The present application is based upon and claims the benefit of priority of Japanese Patent Application No. 2010-019355, filed on Jan. 29, 2010, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a male connector, a female connector, and a connector.
2. Description of the Related Art
Some communication devices internally have a backplane and multiple boards connected substantially perpendicularly to the backplane. Plug connectors or jack connectors are attached to the backplane. A corresponding jack connector or plug connector is attached to one end of each of the boards to be connected. The backplane and each of the boards are electrically connected by connecting the jack connector and the plug connector.
In recent years, signal transmission rates have become higher, and some connectors, formed of the jack connector and the plug connector, have multiple signal transmission contacts two-dimensionally arranged and closely incorporated.
For related art, reference may be made to, for example, Japanese Laid-Open Patent Application No. 2009-218119 and Japanese National Publication of International Patent Application No. 2005-522012.
According to one aspect of the present invention, a male connector configured to be connected to a female connector includes a plurality of male connector modules placed in a plurality of tiers and having respective first and second surfaces facing away from each other, the male connector modules each including a plurality of interconnection parts for electrical signal transmission on the first surface; a male connector ground part formed on the second surface so as to substantially cover the second surface; a plurality of male connector contact parts provided at respective first ends of the interconnection parts on the first surface; a plurality of male connector terminal parts joined to respective second ends of the interconnection parts on the first surface; and a male connector shield part provided on a side on which the male connector is configured to be connected to the female connector, the male connector shield part being connected to the male connector ground and projecting relative to ends of the male connector contact parts in a direction in which the male connector is configured to be connected to the female connector.
According to one aspect of the present invention, a female connector configured to be connected to a male connector includes a plurality of female connector modules placed in a plurality of tiers, the female connector modules each including a plurality of elastic female connector contact parts and a plurality of elastic female connector ground contact parts provided on a first side of the female contact module; a plurality of female connector terminal parts and a plurality of female connector ground terminal parts provided on a second side of the female contact module opposite to the first side, the female connector terminal parts being joined to the corresponding female connector contact parts; and a female connector shield part provided on the first side so as to cover the female connector terminal parts, the female connector shield part being connected to the female connector ground contact parts, wherein the female connector ground terminal parts are joined to the female connector shield part.
According to one aspect of the present invention, a connector includes a male connector; and a female connector, wherein the male connector includes a plurality of male connector modules placed in a plurality of tiers and having respective first and second surfaces facing away from each other, the male connector modules each including a plurality of interconnection parts for electrical signal transmission on the first surface; a male connector ground part formed on the second surface so as to substantially cover the second surface; a plurality of male connector contact parts provided at respective first ends of the interconnection parts on the first surface; a plurality of male connector terminal parts joined to respective second ends of the interconnection parts on the first surface; and a male connector shield part provided on a side on which the male connector is connected to the female connector, the male connector shield part being connected to the male connector ground and projecting relative to ends of the male connector contact parts in a direction in which the male connector is connected to the female connector, the female connector includes a plurality of female connector modules placed in a plurality of tiers, the female connector modules each including a plurality of elastic female connector contact parts and a plurality of elastic female connector ground contact parts provided on a first side of the female contact module; a plurality of female connector terminal parts and a plurality of female connector ground terminal parts provided on a second side of the female contact module opposite to the first side, the female connector terminal parts being joined to the corresponding female connector contact parts; and a female connector shield part provided on the first side so as to cover the female connector terminal parts, the female connector shield part being connected to the female connector ground contact parts, wherein the female connector ground terminal parts are joined to the female connector shield part, and the male connector contact parts and the female connector contact parts are in contact and the female connector ground contact parts and the male connector shield part are in contact with the male connector and the female connector being fit to each other.
The object and advantages of the embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and not restrictive of the invention as claimed.
Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings, in which:
As described above, some connectors have multiple signal transmission contacts two-dimensionally arranged and closely incorporated. However, in such connectors where signal transmission contacts are two-dimensionally arranged, a transmission signal may contain much noise because of crosstalk between signal transmission contacts, which are closely arranged. Further, there is a demand for connectors with better impedance matching because of a demand for higher frequencies.
According to one aspect of the present invention, there are provided a male connector, a female connector, and a connector that have two-dimensionally arranged signal transmission contacts for electrically connecting a board and a backplane and are low in crosstalk and excellent in high-frequency characteristics.
A description is given below, with reference to the accompanying drawings, of embodiments of the present invention.
A description is given of a first embodiment. This embodiment illustrates a connector (or a connector unit), including a male connector and a female connector, for connecting a backplane and a board.
The male connector 10 is attached to a board (not graphically illustrated). The female connector 30 is attached to a below-described backplane board (not graphically illustrated). The backplane board and the board are electrically connected by electrically connecting the male connector 10 and the female connector 30.
[Male Connector]
A description is given, based on
The male connector 10 according to this embodiment includes multiple flat-plate male connector modules 11. The male connector modules 11 are arranged in a direction perpendicular to their surfaces. Further, the male connector 10 includes a housing part 12 provided on the side on which the male connector 10 is to be connected to the female connector 30 so as to fix the arrangement of the male connector modules 11. As described below, each of the male connector modules 11 is provided with multiple male connector contact parts and male connector terminal parts for signal transmission. Since the male connector 10 includes the multiple male connector modules 11, the male connector contact parts and the male connector terminal parts are two-dimensionally arranged.
Multiple interconnection parts 21 for signal transmission are provided on a surface of the male connector module 11 on one side (first side). Each of the interconnection parts 21 has a male connector contact part 22 for connection to a female connector contact part of the female connector 30 provided at one end, and has a male connector terminal part 23 for connection to a terminal of a board (not graphically illustrated) provided at the other end. The interconnection parts 21, the male connector contact parts 22, and the male connector terminal parts 23 are formed of a conductive material such as a metal material on a surface of an insulating substrate 24 on the first side. The male connector contact parts 22 are wide (in their arrangement directions) for contact with corresponding female connector contact parts.
Further, on the other side (second side) of the male connector module 11, a male connector ground part 25 is formed of a conductive material such as a metal material on the entire surface of the insulating substrate 24 to be connected to a male connector shield part 26 provided on the side of connection to the female connector 30. Further, male connector ground terminal parts 27 to be connected to the board (not graphically illustrated) are joined to the male connector ground part 25.
Further, multiple press-fit pins 28 joined to the male connector ground part 25 are provided one at each end of the male connector module 11 on the side of connection to the board. The press-fit pins 28 are inserted into corresponding through holes in the board (not graphically illustrated) so that the press-fit pins 28 are electrically connected to the board and the male connector 10 is fixed to the board.
The male connector shield part 26 is formed to project relative to the ends of the male connector contact parts 22 in a direction in which the male connector 10 is to be connected to the female connector 30. Further, the male connector ground part 25, which may be formed on the substantially entire surface of the male connector module 11 on its second side, serves as an electromagnetic shield between the male connector module 11 and an adjacent male connector module 11. That is, the male connector ground part 25 is capable of providing a shield from noise generated from the interconnection parts 21, the male connector contact parts 22, and the male connector terminal parts 23 and thus preventing the occurrence of crosstalk between different male connector modules 11 adjacently disposed. Further, the male connector terminal parts 23 and the interconnection parts 21 are joined with solder or an electrically conductive adhesive agent, and the male connector ground terminal parts 27 and the male connector ground part 25 are joined with solder or an adhesive agent. Examples of conductive paste that may be used as an electrically conductive adhesive agent include silver (Ag) paste, nickel (Ni) paste, gold (Au) paste, palladium (Pd) paste, and carbon (C) paste.
[Female Connector]
Next, a description is given, based on
The female connector 30 according to this embodiment includes multiple flat-plate female connector modules 31. The female connector modules 31 are arranged in a direction perpendicular to their surfaces. Further, the female connector 30 includes a housing part 32 provided on the side on which the female connector 30 is to be connected to the male connector 10 so as to fix the arrangement of the female connector modules 31. As described below, each of the female connector modules 31 is provided with multiple female connector contact parts and female connector terminal parts for signal transmission. Since the female connector 30 includes the multiple female connector modules 31, the female connector contact parts and the female connector terminal parts are two-dimensionally arranged.
The female connector module 31 has spring-like female connector contact parts 41 and spring-like female connector ground contact parts 42 on the side of connection to the male connector 10. Further, a female connector shield part 43 is provided on a surface of the female connector module 31 on one side (first side), and female connector terminal parts 44 joined to the female connector contact parts 41 and female connector ground terminal parts 45 joined to the female connector shield part 43 are exposed on a surface of the female connector module 31 on the other side (second side). The female connector ground contact parts 42 are connected to the female connector shield part 43.
For example, the female connector shield part 43, which is formed on the surface of the female connector module 31 on the side opposite to the female connector terminal parts 44 and the female connector ground terminal parts 45 so as to cover the female connector terminal parts 44, serves as an electromagnetic shield and can therefore prevent the occurrence of crosstalk between the female connector module 31 and an adjacent female connector module 31. Further, multiple press-fit pins 46 connected to the female connector shield part 43 are provided one at each end of the female connector module 31 on the side of connection to the backplane board (not graphically illustrated). The press-fit pins 46 are inserted into corresponding through holes in the backplane board (not graphically illustrated) so that the press-fit pins 46 are electrically connected to the backplane board and the female connector 30 is fixed to the backplane board.
Like in the case of the male connector module 11, in the female connector module 31, the female connector terminal parts 44 and the female connector contact parts 41 are connected with solder or an electrically conductive adhesive agent, and the female connector ground terminal parts 45 and the female connector shield part 43 are connected with solder or an electrically conductive adhesive agent. Examples of conductive paste that may be used as an electrically conductive adhesive agent include silver (Ag) paste, nickel (Ni) paste, gold (Au) paste, palladium (Pd) paste, and carbon (C) paste.
[Fitting of Male Connector and Female Connector]
Next, a description is given, based on
The connector according to this embodiment includes the male connector 10 and the female connector 30. When the male connector 10 and the female connector 30 are fit to each other, the housing part 32 of the female connector 30 enters part of the housing part 12 of the male connector 10.
Next, a description is given, based on
With the male connector 10 and the female connector 30 in the fit state, the elastically formed female connector contact parts 41 of the female contact module 31 are in contact with and electrically connected to the corresponding male connector contact parts 22 of the male connector module 11. Further, the elastically formed female connector ground contact parts 42 of the female connector module 31 are in contact with the male connector shield part 26 of the male connector module 11. Since the female connector contact parts 41 and the female connector ground contact parts 42 are in contact with the male connector contact parts 22 and the male connector shield part 26, respectively, on the surface of the male connector module 11 on the same side, the female connector contact parts 41 may be closer (in a direction in which the female contact modules 31 [or the male contact modules 11] are placed or arranged at intervals in multiple tiers), and the male connector 10 and the female connector 30 may be further reduced in size. In this case, the female connector contact parts 41 are shielded by the male connector shield part 26.
A description is given in more detail based on
In the male connector module 11, the male connector shield part 26 is longer (projects further) in the direction of connection to the female connector module 31 than the male connector contact parts 22, so that the male connector shield part 26 projects in the connection direction relative to the ends of the male connector contact parts 22. Therefore, the female connector ground contact parts 42 of the female connector module 31 come into contact with the male connector shield part 26 earlier than the female connector contact parts 41 come into contact with the male connector contact parts 22 when the male connector module 11 and the female connector module 31 are joined.
Next, a description is given, based on
The male connector modules 11 of the male connector 10 according to this embodiment include the male connector terminal parts 23 and the male connector ground terminal parts 27 for connection to the board 50. In each of the male connector modules 11, the male connector terminal parts 23 and the male connector ground terminal parts 27 are formed to have an L-letter shape. The L-shaped surfaces of the male connector terminal parts 23 and the male connector ground terminal parts 27 on one side have their respective first portions joined to the interconnection parts 21 and the male connector ground part 25, respectively, along the plane direction (surface) of the male connector module 11 and have their respective second portions formed to be substantially parallel to the surface of the board 50, so that the male connector terminal parts 23 and the male connector ground terminal parts 27 may be connected to corresponding electrodes (not graphically illustrated) provided on the surface of the board 50 at the second portions of their respective L-shaped surfaces.
Forming the male connector terminal parts 23 and the male connector ground terminal parts 27 into such a shape allows the male connector terminal parts 23 and the male connector ground terminal parts 27 to be connected to the corresponding electrodes on the surface of the board 50 using SMT (Surface Mount Technology). According to this embodiment, the male connector 10 and the board 50 are fixed by screwing the housing part 12 of the male connector 10 to the board 50 with screws 60.
A description is given of SMT based on
Further, in the case of transmitting a signal whose frequency is not so high, the connection may be established by providing the male connector terminal part 23, provided on the insulating substrate 24 of the male connector module 11 in the male connector 10, with a press-fit pin 23b and inserting the press-fit pin 23b into a through hole 52 formed in the board 50 as illustrated in
The above description is given of a method of connecting the male connector 10 and the board 50, while the female connector 30 and the backplane board (not graphically illustrated) may be connected in the same manner.
The male connector module 11 having the structure illustrated in
Next, a description is given of a second embodiment. This embodiment illustrates a connector (or a connector unit) including the male connector 10 of the first embodiment and a female connector according to this embodiment, which is different in structure from the female connector 30 of the first embodiment.
[Female Connector]
The exterior of the female connector according to this embodiment is substantially the same as that of the female connector 30 of the first embodiment. However, a female connector module 131 of the female connector of this embodiment is different in structure from the female connector modules 31 of the first embodiment.
A description is given, based on
The female connector module 131 has spring-like female connector contact parts 141 and spring-like female connector ground contact parts 142 on the side of connection to the male connector 10 of the first embodiment. Further, a female connector shield part 143 is provided on a surface of the female connector module 131 on one side (first side), and female connector terminal parts 144 joined to the female connector contact parts 141 and female connector ground terminal parts 145 joined to the female connector shield part 143 are provided on a surface of the female connector module 131 on the other side (second side). The female connector ground contact parts 142 are connected to the female connector shield part 143.
The female connector shield part 143 includes a female connector shield body portion 143a and a female connector shield end portion 143b, which covers the female connector contact parts 141 on the first side. The female connector shield part 143, which is formed on the surface of the female connector module 31 on the side opposite to the female connector terminal parts 144 and the female connector ground terminal parts 145 so as to cover the female connector terminal parts 144, serves as an electromagnetic shield and therefore prevents the occurrence of crosstalk between the female connector module 131 and an adjacent female connector module 131. Further, like in the case of the first embodiment, in the female connector module 131, the female connector terminal parts 144 and the female connector contact parts 141 are connected with solder or an electrically conductive adhesive agent, and the female connector ground terminal parts 145 and the female connector shield part 143 are connected with solder or an electrically conductive adhesive agent. Examples of conductive paste that may be used as an electrically conductive adhesive agent include silver (Ag) paste, nickel (Ni) paste, gold (Au) paste, palladium (Pd) paste, and carbon (C) paste.
[Fitting of Male Connector and Female Connector]
Next, a description is given of the fitting of the female connector according to this embodiment and the male connector 10 illustrated in the first embodiment. The exterior of the female connector according to this embodiment and the male connector 10 illustrated in the first embodiment in the fit state is substantially the same as that in the first embodiment. Accordingly, a description is given of the inside (interior condition) of the female connector and the male connector 10 in the fit state, that is, the state of connection of the female connector module 131 and the corresponding male connector module 11.
A description is given, based on
With the male connector 10 and the female connector in the fit state, the elastically formed female connector contact parts 141 of the female contact module 131 are in contact with and electrically connected to the corresponding male connector contact parts 22 of the male connector module 11. Further, the elastically formed female connector ground contact parts 142 of the female connector module 131 are in contact with the male connector shield part 26 of the male connector module 11. In this case, the female connector contact parts 141 are shielded by the male connector shield part 26.
A description is given in more detail based on
The female connector according to this embodiment, which includes multiple female connector modules 131, may be used the same as the female connector 30 of the first embodiment. Further, the connector according to this embodiment, which includes the female connector of this embodiment and the male connector 10 of the first embodiment, may be used the same as the connector of the first embodiment. The second embodiment is the same as the first embodiment except for the above-described configuration.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority or inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-019355 | Jan 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6168469 | Lu | Jan 2001 | B1 |
6171115 | Mickievicz et al. | Jan 2001 | B1 |
6183301 | Paagman | Feb 2001 | B1 |
6375508 | Pickles et al. | Apr 2002 | B1 |
6390857 | Pickles et al. | May 2002 | B1 |
6409543 | Astbury et al. | Jun 2002 | B1 |
6471549 | Lappohn | Oct 2002 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6551140 | Billman et al. | Apr 2003 | B2 |
6645010 | Billman et al. | Nov 2003 | B1 |
6652319 | Billman | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6659808 | Billman et al. | Dec 2003 | B2 |
6663401 | Billman et al. | Dec 2003 | B2 |
6663429 | Korsunsky et al. | Dec 2003 | B1 |
6666692 | Billman et al. | Dec 2003 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6824391 | Mickievicz et al. | Nov 2004 | B2 |
6866549 | Kimura et al. | Mar 2005 | B2 |
6884117 | Korsunsky et al. | Apr 2005 | B2 |
7047086 | Taskiran et al. | May 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7175445 | Consoli et al. | Feb 2007 | B2 |
7267515 | Lappohn | Sep 2007 | B2 |
7331802 | Rothermel et al. | Feb 2008 | B2 |
7371117 | Gailus | May 2008 | B2 |
7381092 | Nakada | Jun 2008 | B2 |
7686618 | Mizukami et al. | Mar 2010 | B2 |
7780474 | Ito | Aug 2010 | B2 |
7837475 | Mizukami et al. | Nov 2010 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8157591 | Fedder et al. | Apr 2012 | B2 |
8298015 | Cohen et al. | Oct 2012 | B2 |
20110189892 | Mizukami et al. | Aug 2011 | A1 |
20110256763 | De Geest et al. | Oct 2011 | A1 |
20120135641 | Okuyama et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2005-522012 | Jul 2005 | JP |
2009-218119 | Sep 2009 | JP |
WO03-085785 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20110189892 A1 | Aug 2011 | US |