The present invention relates generally to the field of oil and gas well drilling systems, and more specifically to a control system for making-up threaded connections between threaded tubulars, such as drill casings, using a top-drive.
Oil and gas well drilling systems include numerous types of piping, referred to generally as “tubulars.” Tubulars include drill pipes, casings, and other threadably connectable oil and gas well structures. Long “strings” of joined tubulars are typically used to drill a wellbore and to prevent collapse of the wellbore after drilling. Some tubulars are fabricated with male threads on one end and female threads on the other. Other tubulars feature a male thread on either end and connections are made between tubulars using a threaded collar with two female threads. The operation of connecting a series of tubulars together to create a “string” is known as a “make-up” process.
One method for making up threaded tubulars involves a multi-step process employing skilled operators using hydraulically actuated tools known as “power tongs”. Hydraulic power tongs have several limitations. During some portions of the make-up process, the hydraulic power tong should be able to apply a large amount of torque to a threaded tubular in order to completely make-up the connection. However, in other portions of the make-up process, the hydraulic power tongs should be torque-limited in order to protect the tubulars from damage if they are inadvertently cross-threaded. Furthermore, in some portions of the make-up process, the power tongs should be able to rotate the threaded tubular slowly in order to start the threads of the threaded tubular, and yet be able to quickly rotate the threaded tubular in order to create a connection.
While it may be possible to design practical hydraulic power tongs with some of these features, a design with all of these features may be impractical to implement in the harsh conditions of an oil well drilling rig. In addition, the repetitive processing of the tubulars may lead to fatigue and boredom in the skilled operators, thus resulting in inattention to the make-up process. Accordingly, a need exists for an make-up system that can be automated and has a large dynamic range with respect to both torque and rotational speed.
The present invention is directed to a make-up control system for creating a threaded connection between a first tubular and a second tubular using a top drive motor. The control system of the current invention monitors, at least one of the number of turns, the torque, and the rotational speed that are applied to the first tubular by a top drive during a make-up process and halts the make-up process if a torque limit is reached. The top drive is an oil and gas well structure that is typically connected to one or more tubulars to provide torque and rotational speed control to the tubulars during the drilling of a wellbore. Top drives are typically not used during make-up processes because of the precise control needed to prevent damage to the treads of the tubulars being connected. As such, the control system of the present invention closely monitors and controls the torque and rotational speed that the top drive applies to the tubulars to protect the threads of the tubulars from damage during the make-up process.
In one embodiment, the present invention is directed to a make-up control system for creating a threaded connection between a first tubular and a second tubular that includes a top drive connected to the first tubular and a controller operably connected to the top drive that sends at least one command signal to the top drive. The top drive generates a torque and a rotational speed in response to the at least one command signal and the desired torque and rotational speed are applied to the first tubular during the make-up process The top drive also generates a torque feedback signal that is transmitted to the controller. The controller uses the feedback signals to monitor the torque and rotational speed that are applied to the first tubular during the make-up process. The controller halts the make-up process when a predetermined torque limit is reached.
In another embodiment, the present invention is directed to a method of using a top drive in a make-up process to create a threaded connection between a first tubular and a second tubular that includes: providing a top drive, connecting the first tubular to the top drive, and operably connecting a controller to the top drive. In such an embodiment, the controller transmits command signals from the controller to the top drive, for example, via a motor drive system. The top drive applies a torque and a rotational speed to the first tubular in response to the command signals. The top drive also transmits a torque feedback signal to the controller. The controller in turn uses the feedback signal to monitor the torque that is applied to the first tubular during the make-up process. A predetermined torque limit is set for at least one of various phases of the make-up process, wherein the controller halts the make-up process when any of the at least one predetermined torque limits are exceeded.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
A shown in
In one embodiment, the make-up control system includes a top drive that is operably connected to a controller for providing number of turns, torque and rotational speed control during the make-up process. In such an embodiment, a rotatable tubular is rotated by the top drive under the control of the controller to create a threaded connection with a stationary tubular.
There are several standard phases to a making-up process. For example, first the make-up control system matches the threads of the tubulars by rotating the rotatable tubular in a direction opposite the threading direction of the threads of the rotatable tubular during a thread matching phase. Once the threads of the tubulars have been matched, the make-up control system rotates the rotatable tubular in a threading direction to initiate the threaded connection of the tubulars during an initial threading phase. After the threading has been initiated, the make-up control system increases the rotational speed of the rotatable tubular during a main threading phase. The make-up control system then decreases the rotational speed of the rotatable tubular near the completion of the threaded connection during a final threading phase so that the tubulars do not experience an abrupt stop. The make-up control system then incrementally increases the torque that is applied to the rotatable tubular until the threaded connection is tightened to a final torque value during a tightening phase.
During each of the above phases of the make-up process, the make-up control system sets either a turn number or a torque limit that the top drive is allowed to apply to the rotatable tubular. The make-up control system then monitors the number of turns, torque and/or the amount of rotation applied to the rotatable tubular by the top drive during each phase of the make-up process and stops the make-up process. When one of the above parameters exceeds the limit for that phase, an error is indicated in the make-up process, such as cross-threading, thread damage, or excessive supply of thread compound, among other possible errors.
During operation, the top drive 101 generates feedback signals 108 that are transmitted to the controller 102. The feedback signals 108 include a torque feed back signal and a rotational speed feed back signal. The controller 102 uses feedback signals 108 to monitor the operation of the top drive 101 during the make-up process. The functions of the controller 102 are specified by a set of programming instructions 110 located in the controller 102.
In one embodiment, the rotatable tubular 106 is rotated by the top drive 101 to create a threaded connection with a stationary tubular 114 during a multi-phased make-up process 300 (described in detail below with reference to
In one embodiment, the command signals 104 as described above include a directional command signal 210, a torque limit signal 212 and a speed command signal 214. In this embodiment, the motor controller 200 receives the directional command signal 210 transmitted by the make-up system controller 102 and responds to the directional command signal 210 by setting the direction of rotation of the electric motor 202. The electrical motor 202 may also have a directional switch 204 for reversing the direction of rotation of the electrical motor 202. In this way, the make-up system controller 102 of this embodiment may control the rotational direction of the rotatable tubular 106 by generating a directional command signal 210 and transmitting the directional command signal 210 to the motor controller 200.
In such an embodiment, the motor controller 200 may also receive the torque limit signal 212 transmitted by the make-up system controller 102. The motor controller 200 of this embodiment uses the torque limit signal 212 to regulate the maximum amount of current supplied to the electric motor 202. Since the maximum amount of current supplied to the electric motor 202 determines the maximum amount of torque that can be applied by the electric motor 202 to the rotatable tubular 106 the make-up system controller 102 limits the amount of torque that can be applied by the electric motor 202 to the rotatable tubular 106 during the make-up process 300.
The motor controller 200 may also receive the speed command signal 214 transmitted by the make-up system controller 102. The motor controller 200 of such an embodiment uses the speed command signal 214 to regulate the voltage/frequency supplied to the electric motor 202. Since the rotational speed of the electric motor 202 is determined by the voltage/frequency supplied to the electric motor 202, the make-up system controller 102 determines the rotational speed that the electric motor 202 imparts of the rotatable tubular 106 during the make-up process 300. In one embodiment, the motor controller 200 may also include a Silicon Controlled Rectifier (SCR) independently regulating the current and voltage (or frequency) supplied to the electric motor 202.
In one embodiment, the feedback signals 108 as described above include a torque feedback signal 216. In this embodiment, the motor controller 200 generates the torque feedback signal 216 and transmits the signal to the make-up system controller 102. The torque feedback signal 216 is proportional to the electrical current flowing through the electric motor 202 and is thus proportional to the torque applied by the electric motor 202. The make-up system controller 102 uses the torque feedback signal 216 to monitor the amount of torque applied to the rotatable tubular 106 by the electric motor 202 during the make-up process 300.
In one embodiment, the electric motor 202 may also be mechanically coupled to a turn encoder 218. In such an embodiment the turn encoder 218 generates a turn feedback signal 220, which is proportional to the amount of rotation of the electric motor 202. The electric motor 202 is mechanically coupled to the top drive 101, which may be connected to the rotatable tubular 106 through the casing running tool 107 as previously described. Therefore, the amount of rotation of the electric motor 202 is also proportional to the amount of rotation of the rotatable tubular 106. By using the turn feedback signal 220, the make-up system controller 102 can determine the amount of rotation of the rotatable tubular 106 during the make-up process 300.
In one embodiment, the make-up process 300 begins with a thread matching phase 400.
In the depicted embodiment, the controller 102 sets 401 the direction of rotation of the rotatable tubular 106 in a direction opposite of the threading direction of the threads of the rotatable tubular 106. For example, when the threads of the rotatable tubular 106 are right-hand threads, the rotatable tubular 106 is rotated in a counter-clockwise direction during the thread matching phase 400.
The controller 102 also sets 402 a maximum speed of rotation that the top drive 101 is allowed to apply to the rotatable tubular 106 by generating the speed command signal 214 and transmitting the speed command signal 214 to the motor controller 200 as previously described. For example, in one embodiment the maximum speed of rotation for the rotatable tubular 106 is approximately 8 RPM.
The controller 102 then transmits command signals 104 to the top drive 101, for example through the motor controller 200, to initiate a rotation 405 of the rotatable tubular 106. Throughout the thread matching phase 400, the controller 102 monitors 406 the amount of rotation of the rotatable tubular 106 by monitoring the turn feedback signal 220 transmitted to the controller 102 from the motor controller 220 and the turn encoder 218, respectively, as described above.
The controller 102 determines 412 if the rotatable tubular 106 has been rotated by a predetermined amount. When the rotatable tubular 106 has been rotated by the predetermined amount, the controller 102 terminates 414 the thread matching phase 400. Otherwise, the controller 102 continues 416 the thread matching phase 400 until the rotatable tubular 106 has been rotated by the predetermined amount. In one embodiment, the predetermined amount of rotation of the rotatable tubular 106 during the thread matching phase 400 is one and one half revolutions.
The thread matching phase 400 is completed when the rotatable tubular 106 has been rotated by the predetermined amount. During the thread matching phase 400, the rotatable tubular 106 is preferably rotated at a speed in the range of approximately 5 RPM to approximately 10 RPM at a torque in the range of approximately 500 ft-lbs to approximately 1500 ft-lbs. When the thread matching phase 400 is complete, the make-up control system 100 proceeds to the initial threading phase 500.
In one embodiment, the controller 102 sets 501 the direction of rotation of the rotatable tubular 106 in the threading direction of the rotatable tubular 106. For example, if the threads of the rotatable tubular 106 are right-hand threads, the rotatable tubular 106 is rotated in a clockwise direction during the initial threading phase 500. The controller 102 also sets 502 the maximum speed of rotation of the rotatable tubular 106 by generating the speed command signal 214 and transmitting the speed command signal 214 to the motor controller 200 as previously described. The make-up control system 100 also sets 504 a limit for the torque that the top drive 101 is allowed to apply to the rotatable tubular 106 by generating the torque limit signal 212 and transmitting the torque limit signal 212 to the motor controller 200 as previously described. For example, in one embodiment the maximum speed of rotation and the torque limit for the rotatable tubular 106 are approximately 8 RPM and approximately 1500 ft-lbs, respectively.
The controller 102 then transmits command signals 104 to the top drive 101 to initiate a rotation 505 of the rotatable tubular 106. Throughout the initial threading phase 500, the controller 102 monitors 506 the applied torque and the amount of rotation of the rotatable tubular 106 by monitoring the torque feedback signal 216 and the turn feedback signal 220 transmitted to the controller 102 from the motor controller 220 and the turn encoder 218, respectively, as described above.
The controller 102 determines 508 if the torque limit has been reached. If the torque limit has been reached, thus indicating an error in the initial threading phase 500 such as a cross-threading of the threads, the controller 102 halts 510 the make-up process 300 and ceases rotation of the rotatable tubular 106.
If the torque limit has not been reached, the controller 102 determines 512 if the rotatable tubular 106 has been rotated by a predetermined amount. When the rotatable tubular 106 has been rotated by the predetermined amount, the controller 102 terminates 514 the initial threading phase 500. Otherwise, the controller 102 continues 516 the initial threading phase 500 until either the torque limit has been reached or the rotatable tubular 106 has been rotated by the predetermined amount. In one embodiment, the predetermined amount of rotation of the rotatable tubular 106 during the initial threading phase 500 is two revolutions.
The initial threading phase 500 is successfully completed when the rotatable tubular 106 has been rotated by the predetermined amount without exceeding the torque limit of the initial threading phase 500. During the initial threading phase 500, the rotatable tubular 106 is preferably rotated at a speed in the range of approximately 5 RPM to approximately 10 RPM at a torque in the range of approximately 1000 ft-lbs to approximately 2000 ft-lbs. When the initial threading phase 500 is complete, the make-up control system 100 proceeds to the main threading phase 600.
Throughout the main threading phase 600 the controller continues to monitor 604 the applied torque and the amount of rotation of the rotatable tubular 106 by monitoring the torque feedback signal 216 and the turn feedback signal 220 transmitted to the controller 102 from the motor controller 220 and the turn encoder 218, respectively, as described above.
The main threading phase 600 continues until the controller 102 detects 606 a decrease in rotational speed coupled with the applied torque being near the torque limit. The decrease in rotational speed coupled with the applied torque being near the torque limit is caused by the increased resistance created when the threads of the tubulars near a completely threaded engagement. When this situation occurs, the main threading phase 600 is complete and the controller 102 proceeds 608 to the final threading phase 700.
During the main threading phase 600, the rotatable tubular 106 is preferably rotated at a speed in the range of approximately 10 RPM to approximately 20 RPM at a torque in the range of approximately 15 to 30 percent of a final torque limit (described below). For example, in one embodiment, the final torque limit is 25,000 ft-lbs and the torque limit during the main threading phase 600 is approximately 3750 ft-lbs to approximately 7500 ft-lbs. When the main threading phase 600 is complete, the make-up control system 100 proceeds to the final threading phase 700.
For example, in one embodiment the tubulars 106 and 114 each include shoulders adjacent to the threaded portions, 112 and 116 respectively, wherein the shoulders mate with each other when the threaded connection is formed. In this case, turning the rotatable tubular 106 at too high of a rotational speed when the shoulders meet may damage the shoulders and/or the threads of the mated tubulars 106 and 114.
Accordingly, during the final threading phase 700, the rotatable tubular 106 is preferably rotated at a speed in the range of approximately 3 RPM to approximately 8 RPM at a torque in the range of approximately 15 to 30 percent of a final torque limit (described below). For example, in one embodiment, the final torque limit is 25,000 ft-lbs and the torque limit during the final threading phase 700 is approximately 3750 ft-lbs to approximately 7500 ft-lbs. Preferably, the torque limit for the rotatable tubular 106 is approximately 7000 ft.-lbs.
Throughout the final threading phase 700, the controller 102 monitors 703 the applied torque and the amount of rotation of the rotatable tubular 106. When the torque limit is reached, the controller 102 holds 706 the applied torque for a predetermined period of time to verify that a good connection has been made. If the rotatable tubular 106 ceases to rotate at the torque limit, this indicates a good connection between the rotatable tubular 106 and the stationary tubular 114 and the completion of the final threading phase 700. When the final threading phase 700 is complete, the make-up control system 100 proceeds to the tightening phase 800.
Throughout the tightening phase 800, the controller monitors 803 the torque that is applied to the rotatable tubular 106. Rotation continues until the incremental torque limit is reached. When the incremental torque limit is reached, the controller determines 805 if a final torque limit has been reached. If the final torque limit has not been reached, the limit for the torque that the top drive 101 is allowed to apply to the rotatable tubular 106 is again incrementally increased 807 to a new incremental torque limit. This process continues until the final torque limit is reached.
When the final torque limit is reached, the controller 102 holds 806 the applied torque for a predetermined period of time to verify the final connection. The controller 102 then monitors 807 the rotation of the rotatable tubular 106 and determines 808 whether or not rotation continues. If the rotatable tubular 106 continues to rotate 812 at the final torque limit during the predetermined period of time, this indicates a make-up error. If the rotatable tubular 106 ceases to rotate 810 at the torque limit, this indicates a good connection between the rotatable tubular 106 and the stationary tubular 114 and the completion of the tightening phase 800.
During the tightening phase 800, the final torque limit is preferably in the range of approximately 8000 ft-lbs to approximately 35,000 ft-lbs, and each incremental increase in the incremental torque limits is in the range of approximately 50 ft-lbs to approximately 200 ft-lbs. For example, in one embodiment, the final torque limit is approximately 25,000 ft-lbs and each incremental increase in the incremental torque limits is approximately 100 ft-lbs.
Throughout the make-up process 300 as described above, the make-up control system 100 monitors, records, and reports the torque applied to the rotatable tubular 106. In one embodiment, the make-up control system 100 can use this information to create a torque versus turns graph (referred to hereinafter for convenience as a torque-turn graph).
As previously discussed, during the thread matching phase 400, the threads of the threaded tubular are matched to the threads of a receiving threaded tubular by rotating the threaded tubular in a counter-clockwise direction. As shown in the graph 900, during the thread matching phase 400, the rotational speed increases in a counter-clockwise direction to a point 906 and is held steady to a second point 907 and then brought back to a standstill at a third point three 908. During the thread matching phase 400, the rotated threaded tubular is rotated for one and a half total turns in the counter-clockwise direction.
During the initial threading phase 500, the make-up control system starts the threads of the threaded tubulars. The make-up control system starts rotating the rotated threaded tubular in a clockwise direction until a selected rotational speed is reached at a fourth point 909. The rotational speed is kept constant until two total turns of the rotated threaded tubular are reached at fifth point 910. Also during the initial threading phase 500, a torque limit is set to a first torque limit E by the previously described make-up control system. The actual torque applied to the threaded tubular is then monitored by the make-up control system. If the applied torque exceeds the first torque limit E, the make-up control system will halt the rotation of the rotated threaded tubular.
During the main threading phase 600, the rotational speed is increased until it reaches a maximum at a sixth point 911. Also during the main threading phase 600, the actual torque applied to the threaded tubular will increase as more threads are mated and friction between the mated threads increases as shown from point B to point B′. To compensate for this, the allowable torque limit is increased to a second torque limit F. The main threading phase 600 continues until the controller detects that the rotational speed has decreased coupled with the applied torque being near the second torque limit F. This is shown graphically at a seventh point 912.
During a final threading phase 700 the rotational speed is decreased from the seventh point 912 to an eighth point 913. The rotational speed is decreased during the final threading phase 700 to minimize any damage that might occur when the shoulders of the threads meet at the end of the threading process.
During a tightening phase 800, the connection between the threaded tubulars is tightened to a final torque value G in an incremental process. From point C to point D, the allowable torque limit is slowly increased. At each increase to the torque limit, the previously described electric motor supplying rotational force to the rotated tubular turns the rotated tubular until the applied torque reaches the torque limit at which point the electric motor stalls and ceases turning the rotated threaded tubular. At each increment in the torque limit, the electric motor rotates the rotated threaded tubular for a fraction of a turn and then stalls. This process is repeated until the final torque value G is reached. During the incremental rotations of the rotated threaded tubular the speed is decreased from the eight point 913 to a ninth point 914.
In operation, the processor 2000 retrieves the programming instructions 110 and stores them in the main memory 2010. The processor 2000 then executes the programming instructions 110 stored in the main memory 2010 to implement the functions of the make-up control system 100 as previously described. The processor 2000 uses the programming instructions 110 to generate the previously described command signals 104 and transmits the command signals 104 via the external I/O device 2018 to the previously described top drive 101. The top drive 101 responds to the command signals 104 and generates the previously described feedback signals 108 that are transmitted back to the controller 102. The processor 2000 receives the feedback signals 108 via the external I/O device 2018. The processor 2000 uses the feedback signals 108 and the programming instructions 110 to generate additional command signals, command signals 210, 212, and 214, for transmission to the top drive 101 as previously described.
The preceding description has been presented with reference to various embodiments of the invention. Persons skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principle, spirit and scope of this invention.
For example, although exemplary devices and methods having specific mechanisms and method steps, alternative embodiments could comprise fewer or more steps as required by the specific application. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
Number | Name | Date | Kind |
---|---|---|---|
3800277 | Patton et al. | Mar 1974 | A |
4365402 | McCombs et al. | Dec 1982 | A |
4402052 | Stone et al. | Aug 1983 | A |
4592125 | Skene | Jun 1986 | A |
4605077 | Boyadjieff | Aug 1986 | A |
4625796 | Boyadjieff | Dec 1986 | A |
4765401 | Boyadjieff | Aug 1988 | A |
4809792 | Lynch | Mar 1989 | A |
4813498 | Lynch et al. | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4832552 | Skelly | May 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4875530 | Frink et al. | Oct 1989 | A |
4885963 | Nishikawa | Dec 1989 | A |
5105519 | Doniwa | Apr 1992 | A |
5107940 | Berry | Apr 1992 | A |
5321506 | Sargent | Jun 1994 | A |
5637968 | Kainec et al. | Jun 1997 | A |
5837907 | Ohmi et al. | Nov 1998 | A |
6435286 | Stump et al. | Aug 2002 | B1 |
6516896 | Bookshar et al. | Feb 2003 | B1 |
6742596 | Haugen | Jun 2004 | B1 |
6997271 | Nichols et al. | Feb 2006 | B1 |
20030075023 | Robichaux | Apr 2003 | A1 |
20030173073 | Snider et al. | Sep 2003 | A1 |
20040069500 | Haugen | Apr 2004 | A1 |
20040144547 | Koithan et al. | Jul 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050077084 A1 | Apr 2005 | US |