Malicious message analysis system

Information

  • Patent Grant
  • 10050998
  • Patent Number
    10,050,998
  • Date Filed
    Wednesday, December 30, 2015
    9 years ago
  • Date Issued
    Tuesday, August 14, 2018
    6 years ago
Abstract
A computerized technique is provided to analyze a message for malware by determining context information from attributes of the message. The attributes are determined by performing one or more of a static analysis of meta information of the message (e.g., delivery protocol attributes) to generate a first result; a dynamic analysis of an object contained in the message to generate a second result; and, in some embodiments, an emulation of the object to generate a third result. The first result, second result, and third result are correlated in accordance with one or more correlation rules to generate a threat index for the message. The threat index is compared with a predetermined threshold to determine whether the message should be classified as malware and, if so, an alert is generated.
Description
FIELD

Embodiments of the disclosure relate to the field of cyber-security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method configured to determine whether a message is associated with a malicious attack.


GENERAL BACKGROUND

Over the last decade, malicious software has become a pervasive problem for Internet users as many networked resources include vulnerabilities that are subject to attack. For instance, over the past few years, an increasing number of vulnerabilities are being discovered in software that is loaded onto network devices. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by malware, namely information such as computer code that attempts during execution to take advantage of a vulnerability in computer software by acquiring sensitive information or adversely influencing or attacking normal operations of the network device or the entire enterprise network.


Moreover, with the proliferation of the Internet and the reliance on electronic mail (email) as a means of communication, malware is capable of spreading more quickly and effecting a larger subset of the population than ever before. This is especially true because individual users and businesses can receive hundreds or even thousands of emails every day.


Conventional malware detection systems have been developed in an attempt to identify an email as malicious by (i) scanning content of the header and body of the email and (ii) comparing the scanned content with predetermined data patterns. These predetermined data patterns represent data that has previously been identified as being associated with malicious or suspicious activity. Hence, in response to detection of such data within the scanned content of the email, the conventional malware detection systems may block delivery of the email to the targeted recipient. No further analysis of the particular characteristics of the email message is considered as factors (and/or being used to derive the contextual information) in determining whether the email is associated with a malicious attack.


In fact, while some conventional antivirus programs may be configured to scan emails for malware, the methods currently in use may produce “false negative” results because an email may contain a malicious object that is part of a greater, multi-stage attack, but the object may not itself exhibit maliciousness during the scanning process. Consequently, the malicious object may be allowed to pass through to the end user. Also, updating of the scanning patterns is quite labor intensive, especially as more and more scan patterns are needed based on future detections of new types of malicious emails by the conventional malware detection system and perhaps other systems communicatively coupled to the conventional malware detection system. Using a scanning pattern is a reactive solution since these deterministic patterns are issued after analyzing the attack.


Accordingly, a need exists for an improved malicious message detection system, especially to detect potentially malicious suspicious email messages in a proactive manner.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A is an exemplary block diagram of a communication system deploying a Malicious Message Analysis (MMA) system via a network.



FIG. 1B is an alternative, exemplary block diagram of the MMA system of FIG. 1A.



FIG. 2 is an exemplary embodiment of a logical representation of the MMA system of FIG. 1A.



FIG. 3 is a flowchart of an exemplary method for analyzing context information based on a delivery protocol attributes.



FIG. 4 is a flowchart of an exemplary method for analyzing whether an email message is associated with a malicious attack considering delivery protocol attributes.



FIG. 5 is a flowchart of an exemplary method for updating a threat intelligence network based on a generated network-based blocking signature.



FIG. 6 is an exemplary embodiment of a mobile network device configured for performing the contextual analyses utilizing delivery protocol attributes.





DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to a Malicious Message Analysis (MMA) system configured to detect whether a message is associated with a malicious attack, and especially electronic mail (email) messages provided in accordance with any suitable delivery protocol (e.g., Simple Mail Transfer Protocol “SMTP”, Internet Message Access Protocol “IMAP”, etc.). Such detection may involve an analysis of content recovered from the header and/or body portions of the message, where the analysis is configured to detect one or more suspicious characteristics associated with the message. The suspicious characteristics (sometimes referred to as “delivery protocol attributes”) are provided to correlation logic, which considers the delivery protocol attributes in determining a likelihood (threat index) of the message being associated with a malicious attack (e.g., including malware, operating with malware, etc.).


According to one embodiment of the disclosure, the “message” analysis may be conducted by accessing meta information in the “FROM” header field to determine a source of the message. By way of a non-limiting example, in the event that the source is associated with a domain name, the MMA system may conduct an analysis of the domain name against known malicious domain names (hereinafter, “domain blacklist”) and, optionally, known benign domain names (“domain whitelist”). In the event that the domain name is not part of the domain blacklist (or the domain whitelist), the MMA system may initiate an attempt to communicate with a server associated with the domain name to confirm legitimacy of the sender (i.e. the sender of the message is accurately identified in the message). This communication may involve SMTP handshaking session to determine if the sender is found as being a member of the domain. The lack of sender verification may be represented as a delivery protocol attribute that is provided to the correlation logic and may operate as a strong indicator with respect to maliciousness of the message.


Hence, in some instances, the delivery protocol attributes may be outcome determinative. However, in other instances where the delivery protocol attributes are not outcome determinative. When an object, such as an attachment (e.g., file, document, etc.) or embedded content (e.g., URL, script, macro, etc.) is included with the message, a contextual analysis may be conducted on the delivery protocol attributes, along with attributes produced by one or more analyses on the object, in order to detect whether the message is malicious. The different types of analyses conducted on the object may include (i) behavioral analysis that is conducted by analyzing the behavior of a virtual machine during execution of the object, (ii) a static analysis in which the content of the object is analyzed without opening or execution of the object, and/or (iii) emulated processing of the object. Based on the combination of attributes and the correlation rules that denote malicious tendencies, the MMA system determines whether the message should be classified as malicious (i.e. the message is associated with a malicious attack).


With respect to the contextual analysis, it is contemplated that the attributes (results) from one type of analysis may be considered with attributes (results) from another type of analysis. More specifically, according to one embodiment of the disclosure, delivery protocol attributes may be combined with attributes produced by any one or more of the behavioral, static or emulation analyses to determine whether the message is associated with a malicious attack. It is contemplated that some of the attributes, namely (i) certain anomalous meta information pertaining to the email message itself, (ii) detected characteristics of the object (e.g., static analysis), and/or (iii) one or more monitored behaviors during a behavioral analysis of the object (e.g., the dynamic analysis), may be aggregated to form the context information. At least a portion of the context information is analyzed to determine whether the message is associated with a malicious attack.


Once maliciousness has been confirmed with regard to the message, an alert is generated. The alert (e.g., a type of messaging including text message or email message, a transmitted displayable image, or other types of information transmitted over a wired or wireless communication path) may provide a warning to a security administrator that an incoming message is malicious. In one embodiment, if maliciousness is found, the entire message may be blocked. Alternatively, if maliciousness is only found with respect to one aspect of a message, then that aspect may be blocked so that only non-malicious aspects of the message are passed through to an end user.


I. Terminology

In the following description, certain terminology is used to describe features of the invention.


In certain situations, both terms “logic,” “engine” and “component” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or logic system or engine or component) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or logic system or engine or component) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


The term “message” generally refers to information transmitted as information in a prescribed format and in accordance with a suitable delivery protocol (STMP, IMAP, POP, etc.), where each message may be in the form of one or more packets, frames, Session Initiation Protocol (SIP) or another messaging transmission, TCP, UDP, or IP-based transmissions, or any other series of bits having the prescribed format. Messages may include, by way of non-limiting example, email messages, text messages, and the like.


According to one embodiment, the term “malware” may be construed broadly as any code or activity that initiates a malicious attack and/or operations associated with anomalous or unwanted behavior. For instance, malware may correspond to a type of malicious computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. In the alternative, malware may correspond to an exploit, namely information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability in software and/or an action by a person gaining unauthorized access to one or more areas of a network device to cause the network device to experience undesirable or anomalous behaviors. The undesirable or anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner (a file is opened by a first process where the file is configured to be opened by a second process and not the first process); (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. Additionally, malware may be code that initiates unwanted behavior which may be, as one example, uploading a contact list from an endpoint device to cloud storage without receiving permission from the user.


In certain instances, the term “detected” is used herein to represent that there is a prescribed level of confidence (or probability) on the object or message being malicious as including malware and/or being associated with a malicious attack. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular pattern.


The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, standalone appliance, a router or other intermediary communication device, etc.


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. Malicious Message Analysis Methodology

A. General Architecture of a Network Device Deploying a Malicious Message Analysis System


Referring to FIG. 1A, an exemplary block diagram of a communication system 102 that features a Malicious Message Analysis (MMA) system 100 that is communicatively coupled to a network 110 via an optional firewall 115 and/or an optional network interface 120. Communications between a (mail) server device 105 and a client device 125 may be analyzed by the MMA system 100. The MMA system 100 is communicatively coupled to a threat intelligence network 130 to receive an updated correlation rule sets 132.


According to the embodiment illustrated in FIG. 1A, the MMA system 100 may be configured as a network device that is adapted to analyze messages that are part of network traffic, in particular electronic mail (email) messages, routed over the network 110 between the mail server device 105 and at least one client device 125. The communication network 110 may include a public network such as the Internet, in which case an optional firewall 115 (represented by dashed lines) may be interposed on the communication path between the public network and the client device 125. Alternatively, the network 110 may be a private network such as a wireless data telecommunication network, a wide area network, any type of local area network (e.g., LAN, WLAN, etc.), or a combination of networks.


As shown, the MMA system 100 may be communicatively coupled with the communication network 110 via the network interface 120. In general, the network interface 120 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 125 and provide at least some of this data to the MMA system 100. Alternatively, the MMA system 100 may be positioned in-line with client device 125. For this embodiment, network interface 120 may be contained within the MMA system 100 operating as a communication interface 135.


According to one embodiment of the disclosure, the network interface 120 is capable of receiving and routing network traffic to the MMA system 100. The network interface 120 may provide the entire traffic or a certain subset of the network traffic, for example, such as an email message along with an object such as an attachment or embedded content.


As further shown in FIG. 1A, the MMA system 100 includes a communication interface 135, an extraction engine 150, a static analysis engine 180, a dynamic analysis engine 210, an emulation engine 230, a classification engine 240, and a reporting engine 260. It should be appreciated that the extraction engine 150, the static analysis engine 180, the dynamic analysis engine 210, the emulation engine 230, the classification engine 240, and the reporting engine 260 may each be separate and distinct components, although these engine (and any logic thereof) may also be implemented as a single software module or functionality residing on data processing circuitry such as a processor or a processor core.


In the interest of clarity, reference will now be made to an exemplary message 140, which in one embodiment may refer to an email message. However, it should be understood that the message 140 may come in various forms and types as defined above.


In general, the email message 140 includes meta information 142 and optionally, one or more objects 144 (referred to as “object”). As discussed herein, the meta information 142 includes content associated with any of a plurality of header fields as well as the body of the email message 140. Examples of the meta information 142 within the header fields may include, but are not limited or restricted to the following: (a) the “delivery-date”—the date the email message was delivered; (b) the “date”—the date the email message was sent; (c) the “message-ID”—the ID of the email; (d) the “X-Mailer”—information identifying the original messaging application and version; (e) the “from” field—message's source information/address; (f) the “to” field—message's destination information/address; and/or (g) the “subject”—the title and ancillary source information that may be used for alias mismatching. Similarly, the object 144 may include a file (e.g., Hypertext Markup Language “HTML” file, etc.), document, executable program macro, embedded script, or Uniform Resource Locator (URL) as defined herein.


Once the email message 140 is captured from the network traffic, it is communicated to the extraction logic 150 of the MMA system 100 via the communication interface 135 (e.g., one or more ports, network interface card, wireless transceiver, etc.). In some embodiments, as shown in FIG. 1A, the extraction logic 150 receives the email message 140 for parsing, prior to being routed to one or more analysis systems, such as static analysis engine 180, the dynamic analysis engine 210, and/or emulation engine 230 for example.


More specifically, the extraction logic 150 including parsing logic 155 that is configured to extract the meta information 142 and object 144 from the email message 140. Thereafter, the meta information 142 of the email message 140 may be communicated to routing logic 160 and forwarded to the static analysis engine 180. The object 144 may be communicated to routing logic 160 and forwarded to the static analysis engine 180, dynamic analysis engine 210, and/or the emulation engine 230. A data store 170 may also be used to provide local storage for extraction analysis and rules, as well as operate as a local log.


As shown in FIG. 1A, in general terms, the static analysis engine 180 inspects the meta information 142 and object 144 for anomalies in characteristics such as formatting and patterns associated with known malware using, for example, heuristic, probabilistic, and/or machine-learning analysis schemes. Herein, the static analysis engine 180 includes a meta analyzer 182 and object analyzer 190.


According to one embodiment of the disclosure, the meta analyzer 182 within the static analysis engine 180 may be configured to conduct one or more analyses on particular meta information 142 of the email message 140 (sometimes referred to as “message scanning”). As shown, the meta analyzer 182 features at least (network) header analysis logic 184 and format analysis logic 188. The header analysis logic 184 is configured to determine the legitimacy of the source of the message 140, legitimacy of the mail server (i.e. the sender of the message is accurately identified in the message 140 so as to not deceive the recipient as to origin). This validation by the network header analysis logic may be performed by making an outbound network communication. The format analysis logic 188 is configured to determine format violations in header fields based on corresponding message format specifications, and also has probabilistic, heuristic algorithm to determine the deviation of the header field from the normal headers delivering non-malicious attachments or URL. The Format analysis logic does not make any outbound network communication.


As an illustrative example, the header analysis logic 182 may access meta information associated with the “FROM” header field of the email message 140, to determine its source. When the source is associated with a domain name (e.g., top-level domain and lower-level domain-abc.com), which may be represented as an email address (i.e. name@abc.com, name@abc.net, etc.) for example, the header analysis logic 184 may conduct a preliminary analysis of an identifier of the source against known malicious source identifiers. For instance, the preliminary analysis may include a comparison of the domain name associated with the source of the message 140 (e.g., a combination of the top-level and lower-level domains) against known malicious domain names (hereinafter, “domain blacklist”). Alternatively, the preliminary analysis may include a comparison between the email address identified in the email message 140 as the source against known malicious email addresses (hereinafter, “email blacklist”). As an option, the header analysis logic 184 may conduct a comparison of the domain name against known benign domain names (“domain whitelist”) or the email address against known benign email addresses (“email whitelist”). These source identifiers may be maintained in a data store as shown in FIG. 1B.


In the event that the domain name (or email address) is not part of the domain blacklist (or email blacklist) as well as the domain whitelist (or email whitelist) when utilized, the header analysis logic 184 may attempt to establish communications 186 with the mail server 105 associated with the source of the message 140 to confirm that the sender of the message 140 is correctly identified. The message exchange for such communications 186 may vary, depending on the delivery protocol for the message 140 (e.g., SMTP, IMAP, POP3, etc.).


As a non-limiting, illustrative example, in accordance with SMTP handshaking communication session, where the mail server 105 is a SMTP mail server, a DNS request message with the domain name at issue as a parameter is transmitted. This prompts a return of a DNS response message that will resolve the IP address of the mail server 105 responsible for message transmissions from the domain. Thereafter, the header analysis logic 184 may issue a command (e.g., HELO command) to the mail server 105 to initiate an SMTP session that is acknowledged by the mail server 105 (e.g., SMTP response code 250 that identifies the command has completed successfully).


A SMTP command (Mail From) message identifies to the mail server 105 that a new mail transition is starting, where a response code 250 is provided to identify that the address provided by the header analysis logic is accepted. Thereafter, a SMTP command (RCPT To) message is sent that identifies an email address of the intended recipient, which is selected as the source of message 140. If the recipient is not found to be a member of the domain, which denotes a bounce-back condition, the header analysis logic 184 receives a SMTP response code 550. The detection of this response code signifies that the source is not legitimate and a delivery protocol attribute is generated to denote that the message 140 was issued by a non-verified source and provided to the classification engine. An exemplary command-response flow of a SMTP handshaking communication session, which results in a “Recipient not found” attribute, is shown below:

    • 220 smtp01-01.secureserver.net bizsmtp ESMTP server ready
    • HELO [#.#.#.#]
    • 250 smtp01-01.secureserver.net hello [#.#.#.#], pleased to meet you
    • MAIL FROM: <address>
    • 250 2.1.0<address> sender ok
    • RCPT TO:<name@abc.com>
    • 550 5.1.1<name@abc.com>Recipient not found. <http://x.co/irbounce>
    • QUIT
    • 221 2.0.0 smtp01-01.secureserver.net bizsmtp closing connection


Additionally, the meta analyzer 182 comprises format analysis logic 188 that compares formatting of the header fields in the message 140 to header field requirements in accordance with message formatting requirements for the delivery protocol. For instance, the absence of a “FROM” header field may be a format violation in accordance with the SMTP delivery protocol messaging specification. As another example, the absence of a “CC” field may be a format violation in accordance with IMAP delivery protocol messaging specification. The format violations (as well as the compliance) may be provided as delivery protocol attributes to the classification engine 240. The format analysis logic 188 also has probabilistic, heuristic, machine learning logic (not separately depicted) to determine if the header fields are deviated from the normal messages. For instance, there is no email address in the “TO” field, “CC” field and there is an address in the “BCC” field. This characteristic is a deviation from the normal characteristics. Another instance can use-based logic (again, not separately depicted), which determines if the email server is different from the alias, which the sender's email may feature in the “FROM” field of the message.


According to one embodiment of the disclosure, the attributes from the analysis of the meta information 142, such as the legitimacy of the source of the message 140 based on content associated with the “FROM” header field and/or formatting violations, output of the probabilistic, heuristic, machine learning logic detected for the message 140 in accordance with its delivery protocol for example, may be provided as delivery protocol attributes 205 to the classification engine 240. Of course, other anomalous characteristics detected during analysis of the meta information 142 may be provided as part of the delivery attributes 205.


Referring still to FIG. 1A, the object analyzer 190 of the static analysis engine 180 may also be configured to analyze the object 144, where such analyses may include, but are not limited or restricted to, analysis of one or more characteristics (hereinafter “characteristic(s)”) associated with the object 144, such as the object's name, object type, size, path, or the like. Additionally or in the alternative, the object analyzer 190 may analyze the object 144 by performing one or more checks. An example of one of these checks may include one or more signature checks, which may involve a comparison of (i) content of the object 144 and (ii) one or more pre-stored signatures associated with previously detected malware. In one embodiment, the check may include an analysis to detect for exploitation techniques, such as any malicious obfuscation, using for example, probabilistic, heuristic, and/or machine-learning logic. According to this embodiment of the disclosure, the extracted characteristic(s) may also be provided as static analysis (SA)-based attributes 206 to the classification engine 240 for subsequent contextual analysis.


It is envisioned that information associated with the object 144 may be further analyzed using the dynamic analysis engine 210. Herein, the dynamic analysis engine 210 includes a virtual machine manager 215, monitoring logic 218, a data store 220, and one or more virtual machines (VMs) illustrated at 2251-225N (N>1). The VMs 2251-225N are configured to perform in-depth dynamic (behavioral) analysis on the object 144 during processing in efforts to detect one or more anomalous behaviors. In general terms, the dynamic analysis engine 210 is adapted to process the object 144 within one or more VMs (e.g., VM1-VMN) that simulate a run-time environment expected by the object 144, where the behaviors of the VMs are monitored by the monitoring logic 218 and may be stored within the data store 220.


In one embodiment, each of the one or more VMs 2251-225N within the dynamic analysis engine 210 may be configured with a software profile corresponding to a software image stored within the data store 220 that is communicatively coupled with the virtual machine manager 215. Alternatively, the VMs (e.g., VM1-VMN) may be configured according to a prevalent software configuration, software configuration used by a network device within a particular enterprise network (e.g., client device 125), or an environment that is associated with the object to be processed, including software such as a web browser application, PDF™ reader application, data processing application, or the like.


According to one embodiment, it is contemplated that the extraction logic 150 may further include processing circuitry (not shown) that is responsible for extracting or generating metadata contained within or otherwise associated with email message 140 from the parsing logic 155. This metadata may be subsequently used by the virtual machine manager 215 for initial configuration of one or more VMs 2251-225N within the dynamic analysis engine 210, which conducts run-time processing of at least some of the object 144 information associated with the email message 140.


As further shown in FIG. 1A, the object 144 may be further analyzed using the emulation engine 230, which is configured so as to enable the MMA system 100 (“host” system) to behave like any another computer system (“guest” system). It is envisioned that the emulation engine 230 may be configured so as to enable the host system to run any of various software, applications, versions and the like, designed for the guest system. More specifically, under control of request processing logic 235, the emulation engine 230 may be configured so as to model hardware and software. As such, the emulation engine 230 may be divided into logic each corresponding roughly to the emulated computer's various systems, and as a result, the emulation engine 230 includes subsystems 232. In one embodiment, the subsystems 232 include any of various processor emulator/simulators, a memory subsystem module, and/or various I/O devices emulators.


Furthermore, using the emulation engine 230, certain artifacts that may be specific to (even unique with respect to) a type of known malware attack may be analyzed. For example, emulation engine 230 may also consider propagation mechanisms of an object 144, to determine how instructions and/or behaviors associated with the object 144 communicate or navigate across and/or through a network, for example. According to this embodiment of the disclosure, the results of the emulation engine 230 may be provided as emulation analysis (EA)-based attributes 212 to the classification logic 240 for subsequent analysis.


It should be understood that some or all of the logic and engines set forth in FIG. 1A may be implemented as hardware or one or more software modules executed by the same processor or different processors. These different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network. Also, some or all of the logic and engines set forth in FIG. 1A may be implemented as part of cloud services.


Referring now to FIG. 1B, an alternative embodiment of the MMA system 100 of FIG. 1A is shown. Once the email message 140 is captured from the network traffic, it may be communicated to a spam filter 151, which may be configured to be substantially similar to the extraction logic 150 as shown in FIG. 1A. In some embodiments, as shown in FIG. 1B, the spam filter 151 includes filtering logic 156, which is configured to specify a plurality of conditions consistent with malware, and to take appropriate actions thereto, which may involve, for example, further matching, blocking, and/or selective filtering. In one embodiment, after the email message 140 is analyzed by the spam filter 151, an analysis is performed using the static analysis engine 180.


In one embodiment, the static analysis engine 180 in FIG. 1B is substantially similar to the system of FIG. 1A, which illustrates a data store 192 to maintain, for example, a list of identifiers identifying a set of known malicious sources such as domains or email addresses that have invokes previously detected malicious attacks (e.g., black list) and a set of known sources that are considered reliable sources (e.g., white list). The list of identifiers may be used by header analysis logic 184 to determine the legitimacy of the sender of the message 140.


Herein, the list of identifiers may be collected based on prior malware detection and periodically updated from a centralized server, or the threat intelligence network 130, for example. If the email message 140 is identified as one of the matched identifiers in the list, the email message 140 may be classified immediately using the classification engine 240, as either malware or non-malware, without having to perform a further analysis. It is contemplated that the data store 192 may further include message formatting requirements, heuristic probabilistic, machine learning logic (e.g., computer instructions) for one or more delivery protocols (e.g., SMTP, IMAP, POP3, etc.) for use by format analysis logic 188 to determine delivery protocol attributes 205 associated with formatting anomalies and/or determine the deviation of the headers from the normal header.


In one embodiment, based on the attributes 205, 206, 208 and/or 212, certain signatures such as blocking signatures may be generated and stored using the signature generation logic 266. In the event that further analysis is required, data associated with the email message 140 may be analyzed by the dynamic analysis engine 210, and/or the emulation engine 230, as discussed herein.


Referring to FIGS. 1A-1B, it is important to note that the various analyses as discussed herein may be performed in a concurrent (i.e., at same time or in an overlapping manner) or serial fashion, without limitation. As such, the various analyses do not each need to be complete prior to being analyzed by any other subsystem. For example, the dynamic analysis may be performed prior to, or during the static analysis. Thus, it is envisioned that the context information, namely delivery protocol attributes from the message analysis (header and/or body of email message 140) along with attributes associated with the static analysis (of object 144), dynamic analysis (of object 144), and/or emulation (of object 144), may be analyzed.


For example, once an email message 140 is received by the MMA system 100, the meta information 142 associated with the message 140 may be analyzed by the meta analyzer 182 with the static analysis engine 180. In response to detecting anomalous characteristics associated with the message 140 (e.g. sender incorrectly identified in the message 140, formatting irregularities, etc.), the meta analyzer 180 provides delivery protocol attributes 205 to the correlation logic 242 of the classification engine 240. The delivery protocol attribute 205 may be considered in the classification of the message 140 as malicious or non-malicious when the expanded correlation rule set 132 includes rules that take the presence or absence of certain delivery protocol attributes 205 into account. As such, an alert 280 may be generated by the reporting engine 260 based, at least in part, on the delivery protocol attributes 205.


As another example, once an email message 140 including the object is received by the MMA system 100, the object 144 may be analyzed by the dynamic analysis engine 210. In one embodiment, a portion of the DA-based attributes 208 from the dynamic analysis engine 210 may be determined, by the classification engine 240, to be dispositive with respect to a finding of maliciousness. As such, the alert 280 may be generated by the reporting engine 260 based on the results of the dynamic analysis engine 210 alone.


However, in the event that the portion of the DA-based attributes 208 is not dispositive, in accordance with expanded correlation rule set 132, the classification engine 240 may determine whether the email message 140 is associated with a malicious attack based on the presence (or even absence) of one or more delivery protocol attributes 205. The combination of these attributes corresponds to context information, where a portion of the context information may be analyzed to determine whether the email message 140 is associated with a malicious attack.


Of course, it is envisioned that none, some or all of these analyses may be operating concurrently where, during the dynamic analysis, some of the delivery protocol attributes 205 or SA-based attributes 206 may be provided.


B. General Classification Methodology with Respect to the Plurality of Analyses


Referring back to FIG. 1A, according to one embodiment of the disclosure, the results from each of the analyses are routed to the classification engine 240 for further processing. More specifically, the delivery protocol attributes 205, the SA-based attributes 206, the DA-based attributes 208 and/or the EA-based attributes 212 are communicated to the classification engine 240. It is envisioned that the correlation logic 242, operating in accordance with the expanded correlation rule set 132, may assign a threat index value to particular attributes and/or particular combinations of attributes (from the same or different analyses). The threat index values may be used to determine a threat index for the email message 140, which indicates whether or not the message 140 is malicious.


As briefly described above, the classification engine 240 determines a threat index associated with the email message 140 that is under analysis. The threat index may be used to represent, at least in part, (i) a score that corresponds to a likelihood of the message 140 being malicious (e.g., message 140 includes malware or is part of a malicious attack); (ii) a policy violation caused by the receipt of the message 140 (or the object 144 provided with the message 140); or (iii) a severity of a potential malicious attack by the message 140. Hence, when the threat index exceeds a prescribed threshold value, the message 140 is considered to be malicious.


More specifically, the classification engine 240 includes correlation logic 242 that operates in accordance with the expanded correlation rule set 132. The correlation logic 242 is configured to receive attributes 205 and/or 206, 208 or 212. The correlation logic 242 attempts to correlate some or all of the attributes 205, 206, 208 and/or 212 associated with the email message 140 in accordance with the expanded correlation rule set 132, which is stored in correlation rules data store 245. For this embodiment, the correlation determines what particular attributes and/or combination of attributes, including the delivery protocol attributes 205, have been collectively detected by the static analysis engine 180, dynamic analysis engine 210 and/or emulation engine 230 in accordance with the attribute patterns set forth in the expanded correlation rule set 132, which may be preloaded at manufacturer and periodically or a periodically updated. By way of non-limiting example, the expanded correlation rule set 132 may cause the index assignment logic 243 and the weighting logic 244 of the correlation logic 242 to set the threat index values and corresponding weighting for a portion of the context information (e.g., selective attributes), which is used by the classification logic 250 to calculate a threat index 255, which denotes a likelihood of the email message 140 being associated with a malicious attack.


According to one embodiment of the disclosure, each attribute and/or combination of attributes may be associated with a threat index value (and optionally a weighting), where the summation of these threat index values is used to determine maliciousness. An illustrative example of the threat index 255 computed in accordance with a particular correlation rule (attribute pattern) is shown in equation (1):

Threat index255MI[W1(delivery protocol attribute_1)+W2(EA-based attribute_2)+W3(delivery protocol attribute_3& DA-based attribute_4& SA-based attribute_6)+W4(delivery protocol attribute_5& no SA-based attribute_6)]  (1)


According to this illustrative example, the threat index 255 may be computed by a combination of threat index values associated with any or all of the following: particular attributes (delivery protocol attributes_1, EA-based attribute_2) of the context information, combinations of attributes that are present (delivery protocol attribute_3 & DA-based attribute_4), and/or combinations of attributes where some attributes are absent (delivery protocol attribute_5 & no SA-based attribute_6). These particular attributes (e.g., attribute_1 to attribute_6) may be from different analyses and only some (not all) of the attributes from these different analyses are used to determine the threat index 255.


Optionally, the weighting factors (W1, W2, . . . ) may be used to place higher probative likelihood of maliciousness for certain attributes or even combinations of attributes. Consequently, each of the weighting factors (W1 . . . WN) may be tailored specifically for certain types of malware campaigns, analysis system result, or the like, without limitation. It is envisioned that in one embodiment, no weighting factors are included when determining the threat index 255.


Of course, as another illustrative example, the threat index 255 may be an aggregation of attribute scores across a plurality of analyses, as set forth below:

Threat index255MI[(Delivery Protocol attributes205)+(SA-based attributes206)+(DA-based attributes208)+(EA-based attributes212)]  (2)


As set forth in equation (2), the threat index 255 may be computed by a threat index based on a combination of threat index values associated with particular attributes of the context information formed by portions of the delivery protocol attributes 205, SA-based attributes 206, DA-based attributes 208, and/or the EA-based attributes 212. Optionally, the threat index may be weighted by weighting logic 244.


The combination of threat index values as discussed herein is tailored to specific attributes to determine maliciousness with respect to the email message 140, thereby reducing false negative results as well as false positives. For example, an email message featuring an incorrectly identified source in the “FROM” header field (attribute_3—delivery protocol) that is observed with ‘callback’ (i.e., attempt to send an outbound communication) to an outside source (attribute_4—DA-based) and an attachment less than 10 kilobytes (attribute_6—SA-based) may be more indicative of an advanced malicous attack, as compared to considering only the attachment size (attribute_6) and the callback behavior (attribute_4), which may produce a false negative result. By combining of context information associated with different analysis types, the APT attack may be detected more accurately, for example. Similarly, the presence of a deployment attribute that identifies that the source is correctly identified in the message (attribute_7), combined with the attachment size (attribute_6) and the callback behavior (attribute_4) may reduce the threat index to avoid a false positive result.


Once the threat index 255 has been computed, it is compared with a predetermined threshold value that is used to determine whether or not an alert should be generated. In one embodiment, the predetermined threshold value may represent, perhaps numerically, an aggregate value based on a consideration of, for example, certain incidences, feature sets, vulnerabilities, and/or attack signatures specific to any of various malware attacks. However, it is envisioned that the predetermined threshold value may be variable, depending on any of various factors, including by way of non-limiting example, the geographical or industry-type information regarding the most recent, and/or previously targeted parties. Accordingly, it should be understood that the predetermined threshold value might vary for different types of attacks.


Alternatively, in lieu of reliance on a score as the threat index to determine whether an email message is malicious, the classification engine 240 includes correlation logic 242 that operates in accordance with the expanded correlation rule set 132 that identify context information of known maliciousness and of known non-maliciousness. Hence, unlike a scoring mechanism, the matching of certain attributes recovered from different types of analyses to the malicious (or non-malicious) context provided by the correlation rules may be used to determine whether or not the email message 140 is associated with a malicious attack. Accordingly, in some embodiments, the classification may be based on a non-quantified assessment of threat risk based on the analysis results.


For example, a file (object) 144 is part of an attachment for an incoming email message 140 under analysis. The object analyzer 190 determines that the file 144 is obfuscated (characteristic_1) while the meta analyzer 182 determines that the source of the email message 140 differs from the source enumerated in the email message (sender verification failed). Furthermore, the dynamic analysis engine 210 determines that an HTTP GET request is generated by the file 144 (behavior_1). In accordance with the context information (characteristic_1, sender verification failed, behavior_1) matching malicious content as provided by a correlation rule within the expanded correlation rule set 132 that identifies a collection of context information found to be malicious, the file 144 (and hence the email message 140) is determined to be associated with a malicious attack.


In the event that the threat index 255 meets or exceeds the predetermined threshold value (or the comparison of context denotes maliciousness), the alert generation logic 265 of the reporting engine 260 is signaled to generate the alert 280. The alert 280 (e.g., an email message, text message, display screen image, etc.) may be routed to a network device utilized by a network administrator or a threat intelligence network 130, for example. The reporting engine 260 may be configured so as to store the results from the analysis conducted by the classification engine 240 in the data store 270 for future reference.


Referring now to FIG. 2, an exemplary embodiment of a logical representation of the MMA system 100 of FIGS. 1A-1B is shown. In one embodiment, a network appliance 200 includes a housing 201, which is made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protect circuitry within the housing 201, namely one or more processors 285 that are coupled to communication interface logic 286 via a first transmission medium 287. Communication interface logic 286 enables communications with other MMA systems and/or the threat intelligence network 130 of FIG. 1A, for example. According to one embodiment of the disclosure, communication interface logic 286 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 286 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 285 may further be coupled to persistent storage 290 via a second transmission medium 288. According to one embodiment of the disclosure, persistent storage 290 may include the MMA system 100, which in one embodiment includes the extraction logic 150, the static analysis engine 180, the dynamic analysis engine 210, the emulation engine 230, the classification engine 240, and the reporting engine 260 as described above. It is envisioned that one or more of these systems could be implemented externally from the MMA system 100 without extending beyond the spirit and scope of the present disclosure. For instance, the dynamic analysis engine 210 may be located within cloud services.


Referring now to FIG. 3, a flowchart of an exemplary method for providing warning of a potential email-based attack on a system or device based on a real-time analysis. In block 301, an email message is received and routed to the meta analyzer within the exemplary MMA system 100. At block 302, meta information is extracted and routed to the static analysis engine for further analysis. At block 303, static analysis is performed on the meta information within one or more header fields of the email message.


For example, using the meta analyzer within the static analysis engine, a determination may be made as to the legitimacy of the source of the email message, which may include an attempted handshake scheme being conducted to determine if the source is identified by the source address included in the email message. A lack of legitimacy, namely a lack of IP address verification (IP address redirection) and/or any alias mismatching (e.g., source identified in the subject field is inconsistent with the actual source) provides a strong indication that the email message is malicious.


At block 304, a determination is made with respect to whether further analysis is required. For instance, meta information of the email message may be compared with previously known email message attacks, malicious attribute sets, attack signatures, etc. so as to determine maliciousness. For example, the occurrence of a known alias mismatch, a particular subject line, or certain body content of an email message may indicate to some level of probability, often well less than 100%, that the email message includes a certain exploit or exhibits certain elements associated with malware.


In one embodiment, at block 305, the classification engine may be configured to take certain action, including for example, generating an alert if the probability exceeds a prescribed value, for example. In one embodiment, the classification engine may be configured so as to inform end users and update the threat intelligence network. Alternatively, at block 306, further analysis may be required with regard to other aspects of the email message, for example, analysis of an object through static analysis, dynamic analysis and/or emulation to make a final decision with respect to maliciousness.


Referring now to FIG. 4, a flowchart of an exemplary method for conducting one or more analyses on an object that is part of the email message is shown. At block 402, the email message is analyzed so as to determine whether any objects are present therein. At block 403, if there is no object, the classification engine may rely on the analysis conducted on the context information associated with meta information within the object to determine maliciousness.


Additionally, or in the alternative, in the event that an object is present, further analysis performed as shown in blocks 405-407. For example, the object (or copies thereof) may be routed to the static analysis engine, the dynamic analysis engine, and/or the emulation engine. Certain attributes from the static analysis engine (characteristics of a file), dynamic analysis engine (behaviors of a file) and/or emulation engine (emulated results), along with delivery protocol attributes associated with the message analysis (block 404), may be combined together and classified based on a presence of these attributes as part of the context information. When classified, as an optional feature, the threat index may be generated based on selected delivery protocol attributes as discussed herein. More specifically, at block 408, a combination of attributes provided by a plurality of analyses (e.g., delivery protocol attributes, SA-based attributes, DA-based attributes, and/or EA-based attributes) is determined by the correlation logic.


At block 409, in accordance with an expanded correlation rule set, the correlation logic assists the classification logic in a determination as to whether the email message is malicious. The determination may be based, at least in part, on one or more delivery protocol attributes. More specifically, at block 410, upon determining that the email message is malicious, the classification engine may cause the reporting engine to issue an alert (block 410) and commence a signature generation operation as illustrated in FIG. 5 (block 411). Otherwise, the analysis ends (block 412).


C. Generation of Blocking Signatures


It is envisioned that in order to generate scores from the context information 142, some of the embodiments will require an outbound connection. For example, to determine if a particular mail server exists, a DNS query to the mail server will need to be performed. Based on the response of the DNS, a determination can be made with respect to the existence of the mail server. Similarly, to determine if an email message 140 is valid, an SMTP handshake must be performed with respect to the SMTP server. In some deployment it can happen that the outbound SMTP communication to validate sendermight not be possible due to firewall policy.


Reference is now made to FIG. 5, where, at block 501, once an email message is declared as being malicious, the email message is uploaded to the threat intelligence network 130 of FIGS. 1A & 1B, as shown in block 502. At block 503, the context information of the email message is analyzed to determine if the various fields (e.g., meta fields), for example, are sufficiently specific (or even unique) in nature to serve as a signature (strong indicator) for the detected malicious attack. At block 504, a query is presented to determine whether the context information may be used to generate a signature. At block 505, a signature may be generated. In one embodiment, a deterministic, exploit-specific, signature may be generated, however almost any other methodology may be used so as to quickly (and without detailed analysis) identify and classify potential malware samples as malware. In one embodiment, the signature may comprise descriptions (indicators) of malware families. At block 506, the signature is uploaded to the threat intelligence network. Finally, at block 507, the signature is deployed to “users”, for example those individuals and entities that have implemented the MMA system and/or have access to the threat intelligence network, e.g., through a subscription service. Since these signatures may consist of meta-fields from the malicious emails, these will classify the email as malicious. Also, if the signature consists of an identifier for the malicious “senders”, it will be added to the black list discussed earlier herein.


D. Exemplary Alert


Referring to FIG. 6, an exemplary embodiment of a mobile network device 600 (e.g., smartphone, tablet, laptop computer, netbook, etc.) configured for performing the contextual analyses utilizing delivery protocol attributes as described above is shown. Herein, the mobile network device 600 includes a display screen 605 and a housing 610 that encases one or more processors (“processor(s)”) 620, memory 630, as well as one or more receiver and/or transmitter (e.g. transceiver) 640 communicatively coupled to an antenna 645. Herein, the memory 630 includes a security agent 650.


Upon execution by the processor(s) 620, the security agent 650 (executable software application) conducts an analysis on the header and/or body of an incoming email message 660 received by the transceiver 640 of the mobile network device 620. Herein, the security agent 650 conducts an analysis of certain fields of the email message 660, such as certain fields of the header as described above, which may necessitate communications with other network devices (e.g., mail server). Such analysis enables the security agent to produce delivery protocol attributes, which are used in an analysis conducted by a classification engine 670 in determining whether the email message 660 is malicious. Additional static and/or dynamic analysis of an object that is attached to the email message 660 and/or emulation operations associated with object 660 may be used to obtain further attributes that identify anomalous characteristic, behaviors or emulated features, where some of these attributes may be considered in the classification of the email message 660. The delivery attributes and other attributes may be stored in a log that is allocated within the memory 630.


Herein, the memory 630 may further include the classification engine 670 and the reporting engine 680 that operate in combination with the security agent 650 in a manner similar to classification engine 240 and reporting engine 260 of FIGS. 1A-1B and 2 as described above.


In one embodiment, an exemplary alert 690 (e.g., an object, text message, display screen image, etc.) is communicated to security administrators and/or may be displayed for viewing on the mobile network device 600. For example, the exemplary alert 690 may indicate the urgency in handling one or more predicted attacks based on the maliciousness of the suspect object. Furthermore, the exemplary alert 690 may include instructions so as to prevent one or more predicted malware attacks. The exemplary alert 690 may also include information with respect to the origination of the potential attack, along with suspicious behavior that might confirm the attack with respect to a potential target. In one embodiment, the exemplary alert 690 may include index values represented as scores and/or percentages based on the various analyses and/or the combination of detected behaviors, characteristics and/or emulated results that caused the alert 690, as discussed herein.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method configured to analyze a message by a network device, comprising: determining context information comprising one or more combinations of attributes obtained by performing one or more analyses on information associated with the message, the one or more analyses comprises a first analysis of meta information of the message to generate a first set of attributes and at least a second analysis of an object that is part of the message to generate a second set of attributes, the second analysis being a different type of analysis than the first analysis;correlating attributes associated with the one or more analyses, including the first set of attributes and the second set of attributes, in accordance with one or more correlation rules so as to generate a threat index, the one or more correlation rules assigning a threat index value to a plurality of combinations of one or more attributes of the first set of attributes and one or more attributes of the second set of attributes; andgenerating an alert in response to determining that the threat index identifies the message is malicious, the alert being a displayed output.
  • 2. The computerized method of claim 1, wherein the one of more analysis further comprises a dynamic analysis of an object that is part of the message, the dynamic analysis comprises processing the object within a virtual machine and monitoring for one or more behaviors of the virtual machine, wherein the one or more behaviors being the second set of attributes.
  • 3. The computerized method of claim 1, wherein the one of more analysis further comprises a static analysis being configured to inspect the object for anomalous characteristics comprising any one of selected formatting and patterns associated with malware, the anomalous characteristics being the second set of attributes.
  • 4. The computerized method of claim 2, wherein the correlating attributes associated with the one or more analyses in accordance with the one or more correlation rules comprises correlating attributes from at least the first set of attributes and at least one of the second set of attributes or a third set of attributes generated by performing a static analysis that inspects the object for anomalous characteristics comprising any one of selected formatting and patterns associated with malware.
  • 5. The computerized method of claim 1, wherein the first analysis includes a static analysis of the meta information that comprises an analysis of a header field to determine a source of the message.
  • 6. The computerized method of claim 5, wherein the analysis of the header field further comprises conducting a handshaking communication session to determine that the message is associated with a malicious attack by verifying that a sender of the message belongs to a prescribed domain identified as a domain of the sender in the message.
  • 7. The computerized method of claim 6, wherein the handshaking communication session is performed by conducting the handshaking communication session based on information within a FROM field of the message.
  • 8. The computerized method of claim 1, wherein the one or more correlation rules are directed to detection of the first set of attributes in combination with attributes from at least one or more of (i) static analysis of an object included with the message, (ii) dynamic analysis of the object, and (iii) emulation of the processing of the object.
  • 9. The computerized method of claim 1, wherein the threat index comprises an association of one or more weighting factors to place higher probative likelihood of maliciousness with respect to a combination of attributes including the first set of attributes and the second set of attributes associated with at least one of (i) static analysis of an object included with the message, (ii) dynamic analysis of the object, and (iii) emulation of the processing of the object.
  • 10. The computerized method of claim 1, wherein in further response to determining that the threat index identifies that the message is malicious, the method further comprises: uploading the message to a threat intelligence network;determining if the context information may be used to generate a static signature;generating the static signature;uploading the static signature to the threat intelligence network; anddeploying the static signature to one or more network devices other than the network device.
  • 11. The computerized method of claim 1, wherein the message comprises an electronic mail message.
  • 12. A system to detect malicious messages, comprising: one or more processors; anda storage module communicatively coupled to the one or more processors, the storage module including logic to determine context information comprising one or more combinations of attributes obtained by performing one or more analyses on information associated with the message, the logic comprises a meta analyzer to analysis of meta information of the message to generate a first set of attributes and an object analyzer to analyze an object being part of the message to generate a second set of attributes, the second analysis being a different type of analysis than the first analysis,correlation logic to correlate attributes associated with the one or more analyses, including the first set of attributes and the second set of attributes, in accordance with one or more correlation rules so as to generate a threat index, the one or more correlation rules assigning a threat index value to a plurality of combinations of one or more of the first set of attributes and one or more of the second set of attributes; andclassification logic to determine whether the threat index identifies that the message is malicious, andgenerate an alert in response to determining that the threat index identifies the message is malicious, the alert being a displayed output.
  • 13. The system of claim 12, wherein the logic performing the one of more analysis comprises a dynamic analysis engine that is configured to process the object within a virtual machine and monitor for one or more behaviors of the virtual machine, wherein the one or more behaviors being the second set of attributes.
  • 14. The system of claim 12, wherein the logic performing the one of more analysis further comprises a static analysis engine that is configured to inspect the object for anomalous characteristics comprising selected formatting and patterns associated with malware, the anomalous characteristics being the second set of attributes.
  • 15. The system of claim 13, wherein the correlation logic to correlate attributes associated with the one or more analyses in accordance with the one or more correlation rules, the correlated attributes include at least the first set of attributes and at least one of the second set of attributes or a third set of attributes generated by performing a static analysis by the object analyzer that inspects the object for anomalous characteristics comprising any one of selected formatting and patterns associated with malware.
  • 16. The system of claim 12, wherein the meta analyzer analyzes a header field to determine a source of the message.
  • 17. The system of claim 16, wherein the meta analyzer further conducts a handshaking communication session to determine that the message is associated with a malicious attack by verifying that a sender of the message belongs to a prescribed domain identified as a domain of the sender in the message.
  • 18. The system of claim 17, wherein the handshaking communication session is performed by conducting the handshaking communication session based on information within a FROM field of the message.
  • 19. The system of claim 12, wherein the one or more correlation rules are directed to detection of the first set of attributes in combination with the second set of attributes from at least one or more of (i) static analysis of the object included with the message, (ii) dynamic analysis of the object, and (iii) emulation of the processing of the object.
  • 20. The system of claim 12, wherein the threat index comprises an association of one or more weighting factors to place higher probative likelihood of maliciousness with respect to a combination of attributes including the first set of attributes and the second set of attributes associated with at least one of (i) static analysis of the object included with the message, (ii) dynamic analysis of the object, and (iii) emulation of the processing of the object.
  • 21. The system of claim 12 further comprises logic to: upload the message to a threat intelligence network;determine if the context information may be used to generate a static signature;generate the static signature;upload the static signature to the threat intelligence network; anddeploy the static signature to one or more network devices other than the network device.
  • 22. The system of claim 14, wherein the message comprises an electronic mail message.
  • 23. The computerized method of claim 1, wherein the alert includes at least one of an email message, a text message, or a display screen image.
US Referenced Citations (517)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8205258 Chang Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9519781 Golshan Dec 2016 B2
9621574 Desai Apr 2017 B2
9699205 Muddu Jul 2017 B2
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030236995 Fretwell, Jr. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050273856 Huddleston Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070079379 Sprosts Apr 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080181227 Todd Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110035784 Jakobsson Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120240183 Sinha Sep 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140173739 Ahuja et al. Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140201838 Varsanyi Jul 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380488 Datta Ray Dec 2014 A1
20150096025 Ismael Apr 2015 A1
20170063887 Muddu Mar 2017 A1
Foreign Referenced Citations (13)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0223805 Mar 2002 WO
02006928 Aug 2003 WO
0206928 Nov 2003 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
2015009411 Jan 2015 WO
Non-Patent Literature Citations (76)
Entry
Huang, Shin-Ying; Yu, Fang; Tsaih, Rua-Huan; Huan, Yennun. Network-Traffic Anomaly Detection with Incremental Majority Learning. 2015 International Joint Conference on Neural Networks (IJCNN). Pub. Date: 2015. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7280573.
Abbes, Tarek; Bouhoula, Adel; Rusinowitch, Michael. Protocol Analysis in Intrusion Detection Using Decision Tree. Proceedings of International Conference on Information Technology: Coding and Computing, 2004. ITCC 2004. Pub. Date: 2004. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1286488.
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”)., Pub. Date: 2001.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek- .com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (In)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”)., Pub. Date: 2003.
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).