen
0.285
0.733
0.376


2053
3389
Nitrogen
0.284
0.495
0.450


2066
3401
Nitrogen
0.278
0.593
0.414


2067
3402
Nitrogen
0.278
0.559
0.289


2068
3403
Nitrogen
0.276
0.498
0.547


2081
3416
Nitrogen
0.273
0.523
0.552


2082
3417
Nitrogen
0.273
0.523
0.466


2083
3418
Nitrogen
0.273
0.523
0.466


2084
3419
Nitrogen
0.273
0.518
0.466


2088
3423
Nitrogen
0.270
0.580
0.321


2091
3426
Nitrogen
0.270
0.586
0.591


2092
3427
Nitrogen
0.270
0.490
0.627


2093
3428
Nitrogen
0.269
0.532
0.000


2094
3429
Nitrogen
0.268
0.541
0.405


2099
3432
Nitrogen
0.260
0.747
0.494


2100
3433
Nitrogen
0.260
0.685
0.557


2101
3434
Nitrogen
0.259
0.490
0.498


2108
3441
Nitrogen
0.256
0.841
0.337


2111
3442
Nitrogen
0.256
0.582
0.335


2112
3443
Nitrogen
0.253
0.621
0.408


2117
3448
Nitrogen
0.252
0.701
0.478


2118
3449
Nitrogen
0.251
0.546
0.428


2119
3450
Nitrogen
0.250
0.502
0.561


2120
3451
Nitrogen
0.249
0.537
0.378


2126
3457
Nitrogen
0.246
0.563
0.289


2127
3458
Nitrogen
0.245
0.490
0.627


2134
3465
Nitrogen
0.242
0.542
0.571


2135
3466
Nitrogen
0.239
0.515
0.318


2136
3467
Nitrogen
0.238
0.644
0.506


2142
3473
Nitrogen
0.235
0.583
0.390


2151
3481
Nitrogen
0.220
0.513
0.318


2157
3487
Nitrogen
0.219
0.753
0.431


2162
3492
Nitrogen
0.213
0.781
0.478


2163
3493
Nitrogen
0.211
0.493
0.411


2166
3496
Nitrogen
0.210
0.490
0.487


2170
3499
Nitrogen
0.205
0.522
0.478


2176
3505
Nitrogen
0.204
0.559
0.558


2177
3506
Nitrogen
0.204
0.559
0.558


2178
3507
Nitrogen
0.204
0.559
0.289


2179
3508
Nitrogen
0.204
0.559
0.289


2193
3522
Nitrogen
0.184
0.659
0.376


2194
3523
Nitrogen
0.180
0.520
0.443


2195
3524
Nitrogen
0.180
0.532
0.000


2196
3525
Nitrogen
0.179
0.490
0.627


2197
3526
Nitrogen
0.179
0.490
0.498


2198
3527
Nitrogen
0.179
0.490
0.487


2205
3534
Nitrogen
0.173
0.604
0.362


2209
3537
Nitrogen
0.164
0.830
0.523


2210
3538
Nitrogen
0.163
0.605
0.477


2211
3539
Nitrogen
0.160
0.702
0.420


2213
3541
Nitrogen
0.160
0.589
0.630


2217
3545
Nitrogen
0.153
0.534
0.305


2223
3551
Nitrogen
0.146
0.565
0.465


2224
3552
Nitrogen
0.146
0.532
0.000


2230
3558
Nitrogen
0.144
0.589
0.574


2236
3564
Nitrogen
0.132
0.674
0.526


2238
3566
Nitrogen
0.129
0.617
0.560


2241
3569
Nitrogen
0.125
0.518
0.605


2243
3571
Nitrogen
0.125
0.498
0.479


2247
3575
Nitrogen
0.114
0.510
0.442


2248
3576
Nitrogen
0.111
0.504
0.308


2249
3577
Nitrogen
0.111
0.509
0.478


2250
3578
Nitrogen
0.111
0.509
0.478


2251
3579
Nitrogen
0.108
0.530
0.374


2253
3581
Nitrogen
0.105
0.793
0.147


2254
3582
Nitrogen
0.105
0.582
0.507


2262
3590
Nitrogen
0.094
0.771
0.174


2270
3598
Nitrogen
0.086
0.549
0.395


2273
3601
Nitrogen
0.047
0.507
0.404


2275
3603
Nitrogen
0.047
0.546
0.536


2276
3604
Nitrogen
0.047
0.568
0.536


2279
3607
Nitrogen
0.047
0.805
0.474


2283
3610
Nitrogen
0.047
0.509
0.630


2284
3611
Nitrogen
0.047
0.509
0.478


2286
3613
Nitrogen
0.047
0.643
0.243


2287
3614
Nitrogen
0.045
0.592
0.496


2289
3616
Nitrogen
0.045
0.510
0.442


2290
3617
Nitrogen
0.045
0.510
0.442


2292
3619
Nitrogen
0.045
0.510
0.442


2293
N.A.
Nitrogen
0.045
0.529
0.456


2294
3620
Nitrogen
0.045
0.529
0.456


2295
3621
Nitrogen
0.045
0.529
0.456


2296
3622
Nitrogen
0.043
0.504
0.386


2300
3626
Nitrogen
0.043
0.668
0.386


2301
3627
Nitrogen
0.043
0.496
0.612


2303
3629
Nitrogen
0.043
0.589
0.295


2305
3631
Nitrogen
0.021
0.911
0.436


2307
3633
Nitrogen
0.021
0.589
0.345


2308
3634
Nitrogen
0.013
0.530
0.374


2309
3635
Nitrogen
0.013
0.496
0.428


2314
3640
Nitrogen
0.000
0.673
0.147


2315
3641
Nitrogen
0.000
0.712
0.636


2316
3642
Nitrogen
0.000
0.692
0.560


2320
3646
Nitrogen
0.000
0.496
0.443


2321
3647
Nitrogen
0.000
0.496
0.443


2322
3648
Nitrogen
0.000
0.496
0.514


2324
3650
Nitrogen
0.000
0.814
0.335


2325
3651
Nitrogen
0.000
0.589
0.434


2327
3653
Nitrogen
0.000
0.579
0.564


2328
3654
Nitrogen
0.000
0.634
0.377


2329
3655
Nitrogen
0.000
0.858
0.000


2330
3656
Nitrogen
0.000
0.549
0.000


2331
3657
Nitrogen
0.000
0.825
0.000


2343
3669
Nitrogen
0.000
0.530
0.374


2344
3670
Nitrogen
0.000
0.530
0.374


2345
3671
Nitrogen
0.000
0.530
0.374


2346
3672
Nitrogen
0.000
0.530
0.636


2347
3673
Nitrogen
0.000
0.530
0.374


2348
3674
Nitrogen
0.000
0.851
0.528


2352
3677
Nitrogen
0.000
0.692
0.560


2353
3678
Nitrogen
0.000
0.692
0.560


2355
3680
Nitrogen
0.000
0.770
0.481


2358
3683
Nitrogen
0.000
0.779
0.478


2360
3685
Nitrogen
0.000
0.606
0.147


2365
3690
Nitrogen
0.000
0.565
0.465


2366
3691
Nitrogen
0.000
0.565
0.465


2367
3692
Nitrogen
0.000
0.565
0.465


2368
3693
Nitrogen
0.000
0.571
0.578


2369
3694
Nitrogen
0.000
0.550
0.520


2370
3695
Nitrogen
0.000
0.550
0.520


2384
3706
Nitrogen
0.000
0.563
0.215


2385
3707
Nitrogen
0.000
0.713
0.554


2393
3715
Nitrogen
0.000
0.597
0.328


2394
3716
Nitrogen
0.000
0.597
0.328


2395
3717
Nitrogen
0.000
0.597
0.328


2415
N.A.
Nitrogen
0.000
0.668
0.383


2416
N.A.
Nitrogen
0.000
0.668
0.383


2418
3735
Nitrogen
0.000
0.542
0.517


2419
3736
Nitrogen
0.000
0.701
0.595


2420
3737
Nitrogen
0.000
0.582
0.507


2421
3738
Nitrogen
0.000
0.582
0.507


2422
3739
Nitrogen
0.000
0.496
0.562


2423
N.A.
Nitrogen
0.000
0.496
0.605


2424
N.A.
Nitrogen
0.000
0.496
0.605


2425
N.A.
Nitrogen
0.000
0.747
0.542


2427
3741
Nitrogen
0.000
0.634
0.398


2432
3745
Nitrogen
0.000
0.528
0.611


2433
3746
Nitrogen
0.000
0.583
0.437


2442
3755
Nitrogen
0.000
0.662
0.336


2442
3755
Nitrogen
0.000
0.662
0.336


2444
3757
Nitrogen
0.000
0.661
0.572


2446
3759
Nitrogen
0.000
0.858
0.304


2454
3766
Nitrogen
0.000
0.710
0.567


2455
3767
Nitrogen
0.000
0.522
0.478


2456
3768
Nitrogen
0.000
0.522
0.478


2457
3769
Nitrogen
0.000
0.522
0.478


2470
3782
Nitrogen
0.000
0.644
0.506


2471
3783
Nitrogen
0.000
0.644
0.506


2472
3784
Nitrogen
0.000
0.532
0.000


2473
3785
Nitrogen
0.000
0.532
0.000


2474
3786
Nitrogen
0.000
0.532
0.000


2475
3787
Nitrogen
0.000
0.532
0.000


2476
3788
Nitrogen
0.000
0.532
0.000


2492
3802
Nitrogen
0.000
0.589
0.574


2493
3803
Nitrogen
0.000
0.589
0.539


2494
N.A.
Nitrogen
0.000
0.589
0.539


2495
3804
Nitrogen
0.000
0.589
0.491


1127
2496
Drought
0.763
0.325
0.354


1131
2500
Drought
0.745
0.264
0.496


1133
2502
Drought
0.593
0.256
0.410


1139
2508
Drought
0.553
0.233
0.564


1140
2509
Drought
0.706
0.384
0.472


1144
2513
Drought
0.463
0.301
0.466


1148
2517
Drought
0.475
0.000
0.559


1150
2519
Drought
0.714
0.212
0.594


1151
2520
Drought
0.510
0.278
0.499


1158
2527
Drought
0.476
0.270
0.603


1175
2544
Drought
0.851
0.173
0.394


1176
2545
Drought
0.514
0.000
0.527


1184
2553
Drought
0.465
0.210
0.309


1188
2557
Drought
0.839
0.324
0.579


1201
2570
Drought
0.593
0.272
0.442


1202
2571
Drought
0.465
0.357
0.185


1205
2574
Drought
0.474
0.279
0.629


1209
2578
Drought
0.777
0.000
0.538


1213
2582
Drought
0.516
0.314
0.429


1221
2590
Drought
0.467
0.243
0.501


1222
2591
Drought
0.482
0.456
0.584


1223
2592
Drought
0.527
0.258
0.409


1224
2593
Drought
0.482
0.222
0.446


1227
2596
Drought
0.488
0.247
0.540


1228
2597
Drought
0.481
0.212
0.555


1232
2601
Drought
0.656
0.453
0.542


1236
2605
Drought
0.554
0.338
0.457


1238
2607
Drought
0.673
0.316
0.430


1239
2608
Drought
0.570
0.212
0.126


1240
2609
Drought
0.626
0.340
0.459


1243
2612
Drought
0.541
0.000
0.355


1247
2616
Drought
0.576
0.180
0.578


1251
2620
Drought
0.924
0.359
0.461


1252
2621
Drought
0.921
0.334
0.526


1253
2622
Drought
0.919
0.000
0.410


1257
2626
Drought
0.860
0.000
0.390


1259
2628
Drought
0.844
0.429
0.419


1261
2630
Drought
0.779
0.000
0.410


1262
2631
Drought
0.756
0.393
0.385


1264
2633
Drought
0.733
0.274
0.392


1266
2635
Drought
0.712
0.000
0.448


1268
2637
Drought
0.707
0.098
0.432


1269
2638
Drought
0.707
0.098
0.432


1270
2639
Drought
0.703
0.301
0.317


1272
2641
Drought
0.701
0.280
0.440


1273
2642
Drought
0.700
0.280
0.440


1274
2643
Drought
0.694
0.467
0.628


1276
N.A.
Drought
0.693
0.000
0.210


1277
2645
Drought
0.692
0.116
0.318


1280
2648
Drought
0.656
0.171
0.560


1281
2649
Drought
0.653
0.167
0.522


1282
2650
Drought
0.653
0.221
0.388


1285
2653
Drought
0.650
0.378
0.604


1286
2654
Drought
0.648
0.122
0.529


1287
2655
Drought
0.647
0.221
0.388


1288
2656
Drought
0.646
0.279
0.634


1289
2657
Drought
0.644
0.229
0.351


1291
2659
Drought
0.642
0.000
0.404


1293
2661
Drought
0.638
0.309
0.586


1294
2662
Drought
0.637
0.466
0.387


1295
2663
Drought
0.633
0.307
0.574


1297
2665
Drought
0.631
0.438
0.333


1298
2666
Drought
0.630
0.000
0.564


1300
2668
Drought
0.624
0.000
0.446


1301
2669
Drought
0.623
0.000
0.446


1302
2670
Drought
0.623
0.000
0.440


1303
2671
Drought
0.623
0.000
0.440


1304
2672
Drought
0.623
0.000
0.440


1305
2673
Drought
0.623
0.000
0.440


1306
2674
Drought
0.621
0.378
0.604


1309
2677
Drought
0.614
0.000
0.384


1310
2678
Drought
0.612
0.309
0.586


1311
2679
Drought
0.612
0.309
0.586


1312
2680
Drought
0.609
0.000
0.588


1313
2681
Drought
0.607
0.339
0.372


1314
2682
Drought
0.604
0.212
0.000


1315
2683
Drought
0.604
0.000
0.544


1316
2684
Drought
0.602
0.167
0.353


1318
2686
Drought
0.601
0.239
0.370


1319
2687
Drought
0.601
0.410
0.543


1320
N.A.
Drought
0.599
0.278
0.605


1321
N.A.
Drought
0.599
0.278
0.605


1323
2689
Drought
0.597
0.287
0.437


1324
2690
Drought
0.597
0.287
0.437


1325
2691
Drought
0.592
0.475
0.319


1326
2692
Drought
0.592
0.338
0.301


1327
2693
Drought
0.590
0.256
0.415


1328
2694
Drought
0.590
0.255
0.482


1330
2696
Drought
0.586
0.000
0.401


1331
2697
Drought
0.585
0.000
0.404


1332
2698
Drought
0.583
0.000
0.404


1333
2699
Drought
0.583
0.000
0.404


1334
2700
Drought
0.583
0.000
0.590


1335
2701
Drought
0.581
0.000
0.444


1337
2703
Drought
0.580
0.229
0.383


1338
2704
Drought
0.580
0.444
0.343


1340
2706
Drought
0.579
0.000
0.405


1341
N.A.
Drought
0.579
0.299
0.386


1342
N.A.
Drought
0.579
0.299
0.386


1342
N.A.
Drought
0.461
0.168
0.542


1343
2707
Drought
0.579
0.299
0.386


1344
2708
Drought
0.578
0.000
0.408


1345
2709
Drought
0.575
0.000
0.618


1346
2710
Drought
0.575
0.000
0.618


1348
2712
Drought
0.574
0.247
0.295


1349
2713
Drought
0.574
0.331
0.346


1350
2714
Drought
0.574
0.198
0.421


1351
2715
Drought
0.573
0.228
0.432


1352
2716
Drought
0.572
0.444
0.630


1354
2718
Drought
0.572
0.000
0.000


1357
2721
Drought
0.568
0.171
0.440


1358
2722
Drought
0.568
0.352
0.367


1359
2723
Drought
0.565
0.228
0.000


1360
2724
Drought
0.565
0.455
0.576


1364
2728
Drought
0.563
0.455
0.582


1365
2729
Drought
0.561
0.419
0.383


1366
2730
Drought
0.560
0.409
0.471


1367
2731
Drought
0.557
0.281
0.371


1368
2732
Drought
0.557
0.228
0.432


1369
2733
Drought
0.556
0.460
0.466


1369
2733
Drought
0.556
0.460
0.466


1369
2733
Drought
0.550
0.460
0.307


1370
2734
Drought
0.556
0.361
0.369


1371
2735
Drought
0.556
0.000
0.614


1372
2736
Drought
0.555
0.000
0.614


1374
2737
Drought
0.555
0.000
0.614


1375
2738
Drought
0.555
0.000
0.614


1376
2739
Drought
0.554
0.347
0.516


1377
2740
Drought
0.551
0.247
0.387


1380
2743
Drought
0.549
0.475
0.575


1381
2744
Drought
0.549
0.000
0.400


1382
2745
Drought
0.548
0.278
0.479


1383
2746
Drought
0.548
0.347
0.516


1384
2747
Drought
0.547
0.173
0.339


1385
2748
Drought
0.546
0.355
0.423


1386
2749
Drought
0.546
0.000
0.417


1387
2750
Drought
0.545
0.255
0.609


1388
2751
Drought
0.545
0.301
0.493


1391
2754
Drought
0.544
0.382
0.462


1392
2755
Drought
0.544
0.274
0.344


1393
2756
Drought
0.543
0.122
0.321


1395
2758
Drought
0.541
0.000
0.399


1397
2760
Drought
0.540
0.336
0.471


1398
2761
Drought
0.539
0.293
0.610


1399
2762
Drought
0.539
0.256
0.504


1400
2763
Drought
0.538
0.301
0.440


1401
N.A.
Drought
0.538
0.301
0.462


1402
2764
Drought
0.537
0.212
0.588


1403
2765
Drought
0.537
0.228
0.422


1404
2766
Drought
0.536
0.000
0.000


1405
2767
Drought
0.536
0.233
0.594


1406
2768
Drought
0.536
0.199
0.395


1407
2769
Drought
0.535
0.000
0.474


1410
2772
Drought
0.534
0.168
0.499


1411
2773
Drought
0.533
0.418
0.393


1412
2773
Drought
0.533
0.418
0.393


1413
2774
Drought
0.533
0.229
0.351


1414
2775
Drought
0.533
0.484
0.559


1416
2777
Drought
0.532
0.315
0.554


1417
2778
Drought
0.532
0.000
0.422


1418
2779
Drought
0.532
0.000
0.422


1420
2781
Drought
0.532
0.408
0.432


1421
2782
Drought
0.532
0.000
0.422


1422
2783
Drought
0.532
0.000
0.422


1423
2784
Drought
0.531
0.199
0.602


1424
2785
Drought
0.531
0.000
0.514


1425
2786
Drought
0.531
0.239
0.338


1426
2787
Drought
0.530
0.000
0.497


1427
2788
Drought
0.529
0.200
0.000


1428
2789
Drought
0.529
0.454
0.326


1433
2794
Drought
0.528
0.321
0.454


1439
2800
Drought
0.528
0.336
0.301


1440
2801
Drought
0.527
0.000
0.508


1442
2803
Drought
0.527
0.098
0.590


1443
2804
Drought
0.527
0.462
0.559


1444
2805
Drought
0.527
0.462
0.561


1445
2806
Drought
0.527
0.462
0.561


1446
2807
Drought
0.527
0.462
0.561


1447
2808
Drought
0.526
0.255
0.525


1450
2810
Drought
0.525
0.264
0.473


1455
2815
Drought
0.523
0.000
0.497


1456
2816
Drought
0.523
0.000
0.514


1457
2817
Drought
0.523
0.000
0.514


1461
2821
Drought
0.523
0.358
0.603


1463
2823
Drought
0.523
0.000
0.000


1464
2824
Drought
0.523
0.287
0.396


1465
2825
Drought
0.522
0.198
0.476


1466
2826
Drought
0.522
0.278
0.526


1467
2827
Drought
0.522
0.000
0.100


1469
2829
Drought
0.522
0.301
0.555


1470
2830
Drought
0.522
0.000
0.372


1482
2838
Drought
0.521
0.000
0.511


1483
2839
Drought
0.520
0.228
0.477


1484
2840
Drought
0.520
0.301
0.578


1485
2841
Drought
0.520
0.301
0.578


1488
2844
Drought
0.520
0.301
0.551


1489
2845
Drought
0.519
0.419
0.416


1490
2846
Drought
0.518
0.168
0.559


1492
2848
Drought
0.517
0.198
0.524


1494
2850
Drought
0.517
0.000
0.556


1495
2851
Drought
0.517
0.228
0.537


1496
2852
Drought
0.516
0.000
0.451


1497
2853
Drought
0.514
0.000
0.462


1499
2855
Drought
0.514
0.416
0.298


1500
2856
Drought
0.513
0.270
0.478


1502
2858
Drought
0.513
0.448
0.396


1503
2859
Drought
0.512
0.000
0.000


1504
2860
Drought
0.512
0.294
0.556


1506
2862
Drought
0.511
0.314
0.452


1507
2863
Drought
0.511
0.255
0.450


1508
N.A.
Drought
0.511
0.255
0.450


1509
2864
Drought
0.511
0.280
0.590


1510
2865
Drought
0.511
0.376
0.550


1511
2866
Drought
0.511
0.331
0.378


1512
2867
Drought
0.509
0.294
0.422


1513
2868
Drought
0.508
0.000
0.556


1514
2869
Drought
0.508
0.278
0.400


1515
2870
Drought
0.508
0.000
0.409


1516
2871
Drought
0.507
0.339
0.405


1517
2872
Drought
0.507
0.378
0.573


1518
2873
Drought
0.507
0.319
0.415


1519
2874
Drought
0.507
0.168
0.531


1520
2875
Drought
0.507
0.256
0.450


1521
2876
Drought
0.507
0.000
0.000


1522
2877
Drought
0.507
0.000
0.524


1523
2878
Drought
0.507
0.256
0.382


1524
2879
Drought
0.506
0.000
0.364


1525
2880
Drought
0.506
0.000
0.556


1526
2881
Drought
0.506
0.000
0.556


1527
2882
Drought
0.506
0.000
0.000


1528
2883
Drought
0.506
0.225
0.587


1530
2885
Drought
0.505
0.305
0.374


1531
2886
Drought
0.505
0.167
0.509


1532
2887
Drought
0.504
0.000
0.524


1534
2889
Drought
0.503
0.255
0.411


1535
2890
Drought
0.503
0.000
0.497


1536
2891
Drought
0.503
0.294
0.000


1538
2893
Drought
0.502
0.279
0.374


1539
2894
Drought
0.502
0.167
0.353


1541
2896
Drought
0.501
0.458
0.396


1542
2897
Drought
0.501
0.473
0.396


1543
2898
Drought
0.501
0.168
0.531


1544
2899
Drought
0.501
0.168
0.624


1545
2900
Drought
0.501
0.168
0.624


1546
2901
Drought
0.501
0.305
0.374


1547
2902
Drought
0.500
0.448
0.396


1548
2903
Drought
0.500
0.448
0.569


1549
2904
Drought
0.500
0.000
0.491


1550
2905
Drought
0.500
0.448
0.396


1551
2906
Drought
0.500
0.000
0.364


1553
2908
Drought
0.499
0.000
0.448


1554
2909
Drought
0.499
0.212
0.579


1555
2910
Drought
0.498
0.000
0.000


1556
2911
Drought
0.498
0.171
0.040


1557
2912
Drought
0.498
0.326
0.313


1558
2913
Drought
0.498
0.307
0.401


1559
2914
Drought
0.498
0.167
0.353


1560
2915
Drought
0.498
0.000
0.364


1561
2916
Drought
0.498
0.000
0.000


1564
2919
Drought
0.497
0.448
0.569


1565
2920
Drought
0.497
0.448
0.396


1566
2921
Drought
0.497
0.448
0.396


1567
2922
Drought
0.497
0.448
0.396


1568
2923
Drought
0.497
0.448
0.396


1569
2924
Drought
0.496
0.386
0.493


1570
2925
Drought
0.495
0.256
0.447


1571
2926
Drought
0.495
0.000
0.000


1572
2927
Drought
0.495
0.168
0.499


1573
2928
Drought
0.493
0.000
0.506


1574
2929
Drought
0.492
0.488
0.452


1575
2930
Drought
0.470
0.000
0.000


1576
2931
Drought
0.491
0.386
0.319


1577
2932
Drought
0.491
0.247
0.551


1578
2933
Drought
0.491
0.173
0.333


1579
2934
Drought
0.490
0.333
0.453


1580
2935
Drought
0.490
0.167
0.419


1582
2937
Drought
0.488
0.000
0.000


1583
2938
Drought
0.488
0.000
0.314


1585
2940
Drought
0.486
0.000
0.486


1586
2941
Drought
0.486
0.296
0.323


1589
2944
Drought
0.485
0.345
0.382


1590
2945
Drought
0.484
0.228
0.000


1591
2946
Drought
0.484
0.000
0.382


1594
2949
Drought
0.482
0.000
0.382


1595
2950
Drought
0.482
0.000
0.382


1596
2951
Drought
0.482
0.000
0.382


1597
2952
Drought
0.482
0.000
0.382


1598
2953
Drought
0.482
0.000
0.382


1606
2960
Drought
0.481
0.348
0.569


1607
2961
Drought
0.481
0.256
0.367


1608
2962
Drought
0.480
0.368
0.505


1609
2963
Drought
0.480
0.367
0.281


1610
2964
Drought
0.480
0.255
0.482


1614
2968
Drought
0.479
0.272
0.343


1616
2970
Drought
0.479
0.175
0.497


1617
2971
Drought
0.479
0.000
0.522


1618
2972
Drought
0.479
0.440
0.451


1619
2973
Drought
0.478
0.343
0.479


1620
2974
Drought
0.478
0.000
0.421


1622
2976
Drought
0.477
0.475
0.363


1623
2977
Drought
0.477
0.357
0.588


1624
2978
Drought
0.477
0.407
0.537


1625
2979
Drought
0.477
0.389
0.409


1626
2980
Drought
0.476
0.280
0.555


1627
2981
Drought
0.476
0.410
0.543


1628
2982
Drought
0.475
0.301
0.462


1630
2984
Drought
0.474
0.248
0.468


1631
2985
Drought
0.474
0.210
0.309


1632
2986
Drought
0.474
0.183
0.396


1633
2987
Drought
0.474
0.000
0.527


1634
2988
Drought
0.474
0.000
0.497


1635
2989
Drought
0.474
0.000
0.497


1636
2990
Drought
0.474
0.470
0.444


1637
2991
Drought
0.473
0.000
0.557


1638
2992
Drought
0.473
0.000
0.000


1639
2993
Drought
0.472
0.000
0.474


1640
2994
Drought
0.472
0.000
0.308


1644
2998
Drought
0.471
0.228
0.396


1645
N.A.
Drought
0.471
0.419
0.383


1646
2999
Drought
0.471
0.167
0.439


1647
3000
Drought
0.471
0.228
0.404


1648
3001
Drought
0.470
0.272
0.345


1649
3002
Drought
0.470
0.098
0.432


1650
3003
Drought
0.470
0.000
0.540


1651
3004
Drought
0.470
0.301
0.508


1652
3005
Drought
0.470
0.248
0.468


1653
3006
Drought
0.469
0.334
0.526


1654
3007
Drought
0.469
0.387
0.542


1656
3009
Drought
0.469
0.415
0.475


1657
3010
Drought
0.468
0.000
0.408


1658
3011
Drought
0.468
0.426
0.395


1659
3012
Drought
0.468
0.000
0.399


1660
3013
Drought
0.468
0.293
0.535


1661
3014
Drought
0.468
0.339
0.543


1663
3016
Drought
0.468
0.418
0.389


1665
3018
Drought
0.467
0.122
0.381


1666
3019
Drought
0.467
0.000
0.000


1667
3019
Drought
0.467
0.000
0.000


1668
3020
Drought
0.467
0.248
0.483


1669
3021
Drought
0.467
0.248
0.483


1670
3022
Drought
0.467
0.248
0.483


1671
3023
Drought
0.467
0.167
0.353


1672
3024
Drought
0.466
0.247
0.540


1673
3025
Drought
0.466
0.098
0.432


1674
3026
Drought
0.465
0.280
0.442


1675
3027
Drought
0.465
0.000
0.423


1676
3028
Drought
0.465
0.167
0.353


1677
3029
Drought
0.465
0.167
0.353


1678
3030
Drought
0.465
0.167
0.353


1679
3031
Drought
0.465
0.159
0.319


1681
3033
Drought
0.465
0.159
0.497


1682
3034
Drought
0.465
0.098
0.432


1686
3038
Drought
0.464
0.168
0.542


1687
3039
Drought
0.463
0.280
0.555


1688
3040
Drought
0.463
0.247
0.540


1689
3041
Drought
0.463
0.000
0.386


1690
3042
Drought
0.463
0.298
0.000


1691
3043
Drought
0.463
0.407
0.554


1692
3044
Drought
0.463
0.407
0.554


1693
3045
Drought
0.463
0.000
0.396


1694
3046
Drought
0.463
0.441
0.499


1695
3047
Drought
0.463
0.301
0.571


1696
3048
Drought
0.463
0.000
0.000


1697
3049
Drought
0.462
0.345
0.404


1698
3050
Drought
0.462
0.301
0.505


1699
3051
Drought
0.462
0.098
0.355


1700
3052
Drought
0.462
0.000
0.000


1701
3053
Drought
0.462
0.336
0.391


1702
N.A.
Drought
0.461
0.168
0.542


1705
3056
Drought
0.461
0.475
0.421


1706
3057
Drought
0.461
0.000
0.482


1708
3059
Drought
0.460
0.247
0.540


1149
2518
Yield
0.407
0.385
0.868


1152
2521
Yield
0.458
0.459
0.777


1156
2525
Yield
0.346
0.159
0.770


1159
2528
Yield
0.424
0.445
0.699


1162
2531
Yield
0.363
0.339
0.668


1163
2532
Yield
0.429
0.212
0.824


1165
2534
Yield
0.284
0.247
0.684


1170
2539
Yield
0.457
0.363
0.719


1171
2540
Yield
0.218
0.100
0.804


1172
2541
Yield
0.214
0.100
0.697


1174
2543
Yield
0.207
0.273
0.771


1181
2550
Yield
0.434
0.442
0.675


1182
2551
Yield
0.370
0.455
0.653


1186
2555
Yield
0.433
0.212
0.853


1187
2556
Yield
0.286
0.431
0.684


1189
2558
Yield
0.294
0.212
0.652


1191
2560
Yield
0.198
0.184
0.815


1193
2562
Yield
0.235
0.295
0.658


1196
2565
Yield
0.219
0.482
0.681


1197
2566
Yield
0.119
0.309
0.960


1200
2569
Yield
0.427
0.284
0.775


1203
2572
Yield
0.141
0.247
0.840


1204
2573
Yield
0.292
0.401
0.696


1210
2579
Yield
0.306
0.212
0.775


1211
2580
Yield
0.410
0.122
0.697


1212
2581
Yield
0.302
0.420
0.733


1214
2583
Yield
0.264
0.388
0.724


1215
2584
Yield
0.423
0.098
0.810


1217
2586
Yield
0.193
0.000
0.730


1219
2588
Yield
0.294
0.309
0.762


1225
2594
Yield
0.382
0.469
0.645


1226
2595
Yield
0.444
0.276
0.676


1229
2598
Yield
0.389
0.376
0.743


1230
2599
Yield
0.337
0.239
0.688


1235
2604
Yield
0.305
0.287
0.663


1241
2610
Yield
0.338
0.212
0.647


1242
2611
Yield
0.071
0.100
0.748


1245
2614
Yield
0.384
0.427
0.669


1248
2617
Yield
0.433
0.000
0.715


1250
2619
Yield
0.253
0.199
0.653


1342
N.A.
Yield
0.371
0.122
0.660


1342
N.A.
Yield
0.318
0.000
0.648


1342
N.A.
Yield
0.306
0.338
0.705


1342
N.A.
Yield
0.282
0.173
0.723


1342
N.A.
Yield
0.273
0.198
0.680


1342
N.A.
Yield
0.047
0.264
0.681


1342
N.A.
Yield
0.000
0.000
0.672


1702
N.A.
Yield
0.273
0.198
0.680


1702
N.A.
Yield
0.000
0.000
0.684


1709
3060
Yield
0.460
0.339
0.727


1712
3063
Yield
0.453
0.365
0.723


1713
3064
Yield
0.453
0.280
0.663


1714
3065
Yield
0.453
0.280
0.705


1718
3069
Yield
0.450
0.239
0.672


1719
3070
Yield
0.449
0.278
0.723


1723
3074
Yield
0.447
0.000
0.645


1724
3075
Yield
0.446
0.272
0.754


1725
3076
Yield
0.446
0.000
0.744


1729
3080
Yield
0.439
0.195
0.816


1730
3081
Yield
0.439
0.301
0.658


1732
3083
Yield
0.438
0.407
0.687


1735
3086
Yield
0.437
0.000
0.770


1736
3087
Yield
0.435
0.000
0.686


1743
3093
Yield
0.432
0.441
0.701


1744
3094
Yield
0.431
0.000
0.788


1746
3096
Yield
0.430
0.000
0.686


1747
3097
Yield
0.429
0.433
0.742


1748
3098
Yield
0.428
0.000
0.690


1749
3099
Yield
0.428
0.228
0.690


1750
3100
Yield
0.428
0.000
0.643


1751
3101
Yield
0.428
0.000
0.657


1754
3104
Yield
0.424
0.228
0.642


1755
3105
Yield
0.424
0.348
0.658


1756
3106
Yield
0.424
0.000
0.647


1758
3108
Yield
0.422
0.320
0.709


1762
3112
Yield
0.420
0.098
0.688


1768
3118
Yield
0.418
0.000
0.691


1769
3119
Yield
0.416
0.000
0.647


1770
3120
Yield
0.416
0.000
0.647


1772
3122
Yield
0.414
0.383
0.646


1773
3123
Yield
0.413
0.122
0.664


1774
3124
Yield
0.409
0.145
1.000


1776
3126
Yield
0.406
0.233
0.654


1779
3129
Yield
0.404
0.199
0.645


1780
3130
Yield
0.402
0.488
0.689


1782
3132
Yield
0.400
0.199
0.646


1787
3137
Yield
0.397
0.000
0.667


1788
3138
Yield
0.397
0.000
0.667


1789
3139
Yield
0.397
0.000
0.739


1790
3140
Yield
0.393
0.000
0.650


1791
3141
Yield
0.389
0.000
0.666


1792
3142
Yield
0.389
0.000
0.650


1793
3143
Yield
0.389
0.000
0.650


1794
3144
Yield
0.389
0.000
0.732


1796
3118
Yield
0.388
0.199
0.646


1797
3146
Yield
0.387
0.278
0.724


1798
3147
Yield
0.387
0.488
0.689


1799
3148
Yield
0.387
0.488
0.673


1800
3149
Yield
0.387
0.390
0.730


1801
3150
Yield
0.387
0.359
0.730


1802
3151
Yield
0.387
0.359
0.730


1803
3152
Yield
0.386
0.485
0.704


1804
3153
Yield
0.386
0.122
0.643


1805
3154
Yield
0.386
0.456
0.676


1806
3155
Yield
0.385
0.325
0.658


1811
3160
Yield
0.382
0.000
0.729


1816
3165
Yield
0.377
0.299
0.663


1817
3166
Yield
0.377
0.000
0.750


1818
3167
Yield
0.377
0.122
0.660


1819
3168
Yield
0.376
0.198
0.660


1821
3170
Yield
0.375
0.361
0.671


1822
3171
Yield
0.375
0.369
0.689


1824
3173
Yield
0.374
0.000
0.769


1828
3177
Yield
0.371
0.122
0.680


1829
3178
Yield
0.371
0.122
0.660


1830
N.A.
Yield
0.371
0.122
0.660


1831
3179
Yield
0.370
0.394
0.650


1835
3183
Yield
0.368
0.442
0.643


1837
3185
Yield
0.366
0.449
0.676


1838
3186
Yield
0.366
0.000
0.658


1839
3187
Yield
0.365
0.000
0.648


1840
3188
Yield
0.364
0.433
0.728


1841
3189
Yield
0.364
0.279
0.655


1846
3194
Yield
0.361
0.247
0.722


1849
3197
Yield
0.359
0.000
0.655


1850
3198
Yield
0.359
0.000
0.742


1851
3199
Yield
0.359
0.287
0.663


1853
3201
Yield
0.356
0.352
0.654


1854
3202
Yield
0.356
0.000
0.643


1855
3203
Yield
0.355
0.098
0.662


1856
3204
Yield
0.355
0.278
1.000


1864
3212
Yield
0.355
0.489
0.732


1865
3213
Yield
0.355
0.000
0.730


1869
3217
Yield
0.353
0.417
0.649


1870
3218
Yield
0.353
0.000
0.658


1875
3223
Yield
0.351
0.279
0.658


1876
3224
Yield
0.351
0.279
0.650


1877
3225
Yield
0.350
0.000
0.724


1878
3226
Yield
0.349
0.000
0.730


1879
3227
Yield
0.349
0.000
0.679


1883
3231
Yield
0.345
0.247
0.767


1885
3233
Yield
0.345
0.000
0.773


1886
3234
Yield
0.345
0.000
0.649


1887
N.A.
Yield
0.345
0.000
0.649


1891
3238
Yield
0.345
0.000
0.755


1900
3245
Yield
0.344
0.000
0.666


1902
3247
Yield
0.342
0.255
0.690


1904
3249
Yield
0.339
0.448
0.731


1905
3250
Yield
0.338
0.233
0.705


1906
3251
Yield
0.338
0.168
0.704


1907
3252
Yield
0.338
0.233
0.705


1908
3253
Yield
0.338
0.122
0.649


1909
3254
Yield
0.337
0.278
0.655


1910
3255
Yield
0.337
0.412
0.727


1912
3257
Yield
0.336
0.381
1.000


1917
3262
Yield
0.334
0.122
0.642


1918
3263
Yield
0.333
0.122
0.650


1919
3264
Yield
0.333
0.339
0.648


1920
3265
Yield
0.332
0.173
0.692


1920
3265
Yield
0.000
0.307
0.661


1921
3266
Yield
0.332
0.173
0.692


1922
3267
Yield
0.332
0.481
0.731


1925
3270
Yield
0.331
0.173
0.687


1927
3272
Yield
0.327
0.122
0.700


1928
3273
Yield
0.327
0.122
0.690


1932
3277
Yield
0.325
0.351
0.730


1934
3279
Yield
0.324
0.221
0.677


1935
3280
Yield
0.323
0.287
0.845


1938
3283
Yield
0.274
0.000
0.670


1939
3284
Yield
0.274
0.000
0.670


1943
3288
Yield
0.321
0.460
0.662


1944
3289
Yield
0.321
0.278
0.736


1946
3291
Yield
0.320
0.000
0.753


1947
3292
Yield
0.320
0.352
0.673


1948
N.A.
Yield
0.318
0.000
0.648


1950
3294
Yield
0.316
0.301
0.703


1951
3295
Yield
0.316
0.301
0.703


1953
3297
Yield
0.315
0.000
0.647


1957
3301
Yield
0.313
0.390
0.690


1959
N.A.
Yield
0.311
0.000
0.765


1960
3303
Yield
0.311
0.265
0.649


1962
3305
Yield
0.310
0.325
0.645


1963
3306
Yield
0.310
0.000
0.729


1964
3307
Yield
0.310
0.000
0.681


1965
3308
Yield
0.309
0.322
0.759


1967
3310
Yield
0.306
0.338
0.705


1968
N.A.
Yield
0.306
0.338
0.705


1972
3313
Yield
0.306
0.239
0.651


1973
3314
Yield
0.305
0.287
0.653


1974
3315
Yield
0.305
0.145
0.663


1975
3316
Yield
0.305
0.481
0.707


1984
3323
Yield
0.305
0.000
0.670


1985
3324
Yield
0.305
0.272
1.000


1986
3325
Yield
0.305
0.272
0.649


1987
3326
Yield
0.305
0.272
0.704


1988
3327
Yield
0.304
0.420
0.665


1989
3328
Yield
0.303
0.252
0.786


1992
3331
Yield
0.300
0.000
0.702


1993
3332
Yield
0.300
0.239
0.724


1994
3333
Yield
0.300
0.239
0.705


1995
3334
Yield
0.300
0.239
0.670


1996
3335
Yield
0.300
0.382
0.730


1997
3336
Yield
0.300
0.122
0.697


1998
3337
Yield
0.300
0.122
0.652


2008
3346
Yield
0.296
0.000
0.769


2010
3348
Yield
0.295
0.229
0.725


2011
3349
Yield
0.295
0.287
0.745


2012
3350
Yield
0.295
0.287
0.727


2013
3351
Yield
0.294
0.290
0.693


2015
3353
Yield
0.292
0.122
0.647


2016
3354
Yield
0.292
0.272
0.743


2017
3355
Yield
0.292
0.272
0.692


2018
3356
Yield
0.292
0.272
0.723


2019
3357
Yield
0.292
0.272
0.723


2020
3358
Yield
0.290
0.200
0.858


2021
3359
Yield
0.289
0.352
0.654


2022
3360
Yield
0.289
0.352
0.654


2024
3362
Yield
0.287
0.000
0.655


2034
3371
Yield
0.287
0.167
0.729


2036
3373
Yield
0.287
0.387
0.656


2037
3374
Yield
0.287
0.183
0.844


2039
3376
Yield
0.286
0.167
0.681


2040
3377
Yield
0.285
0.000
0.652


2043
3380
Yield
0.285
0.000
0.651


2044
3381
Yield
0.285
0.000
0.657


2045
3382
Yield
0.285
0.000
0.656


2046
3383
Yield
0.285
0.171
0.668


2047
3384
Yield
0.285
0.171
0.796


2048
3385
Yield
0.285
0.173
0.697


2049
3386
Yield
0.284
0.319
0.673


2050
3387
Yield
0.284
0.319
0.673


2051
3388
Yield
0.284
0.256
0.661


2052
3052
Yield
0.284
0.256
0.772


2054
3390
Yield
0.284
0.256
0.660


2055
3391
Yield
0.282
0.390
0.672


2056
3392
Yield
0.282
0.390
0.928


2057
3393
Yield
0.282
0.361
0.651


2058
3394
Yield
0.282
0.173
0.696


2059
3395
Yield
0.281
0.420
0.669


2060
3396
Yield
0.281
0.420
0.665


2061
3397
Yield
0.281
0.366
0.731


2062
3398
Yield
0.281
0.366
0.709


2063
3399
Yield
0.281
0.394
0.770


2064
N.A.
Yield
0.280
0.239
0.693


2065
3400
Yield
0.278
0.352
0.773


2069
3404
Yield
0.276
0.167
0.770


2070
3405
Yield
0.276
0.167
0.697


2071
3406
Yield
0.276
0.167
0.720


2072
3407
Yield
0.276
0.167
0.715


2073
3408
Yield
0.274
0.281
0.672


2075
3410
Yield
0.274
0.000
0.734


2076
3411
Yield
0.274
0.325
0.678


2077
3412
Yield
0.274
0.000
0.694


2078
3413
Yield
0.273
0.339
0.659


2079
3414
Yield
0.273
0.000
0.845


2080
3415
Yield
0.273
0.256
0.696


2085
3420
Yield
0.273
0.198
0.731


2086
3421
Yield
0.273
0.198
0.731


2087
3422
Yield
0.271
0.229
0.648


2089
3424
Yield
0.270
0.000
0.696


2090
3425
Yield
0.270
0.199
0.646


2095
3430
Yield
0.266
0.287
0.651


2096
3431
Yield
0.266
0.287
0.651


2097
N.A.
Yield
0.261
0.420
0.669


2098
N.A.
Yield
0.261
0.420
0.669


2102
3435
Yield
0.259
0.000
0.739


2103
3436
Yield
0.259
0.436
0.653


2104
3437
Yield
0.259
0.000
0.687


2106
3439
Yield
0.257
0.247
0.722


2107
3440
Yield
0.257
0.301
0.668


2113
3444
Yield
0.253
0.365
0.921


2114
3445
Yield
0.253
0.199
0.725


2115
3446
Yield
0.253
0.199
0.652


2116
3447
Yield
0.252
0.000
0.690


2121
3452
Yield
0.248
0.239
0.693


2122
3453
Yield
0.246
0.000
0.660


2123
3454
Yield
0.246
0.000
0.669


2124
3455
Yield
0.246
0.000
0.687


2125
3456
Yield
0.246
0.000
0.687


2128
3459
Yield
0.245
0.473
0.735


2129
3460
Yield
0.245
0.473
0.664


2131
3462
Yield
0.244
0.331
0.693


2132
3463
Yield
0.243
0.000
0.655


2133
3464
Yield
0.242
0.420
0.784


2137
3468
Yield
0.237
0.000
0.651


2138
3469
Yield
0.237
0.000
0.651


2139
3470
Yield
0.237
0.000
0.747


2140
3471
Yield
0.237
0.000
0.747


2141
3472
Yield
0.236
0.363
0.648


2143
3474
Yield
0.231
0.122
0.677


2144
3475
Yield
0.228
0.000
0.699


2146
N.A.
Yield
0.224
0.286
0.676


2147
3477
Yield
0.220
0.274
0.705


2148
3478
Yield
0.220
0.274
0.650


2149
3479
Yield
0.220
0.274
0.648


2150
3480
Yield
0.220
0.274
0.648


2153
3483
Yield
0.220
0.293
0.723


2154
3484
Yield
0.220
0.293
0.666


2155
3485
Yield
0.220
0.293
0.766


2156
3486
Yield
0.219
0.084
1.000


2158
3488
Yield
0.218
0.256
0.654


2159
3489
Yield
0.218
0.334
0.721


2160
3490
Yield
0.215
0.318
0.642


2161
3491
Yield
0.213
0.000
0.744


2164
3494
Yield
0.211
0.000
0.724


2165
3495
Yield
0.210
0.000
0.710


2167
3497
Yield
0.208
0.199
0.645


2168
N.A.
Yield
0.208
0.199
0.645


2169
3498
Yield
0.205
0.378
0.722


2171
3500
Yield
0.205
0.173
0.680


2172
3501
Yield
0.205
0.173
0.679


2173
3502
Yield
0.205
0.173
0.846


2180
3509
Yield
0.204
0.000
0.655


2181
3510
Yield
0.204
0.000
0.848


2182
3511
Yield
0.204
0.000
0.655


2183
3512
Yield
0.201
0.301
0.668


2184
3513
Yield
0.200
0.297
0.709


2185
3514
Yield
0.199
0.334
0.721


2186
3515
Yield
0.198
0.180
0.844


2187
3516
Yield
0.196
0.462
0.670


2188
3517
Yield
0.191
0.289
0.689


2190
3519
Yield
0.190
0.122
0.664


2191
3520
Yield
0.189
0.453
0.668


2201
3530
Yield
0.178
0.000
0.664


2203
3532
Yield
0.175
0.122
0.664


2204
3533
Yield
0.173
0.411
0.731


2206
3535
Yield
0.173
0.452
0.661


2207
3536
Yield
0.171
0.335
0.701


2208
N.A.
Yield
0.166
0.000
0.776


2212
3540
Yield
0.160
0.000
0.847


2214
3542
Yield
0.159
0.437
0.659


2215
3543
Yield
0.157
0.221
0.658


2216
3544
Yield
0.157
0.122
0.664


2218
3546
Yield
0.153
0.000
0.729


2219
3547
Yield
0.153
0.331
0.707


2220
3548
Yield
0.152
0.000
0.679


2221
3549
Yield
0.150
0.278
0.765


2222
3550
Yield
0.150
0.385
0.675


2225
3553
Yield
0.146
0.000
0.672


2226
3554
Yield
0.146
0.000
0.672


2227
3555
Yield
0.146
0.000
0.674


2228
3556
Yield
0.146
0.428
0.749


2229
3557
Yield
0.146
0.274
0.667


2231
3559
Yield
0.143
0.274
0.667


2232
3560
Yield
0.141
0.000
0.843


2233
3561
Yield
0.135
0.159
0.692


2234
3562
Yield
0.132
0.233
0.711


2235
3563
Yield
0.132
0.233
0.665


2237
3565
Yield
0.129
0.000
0.843


2239
3567
Yield
0.125
0.335
0.668


2242
3570
Yield
0.125
0.410
0.642


2244
3572
Yield
0.119
0.000
0.673


2252
3580
Yield
0.106
0.279
0.665


2255
3583
Yield
0.101
0.000
0.755


2256
3584
Yield
0.101
0.084
0.709


2257
3585
Yield
0.098
0.274
0.653


2258
3586
Yield
0.098
0.410
0.709


2259
3587
Yield
0.098
0.274
0.709


2260
3588
Yield
0.098
0.274
0.844


2261
3589
Yield
0.098
0.274
0.690


2263
3591
Yield
0.092
0.279
0.656


2264
3592
Yield
0.092
0.279
0.750


2265
3593
Yield
0.086
0.159
0.647


2266
3594
Yield
0.086
0.159
0.706


2267
3595
Yield
0.086
0.159
0.706


2268
3596
Yield
0.086
0.159
0.668


2269
3597
Yield
0.086
0.159
0.767


2271
3599
Yield
0.047
0.270
0.653


2272
3600
Yield
0.047
0.289
0.656


2274
3602
Yield
0.047
0.280
0.658


2277
3605
Yield
0.047
0.279
0.669


2278
3606
Yield
0.047
0.279
0.674


2280
N.A.
Yield
0.047
0.264
0.681


2281
3608
Yield
0.047
0.379
0.848


2282
3609
Yield
0.047
0.379
0.728


2285
3612
Yield
0.047
0.301
0.696


2288
3615
Yield
0.045
0.139
0.779


2297
3623
Yield
0.043
0.000
0.692


2298
3624
Yield
0.043
0.339
0.655


2302
3628
Yield
0.043
0.000
0.695


2304
3630
Yield
0.021
0.098
0.694


2306
3632
Yield
0.021
0.171
0.675


2311
3637
Yield
0.013
0.000
0.733


2312
3638
Yield
0.013
0.210
0.659


2317
3643
Yield
0.000
0.000
0.642


2318
3644
Yield
0.000
0.167
0.660


2319
3645
Yield
0.000
0.228
0.649


2323
3649
Yield
0.000
0.000
0.687


2326
3652
Yield
0.000
0.000
0.694


2332
3658
Yield
0.000
0.000
1.000


2333
3659
Yield
0.000
0.000
0.655


2334
3660
Yield
0.000
0.000
0.655


2335
3661
Yield
0.000
0.000
0.642


2336
3662
Yield
0.000
0.453
0.656


2337
3663
Yield
0.000
0.453
0.708


2338
3664
Yield
0.000
0.173
0.845


2339
3665
Yield
0.000
0.000
0.785


2342
3668
Yield
0.000
0.000
0.670


2349
3503
Yield
0.000
0.098
0.666


2350
3675
Yield
0.000
0.000
0.647


2351
3676
Yield
0.000
0.000
0.656


2354
3679
Yield
0.000
0.000
0.708


2356
3681
Yield
0.000
0.000
0.642


2357
3682
Yield
0.000
0.228
0.642


2359
3684
Yield
0.000
0.331
0.662


2361
3686
Yield
0.000
0.000
0.642


2362
3687
Yield
0.000
0.167
0.653


2363
3688
Yield
0.000
0.167
0.657


2364
3689
Yield
0.000
0.167
0.660


2372
3697
Yield
0.000
0.000
0.720


2373
N.A.
Yield
0.000
0.000
0.642


2374
3698
Yield
0.000
0.339
0.745


2375
3699
Yield
0.000
0.339
0.843


2376
3700
Yield
0.000
0.000
0.705


2377
3701
Yield
0.000
0.000
0.678


2378
N.A.
Yield
0.000
0.000
0.678


2379
N.A.
Yield
0.000
0.000
0.678


2380
3702
Yield
0.000
0.229
0.756


2381
3703
Yield
0.000
0.229
0.693


2382
3704
Yield
0.000
0.485
0.861


2383
3705
Yield
0.000
0.485
0.844


2386
3708
Yield
0.000
0.247
0.662


2387
3709
Yield
0.000
0.339
0.680


2388
3710
Yield
0.000
0.339
0.648


2389
3711
Yield
0.000
0.339
0.671


2390
3712
Yield
0.000
0.339
0.659


2391
3713
Yield
0.000
0.339
0.659


2392
3714
Yield
0.000
0.371
0.696


2396
3718
Yield
0.000
0.000
0.765


2397
3719
Yield
0.000
0.000
0.744


2398
3720
Yield
0.000
0.000
0.744


2399
N.A.
Yield
0.000
0.000
0.744


2400
3721
Yield
0.000
0.000
0.690


2401
3722
Yield
0.000
0.000
0.654


2402
3723
Yield
0.000
0.357
0.651


2403
3724
Yield
0.000
0.357
0.651


2404
3725
Yield
0.000
0.357
0.692


2405
3726
Yield
0.000
0.357
0.692


2406
3727
Yield
0.000
0.357
0.692


2407
3728
Yield
0.000
0.357
0.692


2408
3729
Yield
0.000
0.000
0.667


2409
N.A.
Yield
0.000
0.000
0.684


2410
N.A.
Yield
0.000
0.000
0.684


2411
3730
Yield
0.000
0.000
0.728


2426
3740
Yield
0.000
0.000
0.646


2428
3742
Yield
0.000
0.279
0.655


2434
3747
Yield
0.000
0.000
0.720


2435
3748
Yield
0.000
0.000
0.765


2436
3749
Yield
0.000
0.307
0.692


2437
3750
Yield
0.000
0.307
0.692


2438
3751
Yield
0.000
0.307
0.692


2439
3752
Yield
0.000
0.307
0.684


2440
3753
Yield
0.000
0.000
0.676


2441
3754
Yield
0.000
0.000
0.667


2445
3758
Yield
0.000
0.000
0.642


2447
3760
Yield
0.000
0.000
0.649


2448
3761
Yield
0.000
0.000
0.722


2449
N.A.
Yield
0.000
0.000
0.672


2450
3762
Yield
0.000
0.171
0.751


2451
3763
Yield
0.000
0.171
0.656


2452
3764
Yield
0.000
0.171
0.656


2453
3765
Yield
0.000
0.171
0.724


2458
3770
Yield
0.000
0.000
0.673


2459
3771
Yield
0.000
0.000
0.694


2460
3772
Yield
0.000
0.000
0.694


2461
3773
Yield
0.000
0.000
0.696


2462
3774
Yield
0.000
0.409
0.659


2463
3775
Yield
0.000
0.210
0.665


2464
3776
Yield
0.000
0.210
0.665


2465
3777
Yield
0.000
0.210
0.705


2466
3778
Yield
0.000
0.437
0.650


2467
3779
Yield
0.000
0.309
0.686


2469
3781
Yield
0.000
0.378
0.722


2477
3789
Yield
0.000
0.000
0.729


2478
3790
Yield
0.000
0.000
0.855


2479
3791
Yield
0.000
0.000
0.843


2480
3792
Yield
0.000
0.422
0.721


2481
3793
Yield
0.000
0.116
1.000


2482
3794
Yield
0.000
0.116
0.666


2483
3795
Yield
0.000
0.116
0.666


2484
3796
Yield
0.000
0.116
0.666


2485
3797
Yield
0.000
0.116
0.767


2486
3798
Yield
0.000
0.116
0.707


2487
N.A.
Yield
0.000
0.247
0.691


2488
3550
Yield
0.000
0.247
0.675


2489
3799
Yield
0.000
0.475
0.665


2490
3800
Yield
0.000
0.000
0.643


2491
3801
Yield
0.000
0.000
0.643









EXAMPLES

The following are non-limiting examples intended to illustrate the various embodiments.


Example 1
Genome-Wide Survey and Identification of MicroRNAs, Pre-Cursor Genes and Targets

MicroRNAs (miRNAs) are small non-coding RNAs that serve as regulators of gene expression and diverse biological functions in plants. Maize genome sequences were analyzed for B73 inbred and source gene candidates were classified and their predicted target regulated genes. Databases were searched to identify miRNA precursor genes that have predicted hairpin structures and/or related to one or more of about 4,698 plant mature miRNAs from miRBase and other sources. Additional miRNA precursors were identified by aligning all predicted miRNA hairpin sequences in plants from miRBase to the B73 psuedomolecules sequences, yielding at least 8,535 putative miRNA loci.


Maize small RNA sequencing reads from a profiling experiment were used to filter out predicted miRNA precursor loci having less than 10 sequence reads support thereby classifying them as computationally predicted but unexpressed precursor candidates. A software tool was developed to fetch the exact mature miRNA sequences from the B73 genome based on the predicted miRNA gene coordinates and the reference mature miRNA sequences from miRBase. A total of 321 maize miRNAs precursors were obtained from miRBase, and retained for analysis even if some did not have 10 sequencing reads from the profiling experiment. After removing overlapping miRNA loci between the two sets, the resulting miRNA precursor set had a total of 1,512 miRNA gene loci corresponding to about 197 unique mature miRNA sequences (core miRNA sequences).


Following identification of the source miRNA genes, the next step was to identify and prioritize miRNA target genes. Following a comprehensive survey, identification and classification of miRNA source genes in maize using the miRBase resources and other tools, the predicted target genes for these miRNAs were identified using the program miRanda (Enright et al., (2005), Human MicroRNA Targets, PLoS Biol.:e264) for predicting the targets for all 197 unique miRNAs. A total of 192 out of 197 miRNAs were predicted to have targets in the maize genome, averaging 59 targets per miRNA, but ranging from 1 to 1510 (alignment score 160 and energy score −30). These predicted miRNA targets are likely to be enriched for functional partners with the miRNAs, for example, genes that are regulated by the miRNAs.


Example 2
miRNA to Target Anti-Correlation Analysis

Gene which are regulated by miRNAs are expected to exhibit an expression pattern that is anti-correlated to the miRNA. This anti-correlation of expression of a target gene is an indication that the identified miRNA is likely regulating that target gene. It is possible that some genes may be anti-correlated by coincidence may not represent a true target for regulation by the identified microRNA. One way to determine the anti-correlation relationship is to analyze the binding sites on the target gene that is suspected to be anti-correlated with the miRNA expression.


Experiments were performed to identify gene pairs of miRNAs and their possible targets. One of the approaches to identify the miRNAs and the targets was using anti-correlated gene expression for miRNAs and their candidate genes through separate microarray profiling experiments. By comparing the mRNA profiling results for different microarrays using the same biological samples, and spanning over several tissues, it was determined whether the expression of one or more miRNAs correlated with their candidate target genes through statistical tools. Significant correlations were identified that demonstrated decreasing candidate gene transcript levels while the expression levels of the microRNA candidates increased. Some of these gene pairs also bore sequence similarity of the putative miRNA binding site, a 21-mer, providing further support that these genes may represent a regulated unit, with the miRNA acting as the agent of regulation.


Empirical determination of miRNA targets was also performed. To empirically determine miRNA-mRNA counter-correlated pairs, 65 samples that were assayed with both the 105K mRNA microarray and the 44K miRNA microarray were examined. The 65 samples included 18 leaf samples from a circadian study, 18 immature ear samples from a circadian study and 29 kernel samples from a study examining transgenic zein knockdown expression. Only 42,758 probes from the mRNA array were considered to be expressed and used for the subsequent analysis. Correlation was determined by Pearson correlation coefficient and those mRNA-miRNA pairs that exhibited <(−0.9) were considered significant. An example of an anticorrelated gene pair from these experiments are shown in FIG. 1 The anticorrelation of the miRNA and the target gene (transcript) are indicated.


Example 3
Identification of Maize miRNA Sequences for Use in Agronomic Traits

The miRNA targets listed in Table 1 and whose sequences are provided herein to the sequence listing appended herein were analyzed for their significance to impacting one or more agronomic traits using bioinformatics tools. Results from these analyses were used to identify assign an agronomic parameter of importance to one or more of these gene targets as in Table 2. Drought, nitrogen and yield were chosen as three relevant agronomic traits and each target gene's relevance is listed in Table 2. For example, the same gene may appear for all three agronomic traits and some genes may fall under only of the selected traits. Relative trait values provided in Table 2 indicate the likelihood that a particular gene is regulated by a miRNA that impacts an agronomic trait of interest.


Gene networks were constructed from these gene relationships derived from bioinformatics analysis by linking genes to interaction and regulation partners, metabolic targets, trait component processes, and to other biologically relevant factors. A global gene network was also constructed based on all obtainable biologically relevant information, not limited to these three traits, creating a general or universal background network, against which to compare versus the three trait enriched networks. Relative trait values were developed and assigned to individual genes, based upon bioinformatics analysis. For cross-comparison of all three trait values, the values were all transformed to a 0-to-1 relative scale. For the miRNA target genes, these scores enable comparative analysis within a particular trait association, and across these agronomic traits.


Example 4
Gene Regulation with Transgenic MicroRNAs

One or more microRNA sequences listed in Table 1 and the sequence listing provided herein can be used to construct siRNA (small interfering RNA) vector or a vector that regulates genes in an equivalent manner. The genes may be operably controlled by a variety of plant-expressible promoter sequences to achieve broad or specific tissue-developmental or environmental response expression patterns. Maize plants, other crop plants, or model plants such as Arabidopsis can be transformed with the vector containing the miRNA hairpin construct or a microRNA precursor gene, and the transformants (e.g., at T0 or T1) can be evaluated for improved drought tolerance or NUE or yield increase (e.g., such as through a surrogate parameter such as photosynthetic activity, nutrient uptake, biomass increase).


When miRNA precursors are expressed, the expressed miRNA precursors are processed by the plants' resident microRNA processing apparatus and produce a mature miRNA sequence with regulatory function. The target genes of this miRNA will be expected to have reduced gene expression, transcript levels, or translation, resulting in reduced functional capacity of the target gene product. For target genes that are net negative regulators of agronomic trait performance, this reduction of their functional expression will lead to increased trait performance and agronomic gain. Some genes are involved in the evolved natural adaptive responses of plants to environmental stresses such as drought and nutrient deprivation, but in an agronomic setting these responses can negatively affect crop performance and yield. For example, some drought related genes contribute to a defensive slow-growing habit and physiology. With this miRNA targeting strategy, these genes can be selectively reduced in expression under these environmental conditions, enabling the plants to manage drought stress while maintaining a high yield capacity.


Example 5
Upregulating Plant miRNA Target Genes Through Down-Regulation of a miRNA Precursor Gene

Some agronomic traits are regulated at least in part by microRNAs, Some of these miRNA regulations are the result of long-evolved mechanisms to adapt to environmental stresses such as drought and nutrient limitations, such as nitrogen. The microRNA precursors may embody some of the tissue-developmental-environmental responsiveness for miRNA-based gene regulation. In situations where the target gene that may contribute to increased agronomic performance is being limited in net functional expression by a miRNA regulation, reduction (in site and location) in the expression of the microRNA precursor can result increased expression of the target gene and lead to increased agronomic trait performance. The reduction in the microRNA precursor expression may include targeting the miRNA expression by another siRNA construct, or by targeted mutagenesis, such as homing endonuclease-based site-directed changes that introduce functional changes in the expression and/or direct alteration of the core miRNA site.


Example 6
Use of miRNA Precursor Genes

The miRNA precursor genes can be upregulated through many ways—e.g., by expressing the precursor gene under the control of a plant expressible regulatory element or by upregulating the endogenous precursor gene through engineering a plant expressible regulatory element into the plant genome.


Similarly, the miRNA precursor gene loci can be mutagenized to either decrease or increase the expression of the precursor gene, e.g., by targeting the endogenous promoter element. miRNA genes can also serve as templates to construct artificial miRNA vector constructs to express an artificial miRNA transcript.


The precursor gene sequences can also be used as markers for marker-assisted breeding selection or to screen a population of maize plants for alleles of the precursor genes. For example, variations within the precursor sequences can result in SNPs that are used as markers or haplotypes for germplasm selection and breeding.


The miRNA sequences or the miRNA precursor gene sequences or the target gene sequences disclosed herein can be used as a template to design an artificial or a synthetic interfering RNA construct including an artificial miRNA or siRNA construct or synthetic polynucleotides encoding an interfering RNA thereof. As known in the art, these artificial nucleic acid sequences can contain one or more mismatches compared to the template and may also contain stabilizing nucleotide analogs for use as topical or other exogenous applications, where stability of nucleic acids are desirable.


Example 7
Use of Target Genes Disclosed in Tables 1 and 2

The target genes disclosed herein have been selected to contribute to one or more agronomic traits based on the identification of miRNAs and associated precursor genes. The target genes disclosed herein can be overexpressed constitutively, suppressed for example through RNA silencing/ The target genes can also be expressed as a synthetic version of the gene that is not directly targeted by an endogenous miRNA, thereby desensitizing the transgene copy from being subject to endogenous regulation. Desensitization can also be performed through mutagenesis for example to eliminate a potential miRNA binding site or altering the binding specificity to a closely related gene homolog. Any promoter/vector combination can be used with the target genes.


In addition, the target gene sequences can also be used as markers for marker-assisted breeding selection or to screen a population of maize plants for alleles of the target genes. For example, variations within the target gene sequences can result in SNPs that are used as markers or haplotypes for germplasm selection and breeding.


Transformation of Plants

Described in this example are methods one may use for introduction of a polynucleotide or polypeptide into a plant cell.


A. Maize Particle-Mediated DNA Delivery

A DNA construct can be introduced into maize cells capable of growth on suitable maize culture medium. Such competent cells can be from maize suspension culture, callus culture on solid medium, freshly isolated immature embryos or meristem cells. Immature embryos of the Hi-II genotype can be used as the target cells. Ears are harvested at approximately 10 days post-pollination, and 1.2-1.5 mm immature embryos are isolated from the kernels, and placed scutellum-side down on maize culture medium.


The immature embryos are bombarded from 18-72 hours after being harvested from the ear. Between 6 and 18 hours prior to bombardment, the immature embryos are placed on medium with additional osmoticum (MS basal medium, Musashige and Skoog, 1962, Physiol. Plant 15:473-497, with 0.25 M sorbitol). The embryos on the high-osmotic medium are used as the bombardment target, and are left on this medium for an additional 18 hours after bombardment.


For particle bombardment, plasmid DNA (described above) is precipitated onto 1.8 mm tungsten particles using standard CaCl2-spermidine chemistry (see, for example, Klein et al., 1987, Nature 327:70-73). Each plate is bombarded once at 600 PSI, using a DuPont Helium Gun (Lowe et al., 1995, Bio/Technol 13:677-682). For typical media formulations used for maize immature embryo isolation, callus initiation, callus proliferation and regeneration of plants, see Armstrong, C., 1994, In “The Maize Handbook”, M. Freeling and V. Walbot, eds. Springer Verlag, NY, pp 663-671.


Within 1-7 days after particle bombardment, the embryos are moved onto N6-based culture medium containing 3 mg/I of the selective agent bialaphos. Embryos, and later callus, are transferred to fresh selection plates every 2 weeks. The calli developing from the immature embryos are screened for the desired phenotype. After 6-8 weeks, transformed calli are recovered.


B. Soybean Transformation

Soybean embryogenic suspension cultures are maintained in 35 ml liquid media SB196 or SB172 in 250 ml Erlenmeyer flasks on a rotary shaker, 150 rpm, 26 C with cool white fluorescent lights on 16:8 hr day/night photoperiod at light intensity of 30-35 uE/m2s. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml of fresh liquid media. Alternatively, cultures are initiated and maintained in 6-well Costar plates.


SB 172 media is prepared as follows: (per liter), 1 bottle Murashige and Skoog Medium (Duchefa # M 0240), 1 ml B5 vitamins 1000× stock, 1 ml 2,4-D stock (Gibco 11215-019), 60 g sucrose, 2 g MES, 0.667 g L-Asparagine anhydrous (GibcoBRL 11013-026), pH 5.7. SB 196 media is prepared as follows: (per liter) 10 ml MS FeEDTA, 10 ml MS Sulfate, 10 ml FN-Lite Halides, 10 ml FN-Lite P,B,Mo, 1 ml B5 vitamins 1000× stock, 1 ml 2,4-D, (Gibco 11215-019), 2.83 g KNO3, 0.463 g (NH4)2SO4, 2 g MES, 1 g Asparagine Anhydrous, Powder (Gibco 11013-026), 10 g Sucrose, pH 5.8. 2,4-D stock concentration 10 mg/ml is prepared as follows: 2,4-D is solubilized in 0.1 N NaOH, filter-sterilized, and stored at −20° C. B5 vitamins 1000× stock is prepared as follows: (per 100 ml)—store aliquots at −20° C., 10 g myo-inositol, 100 mg nicotinic acid, 100 mg pyridoxine HCl, 1 g thiamin.


Soybean embryogenic suspension cultures are transformed with various plasmids by the method of particle gun bombardment (Klein et al., 1987 Nature 327:70. To prepare tissue for bombardment, approximately two flasks of suspension culture tissue that has had approximately 1 to 2 weeks to recover since its most recent subculture is placed in a sterile 60×20 mm petri dish containing 1 sterile filter paper in the bottom to help absorb moisture. Tissue (i.e. suspension clusters approximately 3-5 mm in size) is spread evenly across each petri plate. Residual liquid is removed from the tissue with a pipette, or allowed to evaporate to remove excess moisture prior to bombardment. Per experiment, 4-6 plates of tissue are bombarded. Each plate is made from two flasks.


To prepare gold particles for bombardment, 30 mg gold is washed in ethanol, centrifuged and resuspended in 0.5 ml of sterile water. For each plasmid combination (treatments) to be used for bombardment, a separate micro-centrifuge tube is prepared, starting with 50 μl of the gold particles prepared above. Into each tube, the following are also added; 5 μl of plasmid DNA (at 1 μg/μl), 50 μl CaCl2, and 20 μl 0.1 M spermidine. This mixture is agitated on a vortex shaker for 3 minutes, and then centrifuged using a microcentrifuge set at 14,000 RPM for 10 seconds. The supernatant is decanted and the gold particles with attached, precipitated DNA are washed twice with 400 μl aliquots of ethanol (with a brief centrifugation as above between each washing). The final volume of 100% ethanol per each tube is adjusted to 40 μl, and this particle/DNA suspension is kept on ice until being used for bombardment.


Immediately before applying the particle/DNA suspension, the tube is briefly dipped into a sonicator bath to disperse the particles, and then 5 μL of DNA prep is pipetted onto each flying disk and allowed to dry. The flying disk is then placed into the DuPont Biolistics PDS1000/HE. Using the DuPont Biolistic PDS1000/HE instrument for particle-mediated DNA delivery into soybean suspension clusters, the following settings are used. The membrane rupture pressure is 1100 psi. The chamber is evacuated to a vacuum of 27-28 inches of mercury. The tissue is placed approximately 3.5 inches from the retaining/stopping screen (3rd shelf from the bottom). Each plate is bombarded twice, and the tissue clusters are rearranged using a sterile spatula between shots.


Following bombardment, the tissue is re-suspended in liquid culture medium, each plate being divided between 2 flasks with fresh SB196 or SB172 media and cultured as described above. Four to seven days post-bombardment, the medium is replaced with fresh medium containing a selection agent. The selection media is refreshed weekly for 4 weeks and once again at 6 weeks. Weekly replacement after 4 weeks may be necessary if cell density and media turbidity is high.


Four to eight weeks post-bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated, green tissue is removed and inoculated into 6-well microtiter plates with liquid medium to generate clonally-propagated, transformed embryogenic suspension cultures.


Each embryogenic cluster is placed into one well of a Costar 6-well plate with 5 mls fresh SB196 media with selection agent. Cultures are maintained for 2-6 weeks with fresh media changes every 2 weeks. When enough tissue is available, a portion of surviving transformed clones are subcultured to a second 6-well plate as a back-up to protect against contamination.


To promote in vitro maturation, transformed embryogenic clusters are removed from liquid SB196 and placed on solid agar media, SB 166, for 2 weeks. Tissue clumps of 2-4 mm size are plated at a tissue density of 10 to 15 clusters per plate. Plates are incubated in diffuse, low light (<10 μE) at 26+/−1° C. After two weeks, clusters are subcultured to SB 103 media for 3-4 weeks.


SB 166 is prepared as follows: (per liter), 1 pkg. MS salts (Gibco/BRL—Cat#11117-017), 1 ml B5 vitamins 1000× stock, 60 g maltose, 750 mg MgCl2 hexahydrate, 5 g activated charcoal, pH 5.7, 2 g gelrite. SB 103 media is prepared as follows: (per liter), 1 pkg. MS salts (Gibco/BRL—Cat#11117-017), 1 ml B5 vitamins 1000× stock, 60 g maltose, 750 mg MgCl2 hexahydrate, pH 5.7, 2 g gelrite. After 5-6 week maturation, individual embryos are desiccated by placing embryos into a 100×15 petri dish with a 1 cm2 portion of the SB103 media to create a chamber with enough humidity to promote partial desiccation, but not death.


Approximately 25 embryos are desiccated per plate. Plates are sealed with several layers of parafilm and again are placed in a lower light condition. The duration of the desiccation step is best determined empirically, and depends on size and quantity of embryos placed per plate. For example, small embryos or few embryos/plate require a shorter drying period, while large embryos or many embryos/plate require a longer drying period. It is best to check on the embryos after about 3 days, but proper desiccation will most likely take 5 to 7 days. Embryos will decrease in size during this process.


Desiccated embryos are planted in SB 71-1 or MSO medium where they are left to germinate under the same culture conditions described for the suspension cultures. When the plantlets have two fully-expanded trifoliate leaves, germinated and rooted embryos are transferred to sterile soil and watered with MS fertilizer. Plants are grown to maturity for seed collection and analysis. Healthy, fertile transgenic plants are grown in the greenhouse.


SB 71-1 is prepared as follows: 1 bottle Gamborg's B5 salts w/sucrose (Gibco/BRL—Cat#21153-036), 10 g sucrose, 750 mg MgCl2 hexahydrate, pH 5.7, 2 g gelrite. MSO media is prepared as follows: 1 pkg Murashige and Skoog salts (Gibco 11117-066), 1 ml B5 vitamins 1000× stock, 30 g sucrose, pH 5.8, 2 g Gelrite.


C. Transformation of Maize Using Agrobacterium


Agrobacterium-mediated transformation of maize is performed essentially as described by Zhao et al., in Meth. Mol. Biol. 318:315-323 (2006) (see also Zhao et al., Mol. Breed. 8:323-333 (2001) and U.S. Pat. No. 5,981,840 issued Nov. 9, 1999, incorporated herein by reference). The transformation process involves bacterium inoculation, co-cultivation, resting, selection and plant regeneration.


1. Immature Embryo Preparation:

Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.


2. Agrobacterium Infection and Co-Cultivation of Immature Embryos:
2.1 Infection Step:

PHI-A medium of (1) is removed with 1 mL micropipettor, and 1 mL of Agrobacterium suspension is added. The tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature.


2.2 Co-Culture Step:

The Agrobacterium suspension is removed from the infection step with a 1 mL micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100×15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20° C., in darkness, for three days. L-Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is useful for recovering stable transgenic events.


3. Selection of Putative Transgenic Events:

To each plate of PHI-D medium in a 100×15 mm Petri dish, 10 embryos are transferred, maintaining orientation and the dishes are sealed with parafilm. The plates are incubated in darkness at 28° C. Actively growing putative events, as pale yellow embryonic tissue, are expected to be visible in six to eight weeks. Embryos that produce no events may be brown and necrotic, and little friable tissue growth is evident. Putative transgenic embryonic tissue is subcultured to fresh PHI-D plates at two-three week intervals, depending on growth rate. The events are recorded.


4. Regeneration of T0 Plants:

Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100×25 mm Petri dishes and incubated at 28° C., in darkness, until somatic embryos mature, for about ten to eighteen days. Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28° C. in the light (about 80 μE from cool white or equivalent fluorescent lamps). In seven to ten days, regenerated plants, about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.

    • Media for Plant Transformation:
    • 1. PHI-A: 4 g/L CHU basal salts, 1.0 mL/L 1000× Eriksson's vitamin mix, 0.5 mg/L thiamin HCl, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 μM acetosyringone (filter-sterilized).
    • 2. PHI-B: PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemented with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite®, 100 μM acetosyringone (filter-sterilized), pH 5.8.
    • 3. PHI-C: PHI-B without Gelrite® and acetosyringonee, reduce 2,4-D to 1.5 mg/L and supplemented with 8.0 g/L agar, 0.5 g/L 2-[N-morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized).
    • 4. PHI-D: PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized).
    • 5. PHI-E: 4.3 g/L of Murashige and Skoog (MS) salts, (Gibco, BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, Cat. No. Z-0164), 1 mg/L indole acetic acid (IAA), 26.4 μg/L abscisic acid (ABA), 60 g/L sucrose, 3 mg/L bialaphos (filter-sterilized), 100 mg/L carbenicillin (filter-sterilized), 8 g/L agar, pH 5.6.
    • 6. PHI-F: PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L Gelrite®; pH 5.6.


Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).


Transgenic T0 plants can be regenerated and their phenotype determined. T1 seed can be collected.


Furthermore, a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.


Transgenic plants, either inbred or hybrid, can undergo more vigorous field-based experiments to study expression effects

Claims
  • 1. A method of improving an agronomic trait of a maize plant, the method comprising providing a transgenic maize plant comprising in its genome a recombinant DNA having at least one DNA element for modulating the expression of at least one target gene, wherein the at least one DNA element is selected from the group consisting of nucleotide sequences that are at least 90% identical to SEQ ID NOS: 1-197.
  • 2. The method of claim 1, wherein the agronomic trait is drought tolerance.
  • 3. The method of claim 1, wherein the agronomic trait is nitrogen use efficiency.
  • 4. The method of claim 1, wherein the agronomic trait is yield increase.
  • 5. The method of claim 1, wherein the DNA element modulates the expression of a target gene sequence selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703.
  • 6. The method of claim 1 wherein the DNA element modulates the expression of a gene sequence encoding a target peptide sequence selected from the group consisting of SEQ ID NOS: 2497, 2499, 2505, 2507, 2514, 2516, 2526, 2530, 2536, 2542, 2623, 2634, 2676, 2753, 2831, 2832, 2888, 2892, 2895, 2943, 2947, 2955, 2975, and 3054.
  • 7. A method of improving an agronomic trait of a maize plant, the method comprising providing a transgenic maize plant comprising in its genome a recombinant DNA for modulating the expression of at least one target gene, wherein the target gene sequence is selected from the group consisting of SEQ ID NOS: 1127-2495.
  • 8. The method of claim 7, wherein the target gene sequence is selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703 and wherein the agronomic trait is one of drought tolerance, nitrogen use efficiency or yield.
  • 9. The method of claim 7, wherein the target gene sequence is selected from the group consisting of SEQ ID NOS: 1168, 1178, 1179, 1185, 1194, 1220, 1710, 1716, 1733, 1738, 1771, 1784, 1795, 1807, 1823, 1872, 1892, 1926, 1936, 1937, 1938, 1942, 1970, 2001, 2003, 2006, 2026, 2074, 2105, 2109, 2110, 2130, 2145, 2152, 2174, 2175, 2189, 2192, 2199, 2200, 2202, 2240, 2245, 2246, 2291, 2299, 2310, 2313, 2340, 2341, 2371, 2412, 2413, 2414, 2417, 2429, 2430, 2431, 2443, 2468 and wherein the agronomic trait is one of nitrogen use efficiency or yield.
  • 10. The method of claim 7, wherein the target gene sequence is selected from the group consisting of SEQ ID NOS: 1135, 1137, 1141, 1142, 1143, 1146, 1153, 1154, 1160, 1164, 1166, 1169, 1183, 1190, 1192, 1195, 1208, 1231, 1255, 1256, 1258, 1267, 1275, 1278, 1279, 1283, 1290, 1299, 1307, 1322, 1336, 1339, 1342, 1347, 1353, 1355, 1361, 1362, 1363, 1373, 1378, 1409, 1415, 1430, 1431, 1432, 1437, 1448, 1449, 1452, 1453, 1468, 1487, 1498, 1505, 1552, 1562, 1575, 1615, 1643, 1655, 1662, 1664, 1680, 1684 and wherein the agronomic trait is one of drought tolerance or yield.
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. An isolated polynucleotide comprising a microRNA selected from the group consisting of SEQ ID NOS: 1-197, wherein the microRNA modulates the expression of a target gene in maize involved in an agronomic trait, the target gene selected from the group consisting of SEQ ID NOS: 1128, 1130, 1136, 1138, 1145, 1147, 1157, 1161, 1167, 1173, 1254, 1265, 1308, 1342, 1390, 1471, 1472, 1533, 1537, 1540, 1588, 1592, 1600, 1605, 1621, and 1703.
  • 16. A recombinant DNA construct comprising the polynucleotide of claim 15, wherein the DNA construct comprises a plant expressible regulatory element.
  • 17. (canceled)
  • 18. A transgenic maize plant comprising the DNA construct of claim 16.
  • 19. A transgenic seed comprising the DNA construct of claim 16.
  • 20-28. (canceled)
PCT Information
Filing Document Filing Date Country Kind
PCT/US14/26380 3/13/2014 WO 00
Provisional Applications (1)
Number Date Country
61786368 Mar 2013 US