Malicious activity detection system capable of efficiently processing data accessed from databases and generating alerts for display in interactive user interfaces

Information

  • Patent Grant
  • 10346410
  • Patent Number
    10,346,410
  • Date Filed
    Tuesday, January 9, 2018
    6 years ago
  • Date Issued
    Tuesday, July 9, 2019
    5 years ago
Abstract
Various systems and methods are provided that retrieve raw data from issuers, reorganize the raw data, analyze the reorganized data to determine whether the risky or malicious activity is occurring, and generate alerts to notify users of possible malicious activity. For example, the raw data is included in a plurality of tables. The system joins one or more tables to reorganize the data using several filtering techniques to reduce the processor load required to perform the join operation. Once the data is reorganized, the system executes one or more rules to analyze the reorganized data. Each rule is associated with a malicious activity. If any of the rules indicate that malicious activity is occurring, the system generates an alert for display to a user in an interactive user interface.
Description
TECHNICAL FIELD

The present disclosure relates to systems and techniques for data integration, analysis, and visualization.


BACKGROUND

Prepaid cards or cash cards are cards in which a user may load money for later withdrawal. For example, a user may load money onto a prepaid card and then later use the prepaid card to make a purchase. By law, the prepaid cards are generally regulated like regular bank accounts. The issuers of the prepaid cards are in charge of making sure transactions associated with the prepaid cards comply with the relevant regulations.


If transactions associated with a prepaid card do not meet the relevant regulations, the issuer of the prepaid card must submit a report. For example, the issuer may be required to submit a report if the transactions indicate that fraud could be taking place. The prepaid cards are often linked to the user via some identifier that uniquely identifies the user, so the report may include such information to assist the issuer and/or a federal agency in taking further action, if necessary.


SUMMARY

The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure, several non-limiting features will now be discussed briefly.


Issuers often store transaction data from prepaid cards in a plurality of databases. For example, one database may include transaction data that identifies an amount that was deposited or withdrawn on a card and a time and location where the transaction occurred, another database may include a description of the transaction and an identifier that identifies the user of the prepaid card, and so on. In some cases, to determine whether transactions comply with the relevant regulations, data from multiple databases may need to be analyzed. Typically, each individual database includes a large amount of uncompressed data (e.g., on the order of hundreds of gigabytes), so it is nearly impossible for a human fraud analyst to find all data that may be relevant to a particular regulation and/or to identify patterns that may indicate a regulation has been violated. The analysis could instead be automated. To perform the analysis, the data from the different databases would have to be combined into a single database, such as via a join table operation. However, because each individual database may include a large amount of uncompressed data, join operations typically implemented by traditional databases may be difficult to run. Furthermore, once the analysis is performed, a mechanism may need to be implemented so that detected inconsistencies between the transaction data and regulations can be brought to the fraud analyst's attention.


Accordingly, embodiments of the present disclosure relate to a system that retrieves raw transaction data from issuers, reorganizes the raw transaction data, analyzes the reorganized data to determine whether the relevant regulations have been complied with, and generates alerts to notify fraud analysts of possible regulation violations or the occurrence of possible risky or malicious behavior. For example, the raw transaction data may be included in a plurality of tables. The system may join one or more tables to reorganize the transaction data using several filtering techniques to reduce the amount of data being joined and the processor load required to perform the join operation. Once the transaction data is reorganized using the join operation, the system may run one or more rules to analyze the reorganized transaction data. Each rule may be associated with a regulation that governs the use of prepaid cards or a general category of risky or malicious behavior (e.g., behavior not associated with a specific regulation, but that nonetheless may indicate that fraud or other malicious activity is taking place). The rules may be generated such that duplicate violations are ignored and/or machine learning techniques are used to improve the function of the rule over time. If any of the rules indicate that a regulation may be violated or that risky behavior is occurring, the system may generate an alert for display to a fraud analyst in an interactive user interface. The interactive user interface may allow the fraud analyst to view additional details regarding alerts, organize alerts, filter alerts, and/or take further actions related to the alerts. Thus, the system may be able to efficiently allow prepaid card issuers to identify regulation violations or risky behavior and take appropriate action.


Additionally, it has been noted that design of computer user interfaces “that are useable and easily learned by humans is a non-trivial problem for software developers.” (Dillon, A. (2003) User Interface Design. MacMillan Encyclopedia of Cognitive Science, Vol. 4, London: MacMillan, 453-458.) The various embodiments of interactive and dynamic user interfaces of the present disclosure are the result of significant research, development, improvement, iteration, and testing. This non-trivial development has resulted in the user interfaces described herein which may provide significant cognitive and ergonomic efficiencies and advantages over previous systems. The interactive and dynamic user interfaces include improved human-computer interactions that may provide reduced mental workloads, improved decision-making, reduced work stress, and/or the like, for a fraud analyst user.


Further, the interactive and dynamic user interfaces described herein are enabled by innovations in efficient interactions between the user interfaces and underlying systems and components. For example, disclosed herein are improved methods of merging data stored in different tables and/or databases, automatic and dynamic execution of complex rules in response to the successful data merges, automatic interaction among various components and processes of the system, and/or automatic and dynamic updating of the user interfaces. The interactions and presentation of data via the interactive user interfaces described herein may accordingly provide cognitive and ergonomic efficiencies and advantages over previous systems.


Advantageously, according to various embodiments, the disclosed techniques provide a more effective starting point and user interface for an investigation of potentially fraudulent activity. A fraud analyst may be able to start an investigation by viewing a group of identified alerts organized by user, country of origin, violated regulation, identified risky behavior, and/or the like instead of by parsing through a large amount of data (e.g., on the order of hundreds of gigabtyes) to identify a transaction or sequence of transactions that may indicate a regulation is violated or that risky behavior is occurring, which may reduce the amount of time and effort required to perform the investigation. The disclosed techniques may also, according to various embodiments, provide a prioritization of alerts (e.g., based on which violations require immediate attention and which violations do not require immediate attention). For example, the fraud analyst may also be able to start the investigation from a high priority group of alerts, which may allow the fraud analyst to focus on the most important investigations, and may quickly evaluate that group of alerts based on the efficient user interface generated by the system. In each case, the processing and memory requirements of such an investigation may be significantly reduced due to the efficient merging of data, the running of various rules and the generation of alerts and related data.


One aspect of the disclosure provides a computing system configured to process a large amount of dynamically updating data. The computing system comprises a database storing a first table and a second table, wherein the first table comprises a first column header, a second column header, and first data corresponding to the first column header or the second column header, and wherein the second table comprises the first column header, a third column header, and second data corresponding to the first column header or the third column header; a computer processor; and a computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to: retrieve the first table and the second table from the database, identify that the first column header is included in the first table and the second table, execute a join operation to generate a third table using the first column header as a join key, wherein the third table comprises the first column header, the second column header, the third column header, the first data, and the second data, select a first rule from a plurality of rules, wherein the first rule is associated with a behavior, run the first rule on the third table to determine whether the behavior regulation is risky, generate an alert in response to a determination that the behavior is risky, and transmit the alert for display in an interactive user interface.


The computing system of the preceding paragraph can have any sub-combination of the following features: where the second table further comprises a fourth column header, and wherein the program instructions are further configured to cause the computing system to: determine that the first rule does not use data associated with the fourth column header to determine whether the behavior is risky, and remove the fourth column from the second table prior to executing the join operation; where the first data comprises a first subset of data and a second subset of data, and where the program instructions are further configured to cause the computing system to: determine that the first rule does not use the second subset of data to determine whether the behavior is risky, and remove the second subset of data from the first data prior to executing the join operation; where the first table comprises a first row that includes a first subset of the first data and a second row that includes a second subset of the first data, and wherein the program instructions are further configured to cause the computing system to: determine that the first subset of the first data is the same as the second subset of the first data, and remove the second row from the first table prior to executing the join operation; where the interactive user interface comprises a button that allows a user to take an action associated with the displayed alert; where the program instructions are further configured to cause the computing system to: receive, from the user, a selection of the button, update the interactive user interface to display a plurality of actions in response to receiving the selection, receive, from the user, a second selection of a first action in the plurality of actions, and generate a report in response to receiving the second selection; where the program instructions are further configured to cause the computing system to: use a clustering process to separate the first data and the second data into a plurality of clusters, identify a subset of the first data or the second data that fall outside of a first cluster in the plurality of clusters by at least a threshold value, and generate an alert for each of the items in the subset of the first data or the second data; where the program instructions are further configured to cause the computing system to update the clustering process based on actions taken by a user with regard to the generated alerts for each of the items in the subset of the first data or the second data; where the first rule is a cash out rule; where the program instructions are further configured to cause the computing system to: identify, based on an analysis of the first data and the second data, that a first user withdrew no money on a first day, no money on a second day, a first amount of money on a third day, no money on a fourth day, and no money on a fourth day, no money on a wherein a withdrawal of the first amount of money causes the computing system to determine that the behavior is risky, and generate the alert such that the alert corresponds with the first day, the second day, and the third day, does not correspond with the second day, the third day, and the fourth day, and does not correspond with the third day, the fourth day, and the fifth day; where the database further stores historical data, and wherein the program instructions are further configured to cause the computing system to: retrieve the historical data from the database, wherein running the first rule on the historical data causes the computing system to determine that the behavior is risky, merging the first data and the historical data, running the first rule on the merged first data and historical data, determining whether the behavior is risky, and determining that the first data is valid in response to a determination that the behavior is risky; where the database receives data from an issuer database in periodic intervals, and wherein the program instructions are further configured to cause the computing system to: select the first table, where a first subset of the first data is expected to be received at a first time and a second subset of the first data is expected to be received at a second time, determine that the second subset of the first data was not received at the second time, and generate a notification for display in the interactive user interface, wherein the notification instructs a user to retrieve the second subset of the first data; where the first rule is one of a cash out rule, a cash in rule, a sustained cash rule, a behavior outlier rule, a cross-border cash rule, a foreign cash out rule, a high risk countries rule, an external funding rule, a tax refund rule, a card-to-card transfer rule, a watch list rule, or a manual trigger rule; where the alert comprises information identifying a user associated with a prepaid card that caused the computing system to determine that the behavior is risky; where the program instructions are further configured to cause the computing system to determine that the behavior is risky in response to a determination that a first regulation is violated; and where the program instructions are further configured to cause the computing system to transmit the alert via one of an email, a push notification, or a text message.


Additional embodiments of the disclosure are described below in reference to the appended claims, which may serve as an additional summary of the disclosure.


In various embodiments, computer systems are disclosed that comprise one or more hardware computer processors in communication with one or more non-transitory computer readable storage devices, wherein the one or more hardware computer processors are configured to execute the plurality of computer executable instructions in order to cause the computer system to operations comprising one or more aspects of the above-described embodiments (including one or more aspects of the appended claims).


In various embodiments, computer-implemented methods are disclosed in which, under control of one or more hardware computing devices configured with specific computer executable instructions, one or more aspects of the above-described embodiments (including one or more aspects of the appended claims) are implemented and/or performed.


In various embodiments, non-transitory computer-readable storage mediums storing software instructions are disclosed, wherein, in response to execution by a computing system having one or more hardware processors, the software instructions configure the computing system to perform operations comprising one or more aspects of the above-described embodiments (including one or more aspects of the appended claims).


Further, as described herein, various embodiments of the system may be configured and/or designed to generate user interface data useable for rendering the various interactive user interfaces described. The user interface data may be used by the system, and/or another computer system, device, and/or software program (for example, a browser program), to render the interactive user interfaces. The interactive user interfaces may be displayed on, for example, electronic displays (including, for example, touch-enabled displays).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a system for collecting, organizing, and analyzing transaction data.



FIG. 2 illustrates a user interface displaying a table of raw transaction data collected by an issuer of FIG. 1.



FIG. 3 illustrates a user interface displaying a table depicting the results of the validation performed by the transaction data server of FIG. 1.



FIG. 4 illustrates another user interface displaying a table of raw transaction data collected by an issuer of FIG. 1.



FIG. 5 illustrates a user interface displaying a join table formed from a join operation performed on the table of FIG. 2 and the table of FIG. 4.



FIGS. 6A-6M illustrate a user interface displaying generated alerts.



FIG. 7 illustrates a user interface displaying a table view of generated alerts.



FIGS. 8A-8D illustrate a user interface depicting a triage reporting of all generated alerts.



FIG. 9 is a flowchart depicting an illustrative operation of displaying claims adjustments.



FIG. 10 illustrates a computer system with which certain methods discussed herein may be implemented.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview


As described above, transactions associated with a prepaid card may not meet regulations, such as regulations put in place to identify and/or prevent fraudulent activity. Such regulations can include U.S. federal regulations and/or statutes (e.g., the CARD Act, the Dodd-Frank Act, Electronic Funds Transfer Act, Federal Reserve regulations, etc.), individual state regulations and/or statutes, internal banking regulations, regulations or rules issued by executive agencies, and/or other similar rules or laws. In particular, prepaid cards have been used as a vehicle to store funds received via deceptive or fraudulent schemes and transactions associated with a prepaid card that do not meet the relevant regulations may indicate such activity. For example, scammers have intimidated consumers (e.g., by posing as Internal Revenue Service agents, utility companies, etc.), demanding that victims wire unpaid funds to a prepaid card or risk being arrested, losing service, and/or the like. As another example, scammers have filed false tax returns that result in a tax refund, and set the refund to be wired to a prepaid card rather than an account owned by the actual taxpayer. Thus, prepaid cards can be used to deprive consumers and/or businesses of millions to billions of dollars.


In an effort to combat such malicious activity, issuers (e.g., entities that issue prepaid cards) are required to submit a report, such as a currency transaction report (CTR) or a suspicious activity report (SAR), if the transactions associated with a prepaid card indicate that fraud (e.g., money laundering, tax fraud, etc.) could be taking place. Transactions associated with a prepaid card may indicate that fraud could be taking place if the transactions (or even a single transaction) violate one or more regulations that govern the use of prepaid cards.


Issuers often store transaction data from prepaid cards in a plurality of databases. For example, one database may include transaction data that identifies an amount that was deposited or withdrawn on a card and a time and location where the transaction occurred, another database may include a description of the transaction and an identifier that identifies the user of the prepaid card, and so on. In some cases, to determine whether transactions comply with the relevant regulations, data from multiple databases or data from multiple tables within one or more databases may need to be analyzed. Typically, each individual database includes a large amount of uncompressed data (e.g., on the order of hundreds of gigabytes), so it is nearly impossible for a human fraud analyst to find all data that may be relevant to a particular regulation and/or to identify patterns that may indicate that risky behavior is occurring (e.g., a regulation has been violated). Thus, relying on a human to perform the fraud analysis may not be adequate to identify and/or prevent the harm occurring to consumers and/or businesses.


The analysis could instead be automated. To perform the analysis, the data from the different databases would have to be combined into a single database, such as via a join or merge table operation. However, because each individual database may include a large amount of uncompressed data, join or merge operations typically implemented by traditional databases may be difficult to run because the join operations cannot process such a large amount of information. Furthermore, once the analysis is performed, a mechanism may need to be implemented so that detected inconsistencies between the transaction data and regulations can be brought to the fraud analyst's attention for further action.


Accordingly, embodiments of the present disclosure relate to a system that retrieves raw transaction data from issuers, reorganizes the raw transaction data, analyzes the reorganized data to determine whether the relevant regulations have been complied with and/or whether risky or malicious behavior is occurring (which can include the violation of one or more regulations), and generates alerts to notify fraud analysts of possible regulation violations and/or the occurrence of possible risky or malicious behavior. For example, the raw transaction data may be included in a plurality of tables stored within one or more databases. The system may join one or more tables to reorganize the transaction data using several filtering techniques to reduce the processor load required to perform the join operation. Once the transaction data is reorganized using the join operation, the system may run one or more rules to analyze the reorganized transaction data. Each rule may be associated with a regulation that governs the use of prepaid cards or a general category of risky or malicious behavior (e.g., behavior not associated with a specific regulation, but that nonetheless may indicate that fraud or other malicious activity is taking place). The rules may be generated such that duplicate violations are ignored and/or machine learning techniques are used to improve the function of the rule over time. If any of the rules indicate that a regulation may be violated or that risky behavior is occurring, the system may generate an alert for display to a fraud analyst in an interactive user interface. The interactive user interface may allow the fraud analyst to view additional details regarding alerts, organize alerts, filter alerts, and/or take further actions related to the alerts. Thus, the system may be able to efficiently allow prepaid card issuers to identify regulation violations or risky behavior and take appropriate action. The system is described in greater detail below with respect to FIGS. 1-9.


Transaction Data Collection and Analysis System Overview



FIG. 1 illustrates a block diagram of a system 100 for collecting, organizing, and analyzing transaction data. The system 100 comprises one or more issuers 110, a transaction data analysis device 130, a transaction data server 140, and a network 120.


In the embodiment illustrated in FIG. 1, the one or more issuers 110 (e.g., banks, credit card companies, etc.), which may be implemented by one or more first physical computing devices, are communicatively connected to the transaction data server 140, which may be implemented by one or more second physical computing devices, over the network 120. Similarly, the transaction data analysis device 130 (e.g., operated by a fraud analyst at an entity, such as the issuer or a third party) may be implemented by one or more third physical computing devices and may be communicatively connected to the transaction data server 140 over the network 120. The transaction data server 140 can be operated by the issuer or can be operated by a third party (e.g., a company that contracts with an issuer). In some embodiments, each such physical computing device may be implemented as a computer system including some or all of the components illustrated in the example computing system 1000 of FIG. 10. For example, the one or more issuers 110, the transaction data analysis device 130, and/or the transaction data server 140 may be implemented in a computer system as a set of program instructions recorded on a machine-readable storage medium.


The one or more issuers 110 represent devices operated by prepaid card issuers (e.g., banks, credit card companies, etc.). Users may obtain prepaid cards from these prepaid card issuers and load money onto the cards for later use. Each time a transaction (e.g., a deposit, a withdrawal, a purchase, a fee, etc.) takes place using a prepaid card, the transaction is tracked by the issuer 110 associated with the prepaid card. Details of the transaction may be stored in one or more tables and the tables may be stored in one or more databases associated with the issuer 110 (not shown). At preset times or at the request of a fraud analyst, the issuers 110A-N transmit the tables to the transaction data server 140 for processing and analysis.


The transaction data analysis device 130 represents a device operated by an issuer or third party that allows a fraud analyst to analyze transaction data for a plurality of prepaid cards and view alerts generated by the transaction data server 140. For example, the transaction data analysis device 130 has a display that shows an interactive graphical user interface (GUI), where the interactive GUI allows the fraud analyst to view additional details regarding alerts, organize alerts, filter alerts, and/or take further actions related to the alerts. In an embodiment, the transaction data analysis device 130 includes GUI logic. The GUI logic may be a set of program instructions configured for execution by one or more computer processors of the transaction data analysis device 130, which are operable to receive user input and to display a graphical representation of transaction data and/or alerts using the approaches described herein. The GUI logic may be operable to receive user input from, and display a graphical representation of the claims, in a GUI that is provided on a display (not shown) of the transaction data analysis device 130 and/or another computing device that is in communication with the transaction data analysis device 130.


The transaction data server 140 may be implemented as a special-purpose computer system having logical elements. In an embodiment, the logical elements may comprise program instructions recorded on one or more machine-readable storage media. Alternatively, the logical elements may be implemented in hardware, firmware, or a combination thereof.


When executed by one or more processors of the computer system, logic in the transaction data server 140 is operable to receive, store, reorganize, validate, and/or analyze transaction data according to the techniques described herein. The logic in the transaction data server 140 is also operable to run rules on the transaction data to generate alerts for viewing by the fraud analyst according to the techniques described herein. In one embodiment, the transaction data analysis device 130 and/or the transaction data server 140 may be implemented in a Java Virtual Machine (JVM) that is executing in a distributed or non-distributed computer system. In other embodiments, the transaction data analysis device 130 and/or the transaction data server 140 may be implemented as a combination of programming instructions written in any programming language (e.g. C++ or Visual Basic) and hardware components (e.g., memory, CPU time) that have been allocated for executing the program instructions.


In an embodiment, the network 120 includes any communications network, such as the Internet. The network 120 may be a wired network, a wireless network, or a combination of the two. For example, network 120 may be a local area network (LAN) and/or a wireless area network (WAN).


Transaction Data Tables and Join Operations



FIG. 2 illustrates a user interface 200 displaying a table 212 of raw transaction data collected by an issuer 110A-N. For example, the raw transaction data may include raw transaction data collected by the issuer 110A-N from one or more prepaid cards managed by the issuer 110A-N. The raw transaction data and/or a schema related to the raw transaction data may be transmitted to the transaction data server 140. Using the schema, the transaction data server 140 may generate various columns, associate the raw transaction data with one or more of the generated columns, and store such information (e.g., in a Hadoop Distributed File System (HDFS)) to generate the table 212 (and/or other tables). For example, the transaction data server 140 may receive the information from the issuers 110A-N and use the schema and the raw transaction data to generate the headers of the columns using the data pipeline system described in U.S. patent application Ser. No. 14/533,433, titled “HISTORY PRESERVING DATA PIPELINE SYSTEM AND METHOD” and filed on Nov. 5, 2014, which is hereby incorporated herein by reference in its entirety.


As illustrated in FIG. 2, the interface 200 includes a window 210 that includes the table 212. The table 212 includes the various columns and rows of transaction data. For example, the columns may include a transaction identifier (TransID) column, an account identifier (AccountID) column (e.g., an identifier that uniquely identifies a user), a transaction type identifier (TranstypeID) column, a description column, a transaction postdate (PostDate) column, a transaction amount (TransAmt) column, a transaction requirement identifier (TransReqID), and a time the transaction occurred (LastUpdate) column. While specific columns are depicted in the table 212, this is not meant to be limiting. The table 212 may include any number or type of column related to a transaction.


The user interface 200 may be displayed on the transaction data analysis device 130, which is in communication with the transaction data server 140. Within the user interface 200, the fraud analyst may be able to download the table 212 locally to the transaction data analysis device 130 by selecting download button 215. The fraud analyst may also be to sort the transaction data by column or by another means using sort button 220.


Before, after, and/or during the generation of the table 212 (and other tables), the transaction data server 140 may validate the raw transaction data. For example, the transaction data server 140 may expect to receive raw transaction data from the issuers 110A-N in regular intervals (e.g., every minute, every 15 minutes, every hour, etc.). The transaction data server 140 may parse the received raw transaction data and determine which data, if any, is missing or corrupted.



FIG. 3 illustrates a user interface 300 displaying a table 312 depicting the results of the validation performed by the transaction data server 140. As illustrated in FIG. 3, a window 310 includes the table 312. The table 312 includes a validation day column, a missing blocks column, a total missing time column, and an isValid column. The validation day column may indicate a day that a validation test was run by the transaction data server 140. The missing blocks column may identify specific times on the corresponding validation day in which raw transaction data is missing. For example, the fourth row in the table 312 indicates that there are 5 times in which raw transaction data is missing. The times may be represented as an absolute time (e.g., GMT time) or a number of seconds from a set time (e.g., a number of minutes since midnight of the validation day). The total missing time column may indicate the number of missing blocks on a given validation day. The isValid column may indicate whether any transaction data corresponding to the validation day is corrupted (e.g., with “true” meaning that no transaction data is corrupted).


If any transaction data is missing or corrupted, the user interface 300 may generate a notification to alert the fraud analyst of the error. The fraud analyst may then be able to request the missing transaction data or a replacement for the corrupted transaction data.


In further embodiments, prior to performing the join operations described herein, the transaction data server 140 performs a pre-processing step to further validate the transaction data. For example, the transaction data server 140 may store historical transaction data that has been validated at a previous time. The historical transaction data may be merged with a portion of the received raw transaction data and the transaction data server 140 may run one or more rules (described below) on the merged transaction data to ensure that the results are as expected (e.g., a known alert is generated). The pre-processing step may be run at regular intervals (e.g., daily) to ensure the transaction data is validated. If the transaction data is not validated, the transaction data server 140 can provide a notification to the fraud analyst and/or automatically correct an identified error. The pre-processing step may catch errors, such as off-by-1 errors, that are caused by a change in the format or schema of the raw transaction data (e.g., by the issuers 110A-N).



FIG. 4 illustrates another user interface 400 displaying a table 412 of raw transaction data collected by an issuer 110A-N. As described herein, the transaction data server 140 may perform join operations to merge data from one or more tables. As illustrated in FIG. 4, the table 412 includes different columns (and thus different transaction data) than found in the table 212. For example, the table 412 includes an aggregation identifier (AggregationID) column that indicates another identifier that uniquely identifies a user (e.g., via a social security number). In some cases, data found in table 212 (and not in table 412) and data found in table 412 (and not in table 212) may be joined such that the transaction data server 140 can properly run one or more of the rules. Likewise, the transaction data server 140 may join data from other tables (not shown) into a single table or multiple tables such that some or all of the rules can be run.



FIG. 5 illustrates a user interface 500 displaying a join table 512 formed from a join operation performed on the table 212 and the table 414. The join table 512 may be a new table or a modification of the table 212 or the table 414. The transaction data server 140 may further identify other columns or transaction data in other tables previously generated by the transaction data server 140 (not shown) and join these columns and/or transaction data with the information in the join table 512. For example, the transaction data server 140 may identify other columns or transaction data based on any additional data that may be necessary to run some or all of the rules. Alternatively or in addition, the transaction data server 140 may separately join transaction data from other tables (not shown) to form one or more other join tables. The other join tables may include different data than is present in the join table 512, and thus the transaction data server 140 may run separate rules on the data in the join table 512 and on the data in the other join tables.


The transaction data server 140 may use several techniques not typically performed during join operations to improve the speed and efficiency of the join operation and to ensure the join operation can be performed even when a large amount of transaction data (e.g., on the order of hundreds of gigabytes) is involved in the join operation (by, for example, reducing the amount of transaction data that is actually joined). For example, in some embodiments the transaction data server 140 identifies a column that is present in each of the tables involved in the join operation (e.g., such as the TransID column in the table 212 and the table 412) and uses the column as the join key. Some columns in the tables involved in the join operation may not be necessary, however. For example, the TransReqID information may not be necessary in order to properly run the rules. Thus, before performing the join operation, the data transaction server 140 may drop columns (and the transaction data corresponding to the dropped columns) from the tables such that the dropped columns are not included in the join table 512. Likewise, certain transactions may not be relevant to any of the rules. For example, withdrawal transactional data may be important to determine whether one or more regulations have been satisfied, but deposit transactional data may not be important to these determinations. Thus, before performing the join operation, the data transaction server 140 can parse each of the tables involved in the join operation and remove entries related to such irrelevant transactions. Furthermore, before performing the join operation, the data transaction server 140 can run a deduplication operation on each table involved in the join operation to remove any duplicate entries in such tables. In an embodiment, the TransID, which is a unique identifier for each transaction, may be used by the data transaction server 140 to determine whether each of the transactions in a table are unique or whether there are duplicates in the table. These techniques may help reduce the size of the raw transaction data, thereby reducing the processor load of the transaction data server 140 when performing the join operation(s).


Rules


As described above, the transaction data server 140 may run one or more rules on the join table 512 and/or other generated join tables to assess whether the relevant regulations have been complied with, whether generally risky behavior is occurring, and/or to determine whether further action may be necessary. If a rule is triggered, the transaction data server 140 may generate an alert. As an example, the rules may include a cash out rule, a cash in rule, a sustained cash rule, a behavior outlier rule, a cross-border cash rule, a foreign cash out rule, a high risk countries rule, an external funding rule, a tax refund rule, a card-to-card transfer rule, a watch list rule, and/or a manual trigger rule.


The cash out rule may monitor for one or more cash withdrawal transactions over a single-day or multi-day period (e.g., a one-day period, a three-day period, etc.) that collectively exceed a threshold value (e.g., a monetary value). In an embodiment, the transaction data server 140 groups transaction data from the join table(s) by the AggregationID (e.g., social security number) such that transactions associated with a single user can be analyzed separately from transactions associated with another user. If the AggregationID is unavailable, the transaction data server 140 may group transaction data by the AccountID. Transactions that may include a cash out event include automated teller machine (ATM) withdrawals, point of sale withdrawals, bank teller withdrawals, and/or quasi-cash channels (e.g., casinos). The transaction data server 140 may run the cash out rule on a regular basis (e.g., weekly). Because the cash out rule is triggered when total withdrawals over a multi-day period exceed a threshold value, the cash out rule could be triggered multiple times for the same cash out event (e.g., if on day one, $10,000 is withdrawn, the cash out rule would identify both day two and day three as exceeding the threshold value because the total withdrawals for day zero, day one, and day two would be $10,000 and the total withdrawals for day one, day two, and day three would also be $10,000). Thus, the transaction data server 140 may implement the cash out rule such that the cash out rule is triggered and an alert is generated if the total withdrawals over the multi-day period exceed the threshold value and a withdrawal occurred on the last day of the multi-day period. If no withdrawal occurs on the last day of the multi-day period, then the cash out rule is not triggered, thereby eliminating duplicative alerts.


The cash in rule may monitor for one or more cash deposits over a single-day or multi-day period (e.g., a one-day period, a three-day period, etc.) that collectively exceed a threshold value (e.g., a monetary value). In an embodiment, the transaction data server 140 groups transaction data from the join table(s) by the AggregationID or the AccountID (e.g., if the AggregationID is unavailable) such that transactions associated with a single user can be analyzed separately from transactions associated with another user. The transaction data server 140 may run the cash in rule on a regular basis (e.g., weekly). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The sustained cash rule may monitor for accounts that load a minimum amount of cash per month for at least a threshold period of time through cash channels, such as point of sale locations and/or money network sites. If alerts are generated based on the rule being triggered, the transaction data server 140 may rank the alerts based on the amount of churn (e.g., the sum of the cash loads and absolute value of the cash withdrawals over the threshold period of time). The transaction data server 140 may run the sustained cash rule on a regular basis (e.g., monthly). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The behavior outlier rule may monitor for outliers within certain behavioral clusters over a period of time (e.g., a month). The transaction data server 140 may consider statistical measures, such as the one-month means, standard deviations, and/or transaction counts of cash-in and/or cash-out activity. For example, the behavior outlier rule may be used to identify prepaid cards that are suspicious because such cards are outliers when compared to other cards of the same program. However, if there are a large number of programs (e.g., 10,000 programs) and each program has one prepaid card that is an outlier, then 10,000 alerts may be generated. To reduce the number of alerts to a meaningful number that can be investigated by the fraud analyst, the transaction data server 140 may organize the data using any known clustering technique, where the clustering is based on different features, such as cash-in data, cash-out data, the mean, the mode, the standard deviation, and/or the like, instead of the program names. The transaction data server 140 may initially validate the clustering by using historical transaction data to, for example, prevent overfitting (e.g., by using the historical transaction data to ensure that too many clusters are not created). Initially, the transaction data server 140 may use the behavior outlier rule to identify the top X (e.g., 10) outliers from each of the clusters based on a distance from a center of the cluster (or the outliers that are outside the cluster by at least a threshold value) and generate an alert for each of these outliers. The transaction data server 140 may then monitor subsequent actions (e.g., closed the alert, took an action, etc.) taken by the fraud analyst with respect to these generated alerts. A goal, for example, may be to identify a number of outliers from each of the clusters that are actioned a threshold percentage of the time (e.g., X percent of the time). If a percentage of the outliers from a cluster other than the threshold percentage of the outliers from a cluster are actioned (e.g., Y percent), the transaction data server 140 may use machine learning techniques to adjust the number of outliers that are identified from that cluster such that the threshold percentage is eventually achieved. The transaction data server 140 may run the behavior outlier rule on a regular basis (e.g., periodically). The same cluster definitions may be used each time the behavior outlier rule is run to achieve consistency. The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The cross-border cash rule may monitor for funds that are deposited and/or withdrawn in different countries. The transaction data server 140 may run the cross-border cash rule on a regular basis (e.g., periodically).


The foreign cash out rule may monitor the withdrawal of cash greater than a threshold value (e.g., a monetary value) within a period of time outside of the first country. The transaction data server 140 may run the foreign cash out rule on a regular basis (e.g., monthly). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The high risk countries rule may monitor for any deposit and withdrawal that occur in a “high risk” country. Some or all transactions may be geo-tagged such that the high risk countries rule functions properly. The transaction data server 140 may run the high risk countries rule on a regular basis (e.g., periodically). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The external funding rule may monitor for multiple prepaid card accounts funding the same external source. The transaction data server 140 may generate an alert if more than a threshold number of prepaid cards initiate transfers to the same external source. The transaction data server 140 may run the external funding rule on a regular basis (e.g., periodically). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The tax refund rule may monitor and identify accounts that receive more than a threshold number of tax refunds. The transaction data server 140 may run the tax refund rule on a regular basis (e.g., periodically). The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


The card-to-card transfer rule may identify accounts that transfer more than a threshold amount between them within a period of time. The transaction data server 140 may run the card-to-card rule on a regular basis (e.g., periodically). The transaction data server 140 may run the card-to-card transfer rule in conjunction with the cash in and/or cash out rules. The transaction data server 140 may implement the same deduplication techniques as described above with respect to the cash out rule to eliminate duplicative alerts.


In an embodiment, a fraud analyst or another user may provide a list of accounts, account identifiers, names, social security numbers, and/or the like that are to be monitored on a regular basis (e.g., weekly). The transaction data server 140 may run a watch list rule, which causes each of the rules described above to be run on the data associated with the listed entities. Each time the watch list rule is run (e.g., weekly), the transaction data server 140 may generate a report indicating that no suspicious activity was detected and/or some suspicious activity was detected (e.g., identifying those rules that were triggered).


Similarly, a fraud analyst or another user may provide a list of accounts, account identifiers, names, social security numbers, and/or the like that are to be monitored once. The transaction data server 140 may run a manual trigger rule, which causes each of the rules described above (except the watch list rule) to be run on the data associated with the listed entities. When the manual trigger rule is run (just once), the transaction data server 140 may generate a report indicating that no suspicious activity was detected and/or some suspicious activity was detected (e.g., identifying those rules that were triggered).


Additional rules run by the transaction data server 140 may include a payroll rule and a maximum account rule. The payroll rule may be used by the transaction data server 140 to identify transactions that are illegitimate payroll transactions. The transaction data server 140 may use clustering and the machine learning techniques as described above to find outliers within these transactions, and generate alerts based on the identified outliers. The maximum account rule may identify the maximum number of accounts that can be associated with an address and/or name (and be triggered if the maximum number is exceeded).


Alerts


If a rule is triggered, the transaction data server 140 may generate the appropriate alert. FIGS. 6A-6M illustrate a user interface 600 displaying generated alerts. The user interface 600 may be displayed in the display of the transaction data analysis device 130. As illustrated in FIG. 6A, the user interface 600 includes a filter window 610 and an alert window 620. The alert window 620 may display one or more alert summaries that each summarize an alert generated by the transaction data server 140. The alert summaries may indicate which alerts are critical and which alerts are not critical. An alert may be critical based on the rule that triggered the generation of the alert and/or a number of rules that have been triggered by a given user or account. The alert summaries may be organized by AggregationID, as indicated by the selection of Aggregation ID button 630. The alert summaries that are displayed may be filtered using any of the filters in the filter window 610.


The alert summaries may also be organized by source (e.g., rule that triggered the alert) via the selection of source button 640, as illustrated in FIG. 6B. Each of the alert summaries are selectable to view more information about the alert(s). For example, the fraud analyst, using cursor 650, may trigger the cash out alert summary. Selection of the cash out alert summary causes the alert window 620 to display a graph 655 and a list of cash out alerts, as illustrated in FIG. 6C. The graph 655 may indicate a date that an alert was generated and how many alerts were generated on specific days. Each alert in the list of cash out alerts provides a more detail information associated with the alert. For example, alert 658 in the list of cash out alerts identifies the type of rule that triggered the alert (e.g., cash out), an identifier linked to the user of the prepaid card (e.g., the AggregationID, which includes the user's social security number), a date range associated with the alert 658, a date that the alert 658 was generated, an action label 659, and conclusions or results associated with the alert 658. The action label 659 may identify which action has been taken by the fraud analyst in response to the alert 658 and/or may identify that no action has been taken. Conclusions may include the funding percentage (e.g., what percentage of a prepaid card is funded by non-suspicious activity) over various months, a flagged amount, an Account ID, an Aggregation ID, an issuer of the prepaid card, a program name from which the prepaid card was issued, a city of residence for the user of the card, and/or other metadata.


Selection of the alert 658 may cause the alert window 620 to display even more information associated with the alert 658, as illustrated in FIG. 6D. The alert window 620 may display the same conclusions as discussed above with respect to FIG. 6C. The alert window 620 may also display a name of a person assigned to the alert 658 and a name of a person watching the alert 658. The alert window 620 may also include three tabs: account info tab 672, personal info tab 674, and notes tab 676. The account info tab 672 may display the Account ID, the Account Number, the Card Number, the Program Name, and the Issuer Name associated with the prepaid card that triggered the cash out alert.


The alert window 620 also includes a take action button 665 and an export button 670. Selection of the export button 670 may allow the fraud analyst to export details of the alert 658 to a file (e.g., a spreadsheet file or an image file). Selection of the take action button 665, using for example the cursor 650, may cause a plurality of options to appear, as illustrated in FIG. 6E.


Possible action options include closing the alert 658, opening details associated with the alert 658, reviewing the alert 658 (to, for example, generate a report), reassigning the alert 658 to another user, unassigning the alert 658, setting another user as the user watching the alert 658, or removing a user from watching the alert 658.


If, for example, the close option is selected using the cursor 650, window 678 may appear, as illustrated in FIG. 6F. The window 678 may request the fraud analyst to select a reason why the alert 658 is being closed and provide an option to include additional notes.


The personal info tab 674 may display the name, Account ID, username, social security number, electronic mail address, phone number, address, and date of birth associated with the prepaid card that triggered the cash out alert, as illustrated in FIG. 6G. The personal info tab 674 may also include a show logs button 680. The show logs button 680, when selected, may show the transaction details for the prepaid card that triggered the alert 658 and a period of time for which transaction details are provided, as illustrated in FIG. 6H.


The notes tab 676 may include a text box that allows the fraud analyst to enter any notes or comments associated with the alert 658, as illustrated in FIG. 6I. The notes tab 676 further lists the notes or comments that have been previously entered and a time that the notes or comments were entered, as illustrated in FIG. 6J.


The alert summaries may also be organized by flags (e.g., a list of all alerts organized by type of rule that triggered the alert) via the selection of flags list button 682, as illustrated in FIG. 6K. The fraud analyst may select more button 684 to organize the alert summaries in other ways. For example, the alert summaries can further be organized by issuer, transaction country, and/or by those with a remote account (e.g., an account based in a foreign country), as illustrated in FIG. 6L. Selection of the transaction country option may cause the alert window 620 to organize the alert summaries by the countries from which transactions originated to cause a rule to be triggered, as illustrated in FIG. 6M.



FIG. 7 illustrates a user interface 700 displaying a table view of generated alerts. The user interface 700 may be displayed in the display of the transaction data analysis device 130. As illustrated in FIG. 7, the user interface 700 may include a window 710 that includes a table that lists details for various alerts that have been generated, such as AggregationID, flagged month (e.g., the month the alerted was generated), flag date (e.g., date range associated with the alert), conclusions, priority, rule that triggered the alert, and/or a rule ID (e.g., identifies the rule that triggered the alert, the AggregationID, and the flag date). The table can be downloaded using download button 215 or sorted using sort button 220.



FIGS. 8A-8D illustrate a user interface 800 depicting a triage reporting of all generated alerts. The user interface 800 may be displayed in the display of the transaction data analysis device 130. As illustrated in FIG. 8A, the user interface 800 includes a window 810 that provides a selectable calendar 815 to specify a date range and an alerts tab 820. Within the alerts tab 820, a number of open alerts is indicated, organized by time that the alert has been open (e.g., more than 30 days, 21 to 30 days, 11 to 20 days, 10 or fewer days, etc.), and alert details are provided. The alert details include a total number of alerts, a total number of alerts that have been closed, a percentage of closed alerts for which a report has been approved to be filed, and a number of alerts that have not been closed and that have been open for longer than 30 days.


The window 810 further includes a rules tab 830 that, when selected, provides additional rules details and a graph 835 indicating reasons why various alerts were closed and a number of alerts that have been closed based on a specific reason, as illustrated in FIG. 8B. The rule details may include a graph 836, such as a bar graph, that indicates a percentage of alerts that have been actioned (e.g., a report was generated) or closed. The rule details further include an indication of a total number of alerts, a total number of alerts that have been closed, a percentage of closed alerts for which a report has been approved to be filed, and a number of alerts that have not been closed and that have been open for longer than 30 days.


The rule details further include a dropdown menu 838. The dropdown menu 838, when selected using the cursor 650, provides the fraud analyst with the option to view rule details for a specific rule (rather than all the rules together), as illustrated in FIG. 8C. Selection of the cash out rule in the dropdown menu 838, for example, causes the rule details (e.g., the graph 836 and the rule statistics) and the rule closed reasons (e.g., the graph 835) to update to reflect just the statistics for the cash out rule, as illustrated in FIG. 8D.


In some cases, the user associated with a prepaid card may not be readily apparent or it may be difficult to determine whether two separate accounts are actually for the same user (because, for example, the address of the two accounts is the same). In such a situation, the transaction data server 140 may link perform entity resolution. For example, the transaction data server 140 may generate a graph in which each element of the graph corresponds to an account. A link may be created between elements if the elements share the same property (e.g., the same address, the same AggregationID, the same name, etc.). Once all possible links have been established, the transaction data server 140 may associate all linked elements with a single user or entity and the rules may be run using such information. In some embodiments, the linked elements can be hashed (e.g., one or more properties that cause the linkage could be hashed) to create a unique ID for the single user or entity.


In some embodiments, the alerts are automatically transmitted by the transaction data server 140 to the transaction data analysis device 130 and/or another user device (e.g., a mobile device operated by a user). The alerts can be transmitted at the time that the alerts are individually generated or at some determined time after generation of the alerts (e.g., as a push notification). When received by the transaction data analysis device 130, one or more of the alerts can cause the device to display the alerts via the activation of an application on the transaction data analysis device 130 (e.g., a browser, a mobile application, etc.). For example, receipt of an alert may automatically activate an application on the transaction data analysis device 130, such as a messaging application (e.g., SMS or MMS messaging application), a standalone application (e.g., a malicious activity monitoring application), or a browser, for example, and display information included in the alert. If the transaction data analysis device 130 is offline when the alert is transmitted, the application may be automatically activated when the transaction data analysis device 130 is online such that the alert is displayed. As another example, receipt of an alert may cause a browser to open and be redirected to a login page generated by the transaction data server 140 so that a user can log in to the transaction data server 140 and view the alert. Alternatively, the alert may include a URL of a webpage (or other online information) associated with the alert, such that when the transaction data analysis device 130 (e.g., a mobile device) receives the alert, a browser (or other application) is automatically activated and the URL included in the alert is accessed via the Internet.


One or more alerts can be transmitted by being packaged into an electronic message, such as an email, an instant message, a text message, a push notification, a network packet, and/or the like. For example, the electronic message can be an email and the complete alert can be included within the body of the email or a portion of the alert can be included within the subject line or body of the email with a link (e.g., URL) that can be accessed to view the complete alert. The electronic message can be transmitted by the transaction data server 140 to another system (not shown), such as an email server, accessible by the transaction data analysis device 130 or the transaction data analysis device 130 itself. Contents of the electronic message can be displayed within an interactive user interface (e.g., one of the user interfaces 600, 700, and/or 800) generated by the email server and/or the transaction data analysis device 130 such that the user can view the alert or a portion thereof.


Example Process Flow



FIG. 9 is a flowchart 900 depicting an illustrative operation of reorganizing and analyzing transaction data to generate alerts. Depending on the embodiment, the method of FIG. 9 may be performed by various computing devices, such as by the transaction data analysis device 130 and/or the transaction data server 140. For ease of discussion, the method is discussed herein with reference to the transaction data server 140. Depending on the embodiment, the method of FIG. 9 may include fewer and/or additional blocks and the blocks may be performed in an order different than illustrated.


In block 902, a first table and a second table are retrieved. The first table may include a first column header, a second column header, and first data corresponding to the first column header or the second column header. The second table may include the first column header, a third column header, and second data corresponding to the first column header or the third column header.


In block 904, it is identified that the first column header is included in the first table and the second table. For example, the first column header may be the Aggregation ID.


In block 906, a join operation to generate a third table using the first column header as a join key is executed. The third table may include the first column header, the second column header, the third column header, and the first and second data.


In block 908, a first rule from a plurality of rules is selected. The first rule may be associated with a first regulation that governs the use of prepaid cards.


In block 910, the first rule is run on the third table to determine whether the first regulation is violated. The first rule may be run on a periodic basis.


In block 912, an alert is generated in response to a determination that the first regulation is violated. The alert may include information identifying a user associated with the prepaid card that triggered the generation of the alert and the violation of the first regulation.


In block 914, the alert is displayed in an interactive user interface. For example, the alert may be displayed as depicted in FIGS. 6A-6M. The interactive user interface may also display a summary of generated alerts, as depicted in FIGS. 8A-8D.


Implementation Mechanisms


According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.


Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.


For example, FIG. 10 is a block diagram that illustrates a computer system 1000 upon which an embodiment may be implemented. For example, any of the computing devices discussed herein, such as the transaction data analysis device 130, the transaction data server 140, and the issuers 110 may include some or all of the components and/or functionality of the computer system 1000.


Computer system 1000 includes a bus 1002 or other communication mechanism for communicating information, and a hardware processor, or multiple processors, 1004 coupled with bus 1002 for processing information. Hardware processor(s) 1004 may be, for example, one or more general purpose microprocessors.


Computer system 1000 also includes a main memory 1006, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 1002 for storing information and instructions to be executed by processor 1004. Main memory 1006 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1004. Such instructions, when stored in storage media accessible to processor 1004, render computer system 1000 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 1000 further includes a read only memory (ROM) 1008 or other static storage device coupled to bus 1002 for storing static information and instructions for processor 1004. A storage device 1010, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 1002 for storing information and instructions.


Computer system 1000 may be coupled via bus 1002 to a display 1012, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 1014, including alphanumeric and other keys, is coupled to bus 1002 for communicating information and command selections to processor 1004. Another type of user input device is cursor control 1016, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 804 and for controlling cursor movement on display 1012. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.


Computing system 1000 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage


Computer system 1000 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 1000 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 1000 in response to processor(s) 1004 executing one or more sequences of one or more instructions contained in main memory 1006. Such instructions may be read into main memory 1006 from another storage medium, such as storage device 1010. Execution of the sequences of instructions contained in main memory 1006 causes processor(s) 1004 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 1010. Volatile media includes dynamic memory, such as main memory 1006. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.


Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between nontransitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 802. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 804 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 1000 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 1002. Bus 1002 carries the data to main memory 1006, from which processor 1004 retrieves and executes the instructions. The instructions received by main memory 1006 may retrieve and execute the instructions. The instructions received by main memory 1006 may optionally be stored on storage device 1010 either before or after execution by processor 1004.


Computer system 1000 also includes a communication interface 1018 coupled to bus 1002. Communication interface 1018 provides a two-way data communication coupling to a network link 1020 that is connected to a local network 1022. For example, communication interface 1018 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 1018 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 1018 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 1020 typically provides data communication through one or more networks to other data devices. For example, network link 1020 may provide a connection through local network 1022 to a host computer 1024 or to data equipment operated by an Internet Service Provider (ISP) 1026. ISP 1026 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 1028. Local network 1022 and Internet 1028 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 1020 and through communication interface 1018, which carry the digital data to and from computer system 1000, are example forms of transmission media.


Computer system 1000 can send messages and receive data, including program code, through the network(s), network link 1020 and communication interface 1018. In the Internet example, a server 1030 might transmit a requested code for an application program through Internet 1028, ISP 1026, local network 1022 and communication interface 1018.


The received code may be executed by processor 1004 as it is received, and/or stored in storage device 1010, or other non-volatile storage for later execution.


Terminology


Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


The term “comprising” as used herein should be given an inclusive rather than exclusive interpretation. For example, a general purpose computer comprising one or more processors should not be interpreted as excluding other computer components, and may possibly include such components as memory, input/output devices, and/or network interfaces, among others.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A computing system comprising: a database storing a first data set and a second data set associated with one or more accounts, wherein the first data set comprises a first data section, a second data section, and first data, wherein the first data comprises a first subset of data and a second subset of data, and wherein the second data set comprises the first data section, a third data section, and second data;a computer processor; anda computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to: select a first rule from a plurality of rules, wherein the first rule is associated with a behavior associated with the one or more accounts;retrieve the first data set and the second data set from the database;determine that the first rule does not use the second subset of data to determine whether the behavior is risky;remove the second subset of data from the first data to form modified first data in response to the determination that the first rule does not use the second subset of data to determine whether the behavior is risky;identify that the first data section is included in the first data set and the second data set;generate a third data set that comprises the first data section, the second data section, the third data section, the modified first data, and the second data;run the first rule on the third data set to determine whether the behavior is risky;generate an alert in response to a determination that the behavior is risky; andtransmit the alert for display in an interactive user interface.
  • 2. The computing system of claim 1, wherein the interactive user interface comprises a button that allows a user to take an action associated with the displayed alert.
  • 3. The computing system of claim 1, wherein the program instructions are further configured to cause the computing system to: use a clustering process to separate the modified first data and the second data into a plurality of clusters;identify a third subset of the modified first data or the second data that fall outside of a first cluster in the plurality of clusters by at least a threshold value; andgenerate an alert for each of the items in the third subset of the modified first data or the second data.
  • 4. The computing system of claim 1, wherein the first rule is a cash out rule.
  • 5. The computing system of claim 1, wherein the database further stores historical data, and wherein the program instructions are further configured to cause the computing system to: retrieve the historical data from the database, wherein running the first rule on the historical data causes the computing system to determine that the behavior is risky;merge the modified first data and the historical data;run the first rule on the merged modified first data and historical data;determine whether the behavior is risky; anddetermine that the modified first data is valid in response to a determination that the behavior is risky.
  • 6. The computing system of claim 1, wherein the database receives data from an issuer database in periodic intervals, and wherein the program instructions are further configured to cause the computing system to: select the first data set, wherein a third subset of the first data is expected to be received at a first time and a fourth subset of the first data is expected to be received at a second time;determine that the fourth subset of the first data was not received at the second time; andgenerate a notification for display in the interactive user interface, wherein the notification instructs a user to retrieve the fourth subset of the first data.
  • 7. The computing system of claim 1, wherein the first rule is one of a cash out rule, a cash in rule, a sustained cash rule, a behavior outlier rule, a cross-border cash rule, a foreign cash out rule, a high risk countries rule, an external funding rule, a tax refund rule, a card-to-card transfer rule, a watch list rule, or a manual trigger rule.
  • 8. The computing system of claim 1, wherein the alert comprises information identifying a user associated with a prepaid card that caused the computing system to determine that the behavior is risky.
  • 9. The computing system of claim 1, wherein the program instructions are further configured to cause the computing system to determine that the behavior is risky in response to a determination that a first regulation is violated.
  • 10. The computing system of claim 1, wherein the program instructions are further configured to cause the computing system to transmit the alert via one of an email, a push notification, or a text message.
  • 11. The computing system of claim 1, wherein the alert comprises a URL, and wherein receipt of the alert causes a browser to open on a user device and be redirected to a page associated with the URL.
  • 12. The computing system of claim 2, wherein the program instructions are further configured to cause the computing system to: receive, from the user, a selection of the button;update the interactive user interface to display a plurality of actions in response to receiving the selection;receive, from the user, a second selection of a first action in the plurality of actions; andgenerate a report in response to receiving the second selection.
  • 13. The computing system of claim 3, wherein the program instructions are further configured to cause the computing system to update the clustering process based on actions taken by a user with regard to the generated alerts for each of the items in the third subset of the modified first data or the second data.
  • 14. The computing system of claim 4, wherein the program instructions are further configured to cause the computing system to: identify, based on an analysis of the modified first data and the second data, that a first user withdrew no money on a first day, no money on a second day, a first amount of money on a third day, no money on a fourth day, and no money on a fifth day, wherein a withdrawal of the first amount of money causes the computing system to determine that the behavior is risky; andgenerate the alert such that the alert corresponds with the first day, the second day, and the third day, does not correspond with the second day, the third day, and the fourth day, and does not correspond with the third day, the fourth day, and the fifth day.
  • 15. A computer-implemented method comprising: as implemented by one or more computer systems comprising a processor and memory, the one or more computer systems configured with specific executable instructions stored in the memory,in response to execution by the processor of at least one of the specific executable instructions read from the memory,selecting a first rule from a plurality of rules, wherein the first rule is associated with a behavior associated with one or more accounts;retrieving a first data set and a second data set, wherein the first data set comprises a first data section, a second data section, and first data, wherein the first data comprises a first subset of data and a second subset of data, and wherein the second data set comprises the first data section, a third data section, and second data;determining that the first rule does not use the second subset of data to determine whether the behavior is risky;removing the second subset of data from the first data to form modified first data in response to the determination that the first rule does not use the second subset of data to determine whether the behavior is risky;identifying that the first data section is included in the first data set and the second data set;generating a third data set that comprises the first data section, the second data section, the third data section, the modified first data, and the second data;running the first rule on the third data set to determine whether the behavior is risky;generating an alert in response to a determination that the behavior is risky; andtransmitting the alert for display in an interactive user interface.
  • 16. The computer-implemented method of claim 15, further comprising: using a clustering process to separate the modified first data and the second data into a plurality of clusters;identifying a third subset of the modified first data or the second data that fall outside of a first cluster in the plurality of clusters by at least a threshold value; andgenerating an alert for each of the items in the third subset of the modified first data or the second data.
  • 17. The computer-implemented method of claim 16, further comprising: retrieving historical data, wherein running the first rule on the historical data causes the one or more computer systems to determine that the behavior is risky;merging the modified first data and the historical data;running the first rule on the merged modified first data and historical data;determining whether the behavior is risky; anddetermining that the modified first data is valid in response to a determination that the behavior is risky.
  • 18. A non-transitory computer-readable medium comprising one or more program instructions recorded thereon, the instructions configured for execution by a computing system comprising one or more processors in order to cause the computing system to: select a first rule from a plurality of rules, wherein the first rule is associated with a behavior associated with one or more accounts;retrieve a first data set and a second data set, wherein the first data set comprises a first data section, a second data section, and first data, wherein the first data comprises a first subset of data and a second subset of data, and wherein the second data set comprises the first data section, a third data section, and second data;determine that the first rule does not use the second subset of data to determine whether the behavior is risky;remove the second subset of data from the first data to form modified first data in response to the determination that the first rule does not use the second subset of data to determine whether the behavior is risky;identify that the first data section is included in the first data set and the second data set;generate a third data set that comprises the first data section, the second data section, the third data section, the modified first data, and the second data;run the first rule on the third data set to determine whether the behavior is risky;generate an alert in response to a determination that the behavior is risky; andtransmit the alert for display in an interactive user interface.
  • 19. The non-transitory computer-readable medium of claim 18, wherein the instructions are further configured to cause the computing system to: use a clustering process to separate the modified first data and the second data into a plurality of clusters;identify a third subset of the modified first data or the second data that fall outside of a first cluster in the plurality of clusters by at least a threshold value; andgenerate an alert for each of the items in the third subset of the modified first data or the second data.
  • 20. The non-transitory computer-readable medium of claim 18, wherein the instructions are further configured to cause the computing system to: retrieve historical data, wherein running the first rule on the historical data causes the one or more computer systems to determine that the behavior is risky;merge the modified first data and the historical data;run the first rule on the merged modified first data and historical data;determine whether the behavior is risky; anddetermine that the modified first data is valid in response to a determination that the behavior is risky.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/336,078, entitled “MALICIOUS ACTIVITY DETECTION SYSTEM CAPABLE OF EFFICIENTLY PROCESSING DATA ACCESSED FROM DATABASES AND GENERATING ALERTS FOR DISPLAY IN INTERACTIVE USER INTERFACES” and filed on Oct. 27, 2016, which is a continuation of U.S. patent application Ser. No. 15/017,324, entitled “MALICIOUS ACTIVITY DETECTION SYSTEM CAPABLE OF EFFICIENTLY PROCESSING DATA ACCESSED FROM DATABASES AND GENERATING ALERTS FOR DISPLAY IN INTERACTIVE USER INTERFACES” and filed on Feb. 5, 2016, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/211,520, entitled “FRAUD DETECTION SYSTEM CAPABLE OF EFFICIENTLY PROCESSING DATA ACCESSED FROM DATABASES AND GENERATING ALERTS FOR DISPLAY IN INTERACTIVE USER INTERFACES” and filed on Aug. 28, 2015, each of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (646)
Number Name Date Kind
5109399 Thompson Apr 1992 A
5329108 Lamoure Jul 1994 A
5670987 Doi et al. Sep 1997 A
5781704 Rossmo Jul 1998 A
5798769 Chiu et al. Aug 1998 A
5819226 Gopinathan et al. Oct 1998 A
5845300 Comer Dec 1998 A
5892900 Ginter et al. Apr 1999 A
6057757 Arrowsmith et al. May 2000 A
6091956 Hollenberg Jul 2000 A
6094643 Anderson et al. Jul 2000 A
6161098 Wallman Dec 2000 A
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6247019 Davies Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6341310 Leshem et al. Jan 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6430305 Decker Aug 2002 B1
6456997 Shukla Sep 2002 B1
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6567936 Yang et al. May 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6594672 Lampson et al. Jul 2003 B1
6631496 Li et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6714936 Nevin, III Mar 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6820135 Dingman Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6877137 Rivette et al. Apr 2005 B1
6976210 Silva et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7036085 Barros Apr 2006 B2
7043702 Chi et al. May 2006 B2
7055110 Kupka et al. May 2006 B2
7139800 Bellotti et al. Nov 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witowski et al. Jan 2007 B2
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7333998 Heckerman et al. Feb 2008 B2
7370047 Gorman May 2008 B2
7373669 Eisen May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Caballero et al. May 2008 B2
7426654 Adams et al. Sep 2008 B2
7451397 Weber et al. Nov 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7502786 Liu et al. Mar 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529727 Arning et al. May 2009 B2
7558677 Jones Jul 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7596285 Brown et al. Sep 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7703021 Flam Apr 2010 B1
7712049 Williams et al. May 2010 B2
7716077 Mikurak May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7770100 Chamberlain et al. Aug 2010 B2
7783658 Bayliss Aug 2010 B1
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7814102 Miller et al. Oct 2010 B2
7818658 Chen Oct 2010 B2
7870493 Pall et al. Jan 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7984374 Caro et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8046283 Burns Oct 2011 B2
8046362 Bayliss Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8103543 Zwicky Jan 2012 B1
8134457 Velipasalar et al. Mar 2012 B2
8135679 Bayliss Mar 2012 B2
8135719 Bayliss Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8185819 Sah et al. May 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214490 Vos et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8266168 Bayliss Sep 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290838 Thakur et al. Oct 2012 B1
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8321943 Walters et al. Nov 2012 B1
8347398 Weber Jan 2013 B1
8352881 Champion et al. Jan 2013 B2
8368695 Howell et al. Feb 2013 B2
8397171 Klassen et al. Mar 2013 B2
8412707 Mianji Apr 2013 B1
8447674 Choudhuri et al. May 2013 B2
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8484168 Bayliss Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8495077 Bayliss Jul 2013 B2
8498969 Bayliss Jul 2013 B2
8498984 Hwang et al. Jul 2013 B1
8514082 Cova et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639757 Zang et al. Jan 2014 B1
8646080 Williamson et al. Feb 2014 B2
8666861 Li et al. Mar 2014 B2
8676857 Adams et al. Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8739278 Varghese May 2014 B2
8742934 Sarpy et al. Jun 2014 B1
8744890 Bernier Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8781169 Jackson et al. Jul 2014 B2
8787939 Papakipos et al. Jul 2014 B2
8788407 Singh et al. Jul 2014 B1
8798354 Bunzel et al. Aug 2014 B1
8799799 Cervelli et al. Aug 2014 B1
8812960 Sun et al. Aug 2014 B1
8818892 Sprague et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8868537 Colgrove et al. Oct 2014 B1
8917274 Ma et al. Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8924872 Bogomolov et al. Dec 2014 B1
8937619 Sharma et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9032531 Scorvo et al. May 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9100428 Visbal Aug 2015 B1
9129219 Robertson et al. Sep 2015 B1
9552615 Mathura et al. Jan 2017 B2
9898509 Saperstein et al. Feb 2018 B2
20010027424 Torigoe Oct 2001 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020091707 Keller Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030033228 Bosworth-Davies et al. Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030126102 Borthwick Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040032432 Baynger Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040111480 Yue Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040163039 Gorman Aug 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040205524 Richter et al. Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040236688 Bozeman Nov 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050108063 Madill et al. May 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050133588 Williams Jun 2005 A1
20050149455 Bruesewitz et al. Jul 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050222928 Steier et al. Oct 2005 A1
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060059139 Robinson Mar 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060129746 Porter Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060203337 White Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader et al. Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070061259 Zoldi et al. Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070150369 Zivin Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070156673 Maga Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070185867 Maga Aug 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070239606 Eisen Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294200 Au Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20080040684 Crump Feb 2008 A1
20080046481 Gould et al. Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080069081 Chand et al. Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082374 Kennis et al. Apr 2008 A1
20080103798 Domenikos et al. May 2008 A1
20080103996 Forman et al. May 2008 A1
20080104019 Nath May 2008 A1
20080126951 Sood et al. May 2008 A1
20080133567 Ames et al. Jun 2008 A1
20080140576 Lewis et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080222038 Eden et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080243711 Aymeloglu et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080288425 Posse et al. Nov 2008 A1
20080301042 Patzer Dec 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20090018940 Wang et al. Jan 2009 A1
20090018996 Hunt et al. Jan 2009 A1
20090024505 Patel et al. Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090082997 Tokman et al. Mar 2009 A1
20090083184 Eisen Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090094166 Aymeloglu et al. Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic May 2009 A1
20090125369 Kloosstra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090192957 Subramanian et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090228365 Tomchek et al. Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090287628 Indeck et al. Nov 2009 A1
20090292626 Oxford Nov 2009 A1
20090300589 Watters et al. Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20100011282 Dollard et al. Jan 2010 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100077483 Stolfo et al. Mar 2010 A1
20100094765 Nandy Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100106611 Paulsen et al. Apr 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100125546 Barrett et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100131502 Fordham May 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100169192 Zoldi et al. Jul 2010 A1
20100169237 Howard et al. Jul 2010 A1
20100185691 Irmak et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100228812 Uomini Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306029 Jolley Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004626 Naeymi-Rad et al. Jan 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110055074 Chen et al. Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110087519 Fordyce, III et al. Apr 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110099628 Lanxner et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110167493 Song et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110178842 Rane et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110218955 Tang Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225586 Bentley et al. Sep 2011 A1
20110231223 Winters Sep 2011 A1
20110231305 Winters Sep 2011 A1
20110238510 Rowen et al. Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110238570 Li et al. Sep 2011 A1
20110251951 Kolkowitz Oct 2011 A1
20110258158 Resende et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084135 Nissan et al. Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120084866 Stolfo Apr 2012 A1
20120106801 Jackson May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120158585 Ganti Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120215898 Shah et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120278249 Duggal et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120310831 Harris et al. Dec 2012 A1
20120310838 Harris et al. Dec 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130024307 Fuerstenberg et al. Jan 2013 A1
20130024339 Choudhuri et al. Jan 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130054306 Bhalla Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130086482 Parsons Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130160120 Malaviya et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185245 Anderson Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130211985 Clark et al. Aug 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130232045 Tai et al. Sep 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130238664 Hsu et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130262328 Federgreen Oct 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130318594 Hoy et al. Nov 2013 A1
20130325826 Agarwal et al. Dec 2013 A1
20130339218 Subramanian et al. Dec 2013 A1
20140006109 Callioni et al. Jan 2014 A1
20140012724 O'Leary et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140059038 McPherson et al. Feb 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095363 Caldwell Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149272 Hirani et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156484 Chan et al. Jun 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222752 Isman Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140267294 Ma Sep 2014 A1
20140267295 Sharma Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140310282 Sprague et al. Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140358789 Boding et al. Dec 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150019394 Unser et al. Jan 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150134512 Mueller May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150161611 Duke et al. Jun 2015 A1
20150178825 Huerta Jun 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004764 Chakerian et al. Jan 2016 A1
20160048937 Mathura et al. Feb 2016 A1
20170147654 Saperstein et al. May 2017 A1
20170221063 Mathura et al. Aug 2017 A1
Foreign Referenced Citations (46)
Number Date Country
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014103482 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014215621 Feb 2015 DE
1191463 Mar 2002 EP
1672527 Jun 2006 EP
2487610 Aug 2012 EP
2551799 Jan 2013 EP
2555153 Feb 2013 EP
2778977 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2889814 Jul 2015 EP
2891992 Jul 2015 EP
2892197 Jul 2015 EP
2911078 Aug 2015 EP
2963595 Jan 2016 EP
2985729 Feb 2016 EP
3142057 Mar 2017 EP
2516155 Jan 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013306 Feb 2015 NL
624557 Dec 2014 NZ
WO 2000009529 Feb 2000 WO
WO 2005104736 Nov 2005 WO
WO 2005116851 Dec 2005 WO
WO 2008011728 Jan 2008 WO
WO 2009061501 May 2009 WO
WO 2010000014 Jan 2010 WO
WO 2010030913 Mar 2010 WO
WO 2013010157 Jan 2013 WO
WO 2013102892 Jul 2013 WO
WO 2013126281 Aug 2013 WO
Non-Patent Literature Citations (262)
Entry
US 8,712,906 B1, 04/2014, Sprague et al. (withdrawn)
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2.
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Alfred, Rayner “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science, 2010, vol. 6, No. 7, pp. 775-784.
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
Appacts, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages.
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
Distimo—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-mode1/123411.
“The Fasta Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages.
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages.
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page.
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf.
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002.
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security (HST) 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/.
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages.
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64.
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14.
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages.
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16.
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets,” Oct. 24, 2013 in 6 pages, <http://www.blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets>.
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages.
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001.
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages.
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages.
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18.
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages.
“Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Wiggerts, T.A., “Using Clustering Algorithms in Legacy Systems Remodularization,” Reverse Engineering, Proceedings of the Fourth Working Conference, Netherlands, Oct. 6-8, 1997, IEEE Computer Soc., pp. 33-43.
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated_database_system&oldid=571954221.
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748.
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001.
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014.
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014.
Notice of Allowance for U.S. Appl. No. 14/139,713 dated Jun. 12, 2015.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/264,445 dated May 14, 2015.
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014.
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015.
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015.
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015.
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016.
Notice of Allowance for U.S. Appl. No. 14/923,364 dated May 6, 2016.
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14159535.5 dated May 22, 2014.
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015.
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015.
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015.
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015.
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015.
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015.
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015.
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015.
Official Communication for European Patent Application No. 15180515.7 dated Jun. 1, 2017.
Official Communication for European Patent Application No. 15180515.7 dated Dec. 14, 2015.
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015.
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015.
Official Communication for European Patent Application No. 16185668.7 dated Feb. 9, 2017.
Official Communication for Great Britain Patent Application No. 1404457.2 dated Aug. 14, 2014.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015.
Official Communication for Netherlands Patent Application No. 2012417 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012421 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015.
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014.
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014.
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014.
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016.
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015.
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/251,485 dated Oct. 1, 2015.
Official Communication for U.S. Appl. No. 14/251,485 dated May 16, 2017.
Official Communication for U.S. Appl. No. 14/251,485 dated Nov. 7, 2016.
Official Communication for U.S. Appl. No. 14/264,445 dated Apr. 17, 2015.
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014.
Official Communication for U.S. Appl. No. 14/278,963 dated Jan. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014.
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015.
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015.
Official Communication for U.S. Appl. No. 14/516,386 dated Feb. 24, 2016.
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Apr. 5, 2016.
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015.
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015.
Official Communication for U.S. Appl. No. 14/923,374 dated May 23, 2016.
Official Communication for U.S. Appl. No. 14/923,374 dated Feb. 9, 2016.
Official Communication for U.S. Appl. No. 15/017,324 dated Apr. 22, 2016.
Notice of Allowance for U.S. Appl. No. 15/336,078 dated Oct. 18, 2017.
Related Publications (1)
Number Date Country
20180173769 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62211520 Aug 2015 US
Continuations (2)
Number Date Country
Parent 15336078 Oct 2016 US
Child 15866099 US
Parent 15017324 Feb 2016 US
Child 15336078 US