Claims
- 1. A method for providing milk having an elevated IgG antibody level comprising implanting intramuscularly or subcutaneously within a bovid mammal an antigenic substance in an amount effective to elicit a hyperimmunization response, said antigenic substance being incorporated within shaped microparticles of a biocompatible matrix material which causes controlled release of said antigen, thereby prolonging antigenic activity within said bovid mammal, and recovering milk having an elevated, higher than normal level of IgG antibody.
- 2. The method of claim 1, wherein the matrix material of said microparticles is a biocompatible, biodegradable polymeric matrix material.
- 3. The method of claim 2, wherein said polymeric material is polylactic acid, polyglycolic acid, poly(lactic acid-co-glycolic acid), polycaprolactone, polyoxalic acid, polydioxanone, polyorthoester or the salt form of these polymers.
- 4. The method of claim 1, wherein said antigenic substance, is a plurality of at least two antigens.
- 5. The method of claims 1 or 4, wherein an antigen or said plurality of at least two antigens in said shaped structure is prepared by incorporating said antigen or at least two antigens in a mixture of at least two different biodegradable, biocompatible polymers, each having a different rate of biodegradation, thereby forming individual microparticles composed of a mixture of polymeric matrix materials.
- 6. The method of claim 1 or 4, wherein an antigen or said plurality of at least two antigens in said shaped structure is prepared by (a) incorporating said antigen or said at least two antigens in a single polymeric matrix material, (b) separately repeating the process of step (a) at least once with a different polymeric matrix material having a rate of biodegradation different from the first used matrix material of step (a), and then (c) completing the preparation of the microparticle formation by blending the separately prepared antigen containing microparticle batches.
- 7. The method of claim 5, wherein said at least two different biodegradable, biocompatible polymers are selected from the group consisting of polylactic acid, polyglycolic acid, poly(lactic acid-co-glycolic acid), polycaprolactone, polyoxalic acid, polydioxanone, polyorthoester and the salt form of these polymers.
- 8. The method of claim 6, wherein the polymeric materials employed in said separate microparticle preparation steps are selected from the group consisting of polylactic acid, polyglycolic acid, poly(lactic acid-co-glycolic acid), polycaprolactone, polyoxalic acid, polydioxanone, polyorthoester and the salt form of these polymers.
- 9. The method of claim 1, wherein said antigenic substance is a single bacterial antigen or a mixture of at least two bacterial antigens.
- 10. The method of claim 9, wherein said antigenic substance is at least a single bacterial antigen selected from the group consisting of Neisseria gonorrhea, Mycobacterium tuberculosis, Haemophilus vaginalis, Group b Streptococcus ecoli, Microplasma hominis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyrogenes, Streptococcus mutans, Aerobacter aerogenes, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Haemophilus influenzae, Streptococcus viridans, Proteus vulgaris, Shigella dysenteriae, Streptococcus Group B, Diplococcus pneumoniae, Corynebacterium Acne Types 1 and 2, Hemophilus ducreyi, Granuloma inguinale, Lymphopathia venereum, Treponema pallidum, Brucella abortus, Brucella melitensis, Brucella suis, Brucella canis, Campylobacter fetus, Campylobacter fetus intestinalis, Leptospira pomona, Listeria monocytogenes, Brucella ovis, Chlamydia psittaci, Escherichia coli, Actinobacillus equuli, Salmonella abortus ovis, Salmonella abortus equi, Corynebacterium equi, Corynebacterium pyogenes, Actinobaccilus seminis, Mycoplasma bovigenitalium, Clostridium tetani, Pseudomonas maltophiia, Streptococcus equisimili, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus bovis, Pasteurella multocida, Pasteurella haemolytica, Moraxella bovis, Actinobacillus lignieresi, Corynebacterium renale, Fusobacterium necrophorum, Bacillus cereus, Salmonella dublin, Salmonella heidleberg, Salmonella paratyphi, and Yersinia enterocolitica.
- 11. The method of claim 1, wherein said bovid is a cow.
- 12. The method of claim 1, wherein said antigenic substance containing shaped matrix material is in the form of microspheres, rods, wafers or films.
- 13. The method of claim 1, wherein said antigenic substance is an antigen or mixture of antigens of bacterial, viral or cellular origin.
- 14. The method of claim 1, wherein said immunized state is attained by simultaneously implanting said antigenic substance containing shaped matrix material in said mammal and inoculating said mammal with a fluid containing said antigenic substance.
Parent Case Info
This application is a continuation of application Ser. No. 576,001, filed Feb. 1, 1984, now abandoned.
US Referenced Citations (14)
Non-Patent Literature Citations (2)
Entry |
DeGeeter et al, CA vol. 99, 1983, #157232u. |
American Scientific, 1979, pp. 66-73, Blackshear. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
576001 |
Feb 1984 |
|