Mammalian Genes Involved in Infection

Abstract
The present invention relates to nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of a pathogen. The invention also relates to modulators of nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of a pathogen.
Description
FIELD OF THE INVENTION

The present invention relates to nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of one or more pathogens, such as a virus, a bacteria, a fungus or a parasite. The invention also relates to modulators of nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of a pathogen.


BACKGROUND

Traditional treatments for viral infection include pharmaceuticals aimed at specific virus derived proteins, such as HIV protease or reverse transcriptase, or recombinant (cloned) immune modulators (host derived), such as the interferons. However, the current methods have several limitations and drawbacks which include high rates of viral mutations which render anti-viral pharmaceuticals ineffective. For immune modulators, limited effectiveness, limiting side effects, a lack of specificity all limit the general applicability of these agents. Also the rate of success with current antivirals and immune-modulators has been disappointing.


The current invention focuses on genes that are not essential for cellular survival when disrupted in one or both alleles, but which are required for virus replication. This may occur with a dose effect, in which one allele knock-out may confer the phenotype of virus resistance for the cell. As targets for therapeutic intervention, inhibition of these cellular gene products, including: proteins, parts of proteins (modification enzymes that include, but are not restricted to glycosylation, lipid modifiers [myristylation, etc.]), lipids, transcription elements and RNA regulatory molecules, may be less likely to have profound toxic side effects and virus mutation is less likely to overcome the ‘block’ to replicate successfully.


The present invention provides a significant improvement over previous methods of attempted therapeutic intervention against viral infection by addressing the cellular genes required by the virus for growth. Therefore, the present invention also provides an innovative therapeutic approach to intervention in viral infection by providing methods to treat viruses by inhibiting the cellular genes necessary for viral infection. Inhibition of these cellular genes can also be useful in treating infection by other pathogens such as bacteria, fingi and parasites. Because these genes are nonessential to the cell's survival, these treatment methods can be used in a subject without serious detrimental effects to the subject, as has been found with previous methods.


SUMMARY OF THE INVENTION

The present invention provides nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of one or more pathogens, such as a virus, a bacteria, a fungus or a parasite. The invention also provides methods of identifying modulators of nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of a pathogen. Also provided are modulators of nucleic acid sequences and cellular proteins encoded by these sequences that are involved in infection or are otherwise associated with the life cycle of a pathogen.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the characterization of phenotypic properties of cloned RIE-1 cells resistant to reovirus type 1 infection. (A) Cells were stained for reovirus antigen as previously described [3]. Only the PI cells contain reovirus antigen as detected by immunohistochemistry (dark wells). Upper wells are cloned mutant RIE-1 cells from two sets of RIE-1 mutant cell lines selected for reovirus resistance. Lower wells, PI RIE-1 (left), and uninfected wild type RIE-1 (right). (B) Reovirus susceptible L-cell monolayers, maintained in 1 ml of completed medium, were used to detect the presence of virus in a 100 μl lysate obtained of mutant cells (upper two wells), PI RIE-1 cells (lower left) or uninfected parental RIE-1 cells (lower right). Note, that only L-cell monolayers exposed to a lysate from PI RIE-1 cells lysed within one week of exposure (gentian violet stain).



FIG. 2 shows RIE-1 mutant cells resist lytic infection by reovirus. The columns contain an unselected RIE-1 cell library, RIE-140° C., and representative reovirus resistant mutant cell clones. Serial two-fold dilutions of reovirus were made with the highest titer in the upper row, MOI=1×104. Resistance to reovirus type 1 infection was observed in the mutant cells 3 to 7 days post-infection. The bottom row of cells, denoted “C”, were not infected to serve as controls for cell viability and proliferation. Cells were stained with gentian violet four days post-infection. A clear well indicates cell death following virus infection.



FIG. 3 shows a model of the life cycle of reovirus and proposed checkpoints based on function of the cellular genes identified by insertional mutagenesis in the present application. The virus life cycle begins (top, clockwise) with virus binding to cell surface receptor and being endocytosed into early endosomes. These endosomes then associate with annexin-II (Anax2) [85] and fuse with annexin-II-associated vesicles containing newly synthesized lysosomal enzymes migrating from the Golgi [86], which further fuse with the lysosome. The vacuolar H+-ATPase acidifies the lysosome, allowing acid-dependent proteases to digest the outer coat from the virus particles and activate them [87]. These activated particles then pass through the lysosomal membrane and begin transcription of mRNA. The Golgi protein gm 130 (Golga2) is believed to mediate the docking of vesicles as they carry their newly synthesized cargo through the Golgi stack [88, 89]. N-acetylglucosaminyl transferase I (Mgat1) initiates the glycosylation of cell surface proteins (for example, receptors) and may play a major role, through kinship recognition, in helping maintain the correct assortment of lysosomal enzymes [90-94]. The Igf2r shuttles enzymes bound for the lysosome from the Golgi [95] and transfer cathepsins to the lysosome. Igf2 over expression may alter the delivery of igf2r bound cargo to the lysosome (Sheng J, Organ E L, Hao C, Wells, K S, Ruley H E, Rubin D H. 2004. Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection. BMC Cell Biology, 5:32 (27 Aug. 2004). Calcyclin and the α-tropomyosins specifically bind each other, and calcyclin is known to bind Anxa2 [16, 20]. Thus, they could be involved in endosome fusion. Eif3s10 specifically binds the virus message to begin its preferential translation. The DnaJa1 protein could facilitate the proper folding of virus proteins with its chaperone function [96]. However, DnaJa1 protein and Eif3 could play additional roles in virus trafficking or apoptosis, respectively. Eventually, morphogenesis is complete when crystalline-like arrays of new virions form, cell lysis occurs, and virus is released. Many of the cellular proteins encoded by mutated genes have direct or indirect roles in trafficking of endosomes or lysosomal fusion and thus could play roles in the early disassembly or delivery of transcriptionally active virions to the appropriate cell location.




DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the Examples included therein.


Before the present compounds, compositions, articles, devices, and/or methods are disclosed and described, it is to be understood that this invention is not limited to specific nucleic acids, specific polypeptides, or to particular methods, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.


As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. The term “or” refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise. As used herein, “comprises” means “includes.” Thus, “comprising A or B,” means “including A, B, or A and B,” without excluding additional elements.


Ranges may be expressed herein as from “about” one particular value, and/or too “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the phrase “optionally obtained prior to treatment” means obtained before treatment, after treatment, or not at all.


As used throughout, by “subject” is meant an individual. Preferably, the subject is a mammal such as a primate, and, more preferably, a human. The term “subject” includes domesticated animals, such as cats, dogs, etc., livestock (for example, cattle, horses, pigs, sheep, goats, etc.), laboratory animals (for example, mouse, rabbit, rat, gerbil, guinea pig, etc.) and avian species (for example, chickens, turkeys, ducks, pheasants, pigeons, doves, parrots, cockatoos, geese, etc.). The subjects of the present invention can also include, but are not limited to fish, amphibians and reptiles.


The present method provides several cellular genes that are necessary for viral growth in the cell but are not essential for the cell to survive. As used herein, a cellular gene “nonessential for cellular survival” means a gene for which disruption of one or both alleles results in a cell viable for at least a period of time which allows viral replication to be decreased or inhibited in a cell. Such a decrease can be utilized for preventative or therapeutic uses or used in research. A gene “necessary for viral growth” means the gene product of this gene, either protein or RNA, secreted or not, is necessary, either directly or indirectly in some way for the virus to grow, and therefore, in the absence of that gene product (i.e., a functionally available gene product), at least some of the cells containing the virus die. As utilized throughout, “gene product” is the RNA or protein resulting from the expression of a gene.


These cellular genes or host nucleic acid sequences involved in viral infection were identified using gene trap methods. These gene trap methods are set forth in the Examples as well as in U.S. Pat. Nos. 6,448,000 and 6,777,177. U.S. Pat. Nos. 6,448,000 and 6,777,177 are both incorporated herein in their entireties by this reference. For example, the host nucleic acid sequences set forth herein can be identified by a method of identifying a cellular gene necessary for viral growth in a cell and nonessential for cellular survival, comprising: (a) transferring into a cell culture a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, (c) infecting the cell culture with the virus, and (d) isolating from the surviving cells a cellular gene within which the marker gene is inserted, thereby identifying a gene necessary for viral growth in a cell and nonessential for cellular survival. The host nucleic acid sequences can also be identified by a method of identifying a cellular gene necessary for viral growth in a cell and nonessential for cellular survival, comprising (a) transferring into a cell culture growing in serum-containing medium a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, (c) removing serum from the culture medium, (d) infecting the cell culture with the virus, and (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted, thereby identifying a gene necessary for viral growth in a cell and nonessential for cellular survival.


The identification of these host sequences and their encoded proteins permits the identification of sequences that can be targeted for modulation (for example, decreasing gene expression and/or activity of the gene product or increasing gene expression and/or activity of the gene product) and/or therapeutic intervention.


Table 1 sets forth host nucleic acid sequences that are involved in viral infection or otherwise associated with the life cycle of a virus. For example, these nucleic acids and their encoded proteins can be involved in all phases of viral life cycles including, but not limited to, viral attachment to cellular receptors, viral infection, viral entry, internalization, disassembly of the virus, viral replication, genomic integration of viral sequences, translation of mRNA, assembly of viral particles, cell lysis and egress of virus from the cells.


As used herein, a gene is a nucleic acid sequence that encodes a polypeptide under the control of a regulatory sequence, such as a promoter or operator. The coding sequence of the gene is the portion transcribed and translated into a polypeptide (in vivo, in vitro or in situ) when placed under the control of an appropriate regulatory sequence. The boundaries of the coding sequence can be determined by a start codon at the 5′ (amino) terminus and a stop codon at the 3′ (carboxyl) terminus. If the coding sequence is intended to be expressed in a eukaryotic cell, a polyadenylation signal and transcription termination sequence can be included 3′ to the coding sequence.


Transcriptional and translational control sequences include, but are not limited to, DNA regulatory sequences such as promoters, enhancers, and terminators that provide for the expression of the coding sequence, such as expression in a host cell. A polyadenylation signal is an exemplary eukaryotic control sequence. A promoter is a regulatory region capable of binding RNA polymerase and initiating transcription of a downstream (3′ direction) coding sequence. Additionally, a gene can include a signal sequence at the beginning of the coding sequence of a protein to be secreted or expressed on the surface of a cell. This sequence can encode a signal peptide, N-terminal to the mature polypeptide, which directs the host cell to translocate the polypeptide.


Table 1 (column 2) also provides the protein encoded by the genes listed in Table 1. In several instances, the gene trap vector utilized to trap the genes disrupted two genes, one of which is due to location of the vector as it resides in a gene transcribed off the negative strand. An example of such an occurrence is the disruption of the gene encoding aprataxin and the gene encoding DnaJ (Hsp40) homolog, subfamily A, member 1 by the same vector.


Table 1 also provides the chromosomal location of the gene in the rat and human genome (columns 3 and column 4, respectively). Thus, the present invention identifies the genomic loci of genes associated with viral infection. By identifying the gene and its location in the genome, the invention provides both the gene and its product(s) as targets for therapies such as antiviral, antibacterial, antifungal and antiparasitic therapies, to name a few.


Also provided in Table 1 are the GenBank Accession Nos. for the rat mRNA sequences (column 5), the GenBank Accession Nos. for the human mRNA sequences (column 6) and the GenBank Accession Nos. for the human protein sequences (column 7). The nucleic acid sequences and protein sequences provided under the GenBank Accession Nos. mentioned herein are hereby incorporated in their entireties by this reference. One of skill in the art would know that the nucleotide sequences provided under the GenBank Accession Nos. set forth herein can be readily obtained from the National Center for Biotechnology Information at the National Library of Medicine (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide). Similarly, the protein sequences set forth herein can be readily obtained from the National Center for Biotechnology Information at the National Library of Medicine (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=protein). The nucleic acid sequences and protein sequences provided under the GenBank Accession Nos. mentioned herein are hereby incorporated in their entireties by this reference.


Table 1 also provides the GenBank Accession Nos. for the partial sequences of the rat genes obtained upon the insertion of the gene trap vector (column 9). Briefly, these genes were isolated by generating gene trap libraries by infecting cells with a retrovirus gene trap vector and selecting for cells in which a gene trap event occurred (i.e., in which the vector had inserted such that the promoterless marker gene was inserted such that a cellular promoter promotes transcription of the marker gene, i.e., inserted into a functioning gene). Genes into which the retrovirus gene trap vector inserted were then isolated from the colonies using probes specific for the retrovirus gene trap vector. Thus nucleic acids isolated by this method are isolated portions of genes. These portions were then utilized to identify the complete sequences of each gene via sequence comparisons and other bioinformatics methods.


Further provided are the Entrez Gene numbers for the rat gene and human gene (columns 10 and 11, respectively). The information provided under the Entrez Gene numbers listed in Table 1 is also hereby incorporated entirely by this reference. One of skill in the art can readily obtain this information from the National Center for Biotechnology Information at the National Library of Medicine (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene). By accessing Entrez Gene, one of skill in the art can readily obtain additional information about every gene listed in Table 1, such as the genomic location of the gene, a summary of the properties of the protein encoded by the gene, information on homologs of the gene as well as numerous reference sequences, such as the genomic, mRNA and protein sequences for each gene. Thus, in addition to the sequences set forth under the GenBank Accession Nos. in Table 1, one of skill in the art can readily obtain additional sequences, such as genomic, mRNA and protein sequences by accessing additional information available under the Entrez Gene number provided for each gene. Thus, all of the information readily obtained from the Entrez Gene Nos. set forth herein is also hereby incorporated by reference in its entirety.


Table 2 provides classification of numerous genes set forth in Table 1 according to their cellular roles. Several examples of regulatory sequences (e.g., transcription factors) are provided in Table 2 (for example, Brd2, Brd3, Ctcf, E2f2, Gtf2e1, Hnrpl, Hoxc13, Hp1-bp74, Id3, Znf207 and Zfp7). Therefore, these transcription factors control multi-gene pathways. In some cases, disruption of the transcription factor has a direct impact on viral growth. In other cases disruption of the transcription factor affects viral growth by affecting transcription or translation of the gene or genes that are under its control. Therefore, the genes that are under the control of the transcription factors set forth in Table 1 and Table 2 are also provided by the present invention as targets for therapy, such as antiviral, antibacterial, antiparasitic and antifungal therapy. Table 2 also provides examples of genes involved in other pathways such as vesicular trafficking, ubiquitination, apoptosis, metabolism etc. Thus, other genes in these pathways, either upstream or downstream of the genes set forth for these pathways in Table 2 are also provided herein as targets for therapeutic intervention (therapy). For example, a gene that produces a gene product that interacts with Ube1c either upstream or downstream in the ubiquitination pathway is considered a target for therapy against intracellular pathogens. For example, this can be a transcription factor that regulates expression of Ube1c or another protein that binds to Ube1c. These examples are merely exemplary as this applies to all of the genes set forth herein and the cellular pathways that they are involved in.


When referring to a gene(s) in Table 1, this includes any gene, nucleic acid, cDNA or RNA from any organism that can function as the gene or nucleic acid listed in Table 1. When referring to a protein(s) listed in Table 1 this includes any protein or fragment thereof from any organism that can function as the protein listed in Table 1. For example, the term ANXA1 (annexin 1) includes any ANXA1 gene, nucleic acid, cDNA or RNA, from any organism that can function as an ANXA1 gene or ANXA1 nucleic acid. The term ANXA1 also includes any protein from any organism that can function as an ANXA1 protein.


As used herein, the term “nucleic acid” refers to single or multiple stranded molecules which may be DNA or RNA, or any combination thereof, including modifications to those nucleic acids. The nucleic acid may represent a coding strand or its complement, or any combination thereof. Nucleic acids may be identical in sequence to the sequences which are naturally occurring for any of the moieties discussed herein or may include alternative codons which encode the same amino acid as that which is found in the naturally occurring sequence. These nucleic acids can also be modified from their typical structure. Such modifications include, but are not limited to, methylated nucleic acids, the substitution of a non-bridging oxygen on the phosphate residue with either a sulfur (yielding phosphorothioate deoxynucleotides), selenium (yielding phosphorselenoate deoxynucleotides), or methyl groups (yielding methylphosphonate deoxynucleotides), a reduction in the AT content of AT rich regions, or replacement of non-preferred codon usage of the expression system to preferred codon usage of the expression system. The nucleic acid can be directly cloned into an appropriate vector, or if desired, can be modified to facilitate the subsequent cloning steps. Such modification steps are routine, an example of which is the addition of oligonucleotide linkers which contain restriction sites to the termini of the nucleic acid. General methods are set forth in Sambrook et al. (2001) Molecular Cloning—A Laboratory Manual (3rd ed.) Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, NY, (Sambrook).


Once the nucleic acid sequence is obtained, the sequence encoding the specific amino acids can be modified or changed at any particular amino acid position by techniques well known in the art. For example, PCR primers can be designed which span the amino acid position or positions and which can substitute any amino acid for another amino acid. Alternatively, one skilled in the art can introduce specific mutations at any point in a particular nucleic acid sequence through techniques for point mutagenesis. General methods are set forth in Smith, M. “In vitro mutagenesis” Ann. Rev. Gen., 19:423-462 (1985) and Zoller, M. J. “New molecular biology methods for protein engineering” Curr. Opin. Struct. Biol., 1:605-610 (1991), which are incorporated herein in their entirety for the methods. These techniques can be used to alter the coding sequence without altering the amino acid sequence that is encoded.


The sequences contemplated herein include fall-length wild-type (or native) sequences, as well as allelic variants, variants, fragments, homologs or fusion sequences that retain the ability to function as the cellular nucleic acid or protein involved in viral infection. In certain examples, a protein or nucleic acid sequence has at least 70% sequence identity, for example at least 750%, 80%, 85%, 90%, 95%, or 98% sequence identity to a native sequence set forth in Table 1. In other examples, a nucleic acid sequence involved in viral infection has a sequence that hybridizes to a sequence set forth in Table 1 and retains the activity of the sequence set forth in Table 1. For example, a nucleic acid that hybridizes to an ANXA1 nucleic acid sequence set forth in Table 1 (for example the nucleic acid sequence set forth under GenBank Accession No. NM000700) and encodes a protein that retains ANXA1 activity is contemplated by the present invention. Such sequences include the genomic sequence for the genes set forth in Table 1. The examples set forth above for ANXA1 are merely illustrative and should not be limited to ANXA1 as these examples would apply to every nucleic acid and protein listed in Table 1.


Unless otherwise specified, any reference to a nucleic acid molecule includes the reverse complement of the nucleic acid. Except where single-strandedness is required by the text herein (for example, a ssRNA molecule), any nucleic acid written to depict only a single strand encompasses both strands of a corresponding double-stranded nucleic acid. For example, depiction of a plus-strand of a dsDNA also encompasses the complementary minus-strand of that dsDNA. Additionally, reference to the nucleic acid molecule that encodes a specific protein, or a fragment thereof, encompasses both the sense strand and its reverse complement. Fragments of the nucleic acids set forth in Table 1 and throughout the specification are also contemplated. These fragments can be utilized as primers and probes to amplify or detect any of the nucleic acids or genes set forth in Table 1.


Hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybridization method and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (such as the Na+ concentration) of the hybridization buffer will determine the stringency of hybridization. Calculations regarding hybridization conditions for attaining particular degrees of stringency are discussed in Sambrook et al., (1989) Molecular Cloning, second edition, Cold Spring Harbor Laboratory, Plainview, N.Y. (chapters 9 and 11). The following is an exemplary set of hybridization conditions and is not limiting:

Very High Stringency (detects sequences that share 90% identity)Hybridization:5x SSC at 65° C. for 16 hoursWash twice:2x SSC at room temperature (RT) for 15 minutes eachWash twice:0.5x SSC at 65° C. for 20 minutes each















High Stringency (detects sequences that share 80% identity or greater)


















Hybridization:
5x-6x SSC at 65° C.-70° C. for 16-20 hours



Wash twice:
2x SSC at RT for 5-20 minutes each



Wash twice:
1x SSC at 55° C.-70° C. for 30 minutes each























Low Stringency (detects sequences that share greater than 50% identity)
















Hybridization:
6x SSC at RT to 55° C. for 16-20 hours


Wash at least twice:
2x-3x SSC at RT to 55° C. for 20-30 minutes each.









Also provided is a vector, comprising a nucleic acid of the present invention. The vector can direct the in vivo or in vitro synthesis of any of the proteins or polypeptides described herein. The vector is contemplated to have the necessary functional elements that direct and regulate transcription of the inserted nucleic acid. These functional elements include, but are not limited to, a promoter, regions upstream or downstream of the promoter, such as enhancers that may regulate the transcriptional activity of the promoter, an origin of replication, appropriate restriction sites to facilitate cloning of inserts adjacent to the promoter, antibiotic resistance genes or other markers which can serve to select for cells containing the vector or the vector containing the insert, RNA splice junctions, a transcription termination region, or any other region which may serve to facilitate the expression of the inserted gene or hybrid gene. (See generally, Sambrook et al.). The vector, for example, can be a plasmid. The vectors can contain genes conferring hygromycin resistance, ampicillin resistance, gentamicin resistance, neomycin resistance or other genes or phenotypes suitable for use as selectable markers, or methotrexate resistance for gene amplification.


There are numerous other E. coli (Escherichia coli) expression vectors, known to one of ordinary skill in the art, which are useful for the expression of the nucleic acid insert. Other microbial hosts suitable for use include bacilli, such as Bacillus subtilis, and other enterobacteriaceae, such as Salmonella, Serratia, and various Pseudomonas species. In these prokaryotic hosts one can also make expression vectors, which will typically contain expression control sequences compatible with the host cell (e.g., an origin of replication). In addition, any number of a variety of well-known promoters will be present, such as the lactose promoter system, a tryptophan (Trp) promoter system, a beta-lactamase promoter system, or a promoter system from phage lambda. The promoters will typically control expression, optionally with an operator sequence, and have ribosorye binding site sequences for example, for initiating and completing transcription and translation. If necessary, an amino terminal methionine can be provided by insertion of a Met codon 5′ and in-frame with the downstream nucleic acid insert. Also, the carboxy-terminal extension of the nucleic acid insert can be removed using standard oligonucleotide mutagenesis procedures. Also, nucleic acid modifications can be made to promote amino terminal homogeneity.


Additionally, yeast expression can be used. The invention provides a nucleic acid encoding a polypeptide of the present invention, wherein the nucleic acid can be expressed by a yeast cell. More specifically, the nucleic acid can be expressed by Pichia pastoris or S. cerevisiae. There are several advantages to yeast expression systems, which include, for example, Saccharomyces cerevisiae and Pichia pastoris. First, evidence exists that proteins produced in a yeast secretion systems exhibit correct disulfide pairing. Second, efficient large scale production can be carried out using yeast expression systems. The Saccharomyces cerevisiae pre-pro-alpha mating factor leader region (encoded by the MFo-1 gene) can be used to direct protein secretion from yeast (Brake, et al.). The leader region of pre-pro-alpha mnating factor contains a signal peptide and a pro-segment which includes a recognition sequence for a yeast protease encoded by the KEX2 gene: this enzyme cleaves the precursor protein on the carboxyl side of a Lys-Arg dipeptide cleavage signal sequence. The nucleic acid coding sequence can be fused in-frame to the pre-pro-alpha mating factor leader region. This construct can be put under the control of a strong transcription promoter, such as the alcohol dehydrogenase I promoter, alcohol oxidase I promoter, a glycolytic promoter, or a promoter for the galactose utilization pathway. The nucleic acid coding sequence is followed by a translation termination codon which is followed by transcription termination signals. Alternatively, the nucleic acid coding sequences can be fused to a second protein coding sequence, such as Sj26 or beta-galactosidase, used to facilitate purification of the fusion protein by affinity chromatography. The insertion of protease cleavage sites to separate the components of the fusion protein is applicable to constructs used for expression in yeast. Efficient post translational glycosylation and expression of recombinant proteins can also be achieved in Baculovirus systems.


Mammalian cells permit the expression of proteins in an environment that favors important post-translational modifications such as folding and cysteine pairing, addition of complex carbohydrate structures, and secretion of active protein. Vectors useful for the expression of active proteins in mammalian cells are characterized by insertion of the protein coding sequence between a strong viral promoter and a polyadenylation signal. The vectors can contain genes conferring hygromycin resistance, genticin or G418 resistance, or other genes or phenotypes suitable for use as selectable markers, or methotrexate resistance for gene amplification. The chimeric protein coding sequence can be introduced into a Chinese hamster ovary (CHO) cell line using a methotrexate resistance-encoding vector, or other cell lines using suitable selection markers. Presence of the vector DNA in transformed cells can be confirmed by Southern blot analysis. Production of RNA corresponding to the insert coding sequence can be confirmed by Northern blot analysis. A number of other suitable host cell lines capable of secreting intact human proteins have been developed in the art, and include the CHO cell lines, HeLa cells, myeloma cell lines, Jurkat cells, etc. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer, and necessary information processing sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences. Preferred expression control sequences are promoters derived from immunoglobulin genes, SV40, Adenovirus, Bovine Papilloma Virus, etc.


The expression vectors described herein can also include nucleic acids of the present invention under the control of an inducible promoter such as the tetracycline inducible promoter or a glucocorticoid inducible promoter. The nucleic acids of the present invention can also be under the control of a tissue-specific promoter to promote expression of the nucleic acid in specific cells, tissues or organs. Any regulatable promoter, such as a metallothionein promoter, a heat-shock promoter, and other regulatable promoters, of which many examples are well known in the art are also contemplated. Furthermore, a Cre-loxP inducible system can also be used, as well as a Flp recombinase inducible promoter system, both of which are known in the art.


Alternative vectors for the expression of genes or nucleic acids in mammalian cells, those similar to those developed for the expression of human gamma-interferon, tissue plasminogen activator, clotting Factor VIII, hepatitis B virus surface antigen, protease Nexinl, and eosinophil major basic protein, can be employed. Further, the vector can include CMV promoter sequences and a polyadenylation signal available for expression of inserted nucleic acids in mammalian cells (such as COS-7).


Insect cells also permit the expression of mammalian proteins. Recombinant proteins produced in insect cells with baculovirus vectors undergo post-translational modifications similar to that of wild-type proteins. Briefly, baculovirus vectors useful for the expression of active proteins in insect cells are characterized by insertion of the protein coding sequence downstream of the Autographica californica nuclear polyhedrosis virus (AcNPV) promoter for the gene encoding polyhedrin, the major occlusion protein. Cultured insect cells such as Spodoptera frugiperda cell lines are transfected with a mixture of viral and plasmid DNAs and the viral progeny are plated. Deletion or insertional inactivation of the polyhedrin gene results in the production of occlusion negative viruses which form plaques that are distinctively different from those of wild-type occlusion positive viruses. These distinctive plaque morphologies allow visual screening for recombinant viruses in which the AcNPV gene has been replaced with a hybrid gene of choice.


The invention also provides for the vectors containing the contemplated nucleic acids in a host suitable for expressing the nucleic acids. The host cell can be a prokaryotic cell, including, for example, a bacterial cell. More particularly, the bacterial cell can be an E. coli cell. Alternatively, the cell can be a eukaryotic cell, including, for example, a Chinese hamster ovary (CHO) cell, a COS-7 cell, a HELA cell, an avian cell, a myeloma cell, a Pichia cell, or an insect cell. The coding sequence for any of the polypeptides described herein can be introduced into a Chinese hamster ovary (CHO) cell line, for example, using a methotrexate resistance-encoding vector, or other cell lines using suitable selection markers. Presence of the vector DNA in transformed cells can be confirmed by Southern blot analysis. Production of RNA corresponding to the insert coding sequence can be confirmed by Northern blot analysis. A number of other suitable host cell lines have been developed and include myeloma cell lines, fibroblast cell lines, and a variety of tumor cell lines such as melanoma cell lines. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer, and necessary information processing sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences. Preferred expression control sequences are promoters derived from immunoglobulin genes, SV40, Adenovirus, Bovine Papilloma Virus, etc. The vectors containing the nucleic acid segments of interest can be transferred into the host cell by well-known methods, which vary depending on the type of cellular host. For example, calcium chloride transformation is commonly utilized for prokaryotic cells, whereas calcium phosphate, DEAE dextran, Lipofectamine, or lipofectin mediated transfection, electroporation or any method now known or identified in the future can be used for other eukaryotic cellular hosts.


Polypeptides


The present invention provides isolated polypeptide comprising the polypeptide or protein sequences set forth under GenBank Accession Nos. in Table 1. The present invention also provides fragments of these polypeptides, for example, fragments of an annexin A1 protein, fragments of an annexin A2 protein, fragments of an annexin A3 protein, etc. These fragments can be of sufficient length to serve as antigenic peptides fox the generation of antibodies. The present invention also contemplates functional fragments of the proteins set forth in Table 1 that possess at least one activity of the protein, for ex ample, necessary for viral infection, but not necessary for survival of the cell. It will be known to one of skill in the art that the polypeptides set forth in Table 1 possess other properties. For example, ABCA4 is a member of the superfamily of ATP-binding cassette transporters. Therefore one of skill in the art could assess a ABCA4 fragment for its ability to function as an ATP-binding cassette transporter. If there is ATP-binding cassette transporter activity, one of skill in the art would know that the ABCA4 is a functional fragment of ABCA4. Fragments and variants of the polypeptides listed in Table 1 can include one or more conservative amino acid residues as compared to the amino acid sequence listed under their respective GenBank Accession Nos.


By “isolated polypeptide” or “purified polypeptide” is meant a polypeptide that is substantially free from the materials with which the polypeptide is normally associated in nature or in culture. The polypeptides of the invention can be obtained, for example, by extraction from a natural source if available (for example, a mammalian cell), by expression of a recombinant nucleic acid encoding the polypeptide (for example, in a cell or in a cell-free translation system), or by chemically synthesizing the polypeptide. In addition, polypeptide may be obtained by cleaving full length polypeptides. When the polypeptide is a fragment of a larger naturally occurring polypeptide, the isolated polypeptide is shorter than and excludes the full-length, naturally-occurring polypeptide of which it is a fragment.


The polypeptides of the invention can be prepared using any of a number of chemical polypeptide synthesis techniques well known to those of ordinary skill in the art including solution methods and solid phase methods. One method of producing the polypeptides of the present invention is to link two or more peptides or polypeptides together by protein chemistry techniques. For example, peptides or polypeptides can be chemically synthesized using currently available laboratory equipment using either Fmoc (9-fluorenylmethyloxycarbonyl) or Boc (tert-butyloxycarbonyl) chemistry. (Applied Biosystems, Inc., Foster City, Calif.). One skilled in the art can readily appreciate that a peptide or polypeptide corresponding to the antibody of the present invention, for example, can be synthesized by standard chemical reactions. For example, a peptide or polypeptide can be synthesized and not cleaved from its synthesis resin, whereas the other fragment of an antibody can be synthesized and subsequently cleaved from the resin, thereby exposing a terminal group which is functionally blocked on the other fragment. By peptide condensation reactions, these two fragments can be covalently joined via a peptide bond at their carboxyl and amino termini, respectively, to form an antibody, or fragment thereof. (Grant G A (1992) Synthetic Peptides: A User Guide. W.H. Freeman and Co., N.Y. (1992); Bodansky M and Trost B., Ed. (1993) Principles of Peptide Synthesis. Springer-Verlag Inc., NY. Alternatively, the peptide or polypeptide is independently synthesized in vivo as described above. Once isolated, these independent peptides or polypeptides may be linked to form an antibody or fragment thereof via similar peptide condensation reactions.


For example, enzymatic ligation of cloned or synthetic peptide segments allow relatively short peptide fragments to be joined to produce larger peptide fragments, polypeptides or whole protein domains (Abrahmsen L et al., Biochemistry, 30:4151 (1991)). Alternatively, native chemical ligation of synthetic peptides can be utilized to synthetically construct large peptides or polypeptides from shorter peptide fragments. This method consists of a two-step chemical reaction (Dawson et al. Synthesis of Proteins by Native Chemical Ligation. Science, 266:776-779 (1994)). The first step is the chemoselective reaction of an unprotected synthetic peptide-alpha-thioester with another unprotected peptide segment containing an amino-terminal Cys residue to give a thioester-linked intermediate as the initial covalent product. Without a change in the reaction conditions, this intermediate undergoes spontaneous, rapid intramolecular reaction to form a native peptide bond at the ligation site. Application of this native chemical ligation method to the total synthesis of a protein molecule is illustrated by the preparation of human interleukin 8 (IL-8) (Baggiolini M et al. (1992) FEBS Lett. 307:97-101; Clark-Lewis I et al., J. Biol. Chem., 269:16075 (1994); Clark-Lewis I et al., Biochemistry, 30:3128 (1991); Rajarathnam K et al., Biochemistry 33:6623-30 (1994)).


Alternatively, unprotected peptide segments are chemically linked where the bond formed between the peptide segments as a result of the chemical ligation is an unnatural (non-peptide) bond (Schnolzer, M et al. Science, 256:221 (1992)). This technique has been used to synthesize analogs of protein domains as well as large amounts of relatively pure proteins with full biological activity (deLisle Milton R C et al., Techniques in Protein Chemistry IV. Academic Press, New York, pp. 257-267 (1992)).


The polypeptides of the invention can also be prepared by other means including, for example, recombinant techniques. Examples of appropriate cloning and sequencing techniques, and instructions sufficient to direct persons of skill through many cloning exercises are found in Sambrook et al. (2001) Molecular Cloning—A Laboratory Manual (3rd ed.) Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, NY, (Sambrook).


Also provided by the present invention is a polypeptide comprising an amino acid sequence at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the polypeptide sequences set forth under GenBank Accession Nos. in Table 1 or fragments of these polypeptide sequences.


It is understood that as discussed herein the use of the terms “homology” and “identity” mean the same thing as similarity. Thus, for example, if the use of the word homology is used to refer to two non-natural sequences, it is understood that this is not necessarily indicating an evolutionary relationship between these two sequences, but rather is looking at the similarity or relatedness between their nucleic acid sequences. Many of the methods for determining homology between two evolutionarily related molecules are routinely applied to any two or more nucleic acids or proteins for the purpose of measuring sequence similarity regardless of whether they are evolutionarily related.


In general, it is understood that one way to define any known variants and derivatives or those that might arise, of the disclosed nucleic acids and polypeptides herein, is through defining the variants and derivatives in terms of homology to specific known sequences. In general, variants of nucleic acids and polypeptides herein disclosed typically have at least, about 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent homology to the stated sequence or the native sequence. Those of skill in the art readily understand how to determine the homology of two polypeptides or nucleic acids. For example, the homology can be calculated after aligning the two sequences so that the homology is at its highest level.


Another way of calculating homology can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch, J. Mol. Biol. 48: 443 (1970), by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.; the BLAST algorithm of Tatusova and Madden FEMS Microbiol. Lett. 174: 247-250 (1999) available from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html)), or by inspection.


The same types of homology can be obtained for nucleic acids by for example the algorithms disclosed in Zuker, M. Science 244:48-52, 1989, Jaeger et al. Proc. Natl. Acad. Sci. USA 86:7706-7710, 1989, Jaeger et al. Methods Enzymol. 183:281-306, 1989 which are herein incorporated by reference for at least material related to nucleic acid alignment. It is understood that any of the methods typically can be used and that in certain instances the results of these various methods may differ, but the skilled artisan understands if identity is found with at least one of these methods, the sequences would be said to have the stated identity.


For example, as used herein, a sequence recited as having a particular percent homology to another sequence refers to sequences that have the recited homology as calculated by any one or more of the calculation methods described above. For example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using the Zuker calculation method even if the first sequence does not have 80 percent homology to the second sequence as calculated by any of the other calculation methods. As another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using both the Zuker calculation method and the Pearson and Lipman calculation method even if the first sequence does not have 80 percent homology to the second sequence as calculated by the Smith and Waterman calculation method, the Needleman and Wunsch calculation method, the Jaeger calculation methods, or any of the other calculation methods. As yet another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using each of calculation methods (although, in practice, the different calculation methods will often result in different calculated homology percentages).


Also provided by the present invention are polypeptides set forth under GenBank Accession Nos. in Table 1, with one or more conservative amino acid substitutions. These conservative substitutions are such that a naturally occurring amino acid is replaced by one having similar properties. Such conservative substitutions do not alter the function of the polypeptide. For example, conservative substitutions can be made according to the following table:

TABLE 1Amino Acid SubstitutionsOriginal ResidueExemplary SubstitutionsArgLysAsnGlnAspGluCysSerGlnAsnGluAspGlyProHisGlnIleleu; valLeuile; valLysarg; glnMetleu; ilePhemet; leu; tyrSerThrThrSerTrpTyrTyrtrp; pheValile; leu


Thus, it is understood that, where desired, modifications and changes may be made in the nucleic acid encoding the polypeptides of this invention and/or amino acid sequence of the polypeptides of the present invention and still obtain a polypeptide having like or otherwise desirable characteristics. Such changes may occur in natural isolates or may be synthetically introduced using site-specific mutagenesis, the procedures for which, such as mis-match polymerase chain reaction (PCR), are well known in the art. For example, certain amino acids may be substituted for other amino acids in a polypeptide without appreciable loss of functional activity. It is thus contemplated that various changes may be made in the amino acid sequence of the polypeptides of the present invention (or underlying nucleic acid sequence) without appreciable loss of biological utility or activity and possibly with an increase in such utility or activity. Thus, it is clear that naturally occurring variations in the polypeptide sequences set forth herein as well as genetically engineered variations in the polypeptide sequences set forth herein are contemplated by the present invention. By providing the genomic location of genes that are involved in viral infection, the present invention has also provided the genomic location of any variant sequences of these genes. Thus, based on the information provided herein, it would be routine for one of skill in the art to identify and sequence the genomic region identified by applicants and identify variant sequences of the genes set forth herein. It would also be routine for one of skill in the art to utilize comparison tools and bioinformatics techniques to identify sequences from other species that are homologs of the genes set forth herein and are also necessary for infection, but not necessary for survival of the cell.


Antibodies


The present invention also provides antibodies that specifically bind to the gene products, polypeptides, proteins and fragments thereof set forth in Table 1. The antibody of the present invention can be a polyclonal antibody or a monoclonal antibody. The antibody of the invention selectively binds a polypeptide. By “selectively binds” or “specifically binds” is meant an antibody binding reaction which is determinative of the presence of the antigen (in the present case, a polypeptide set forth in Table 1 or antigenic fragment thereof among a heterogeneous population of proteins and other biologics). Thus, under designated immunoassay conditions, the specified antibodies bind preferentially to a particular peptide and do not bind in a significant amount to other proteins in the sample. Preferably, selective binding includes binding at about or above 1.5 times assay background and the absence of significant binding is less than 1.5 times assay background.


This invention also contemplates antibodies that compete for binding to natural interactors or ligands to the proteins set forth in Table 1. In other words, the present invention provides antibodies that disrupt interactions between the proteins set forth in Table 1 and their binding partners. For example, an antibody of the present invention can compete with a protein for a binding site (e.g. a receptor) on a cell or the antibody can compete with a protein for binding to another protein or biological molecule, such as a nucleic acid that is under the transcriptional control of a transcription factor set forth in Table 1. The antibody optionally can have either an antagonistic or agonistic function as compared to the antigen.


Preferably, the antibody binds a polypeptide ex vivo or in vivo. Optionally, the antibody of the invention is labeled with a detectable moiety. For example, the detectable moiety can be selected from the group consisting of a fluorescent moiety, an enzyme-linked moiety, a biotin moiety and a radiolabeled moiety. The antibody can be used in techniques or procedures such as diagnostics, screening, or imaging. Anti-idiotypic antibodies and affinity matured antibodies are also considered to be part of the invention.


As used herein, the term “antibody or fragments thereof” encompasses chimeric antibodies and hybrid antibodies, with dual or multiple antigen or epitope specificities, and fragments, such as F(ab′)2, Fab′, Fab and the like, including hybrid fragments. Thus, fragments of the antibodies that retain the ability to bind their specific antigens are provided. Such antibodies and fragments can be made by techniques known in the art and can be screened for specificity and activity according to the methods set forth in the Examples and in general methods for producing antibodies and screening antibodies for specificity and activity (See Harlow and Lane. Antibodies, A Laboratory Manual. Cold Spring Harbor Publications, New York, (1988)).


Also included within the meaning of “antibody or fragments thereof” are conjugates of antibody fragments and antigen binding proteins (single chain antibodies) as described, for example, in U.S. Pat. No. 4,704,692, the contents of which are hereby incorporated by reference.


Optionally, the antibodies are generated in other species and “humanized” for administration in humans. In one embodiment of the invention, the “humanized” antibody is a human version of the antibody produced by a germ line mutant animal. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2, or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In one embodiment, the present invention provides a humanized version of an antibody, comprising at least one, two, three, four, or up to all CDRs of a monoclonal antibody that specifically binds to a protein set forth in Table 1. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of or at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.


Identification of Agents


A method of identifying an antiviral agent comprising a) administering the agent to a cell containing a cellular gene listed in Table 1, b) detecting the level and/or activity of the gene product produced by the cellular gene, a decrease or elimination of the gene product and/or gene product activity indicating a compound with antiviral activity.


The present invention also provides a method of identifying an antiviral agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1, b) contacting the cell with a virus; c) detecting the level of viral infection; and d) associating the level of viral infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of viral infection associated with a decrease or elimination of gene expression and/or activity indicating that the agent is an antiviral agent. For example, the agent can interfere with gene expression and/or the activity of the protein or polypeptide product of the gene. In the methods of the present invention, the test compounds or antiviral agents of the invention can be delivered before or after contacting a cell with a virus or simultaneously with the virus.


The methods described above can be utilized to identify any agent with an activity that decreases infection, prevents infection or promotes cell survival after infection with a pathogen(s). Therefore, in the methods of the present invention, the step of contacting the cell with the virus can be replaced with contacting the cell with any infectious pathogen. Infection includes the introduction of an infectious agent, such as a non-recombinant virus, recombinant virus, plasmid, bacteria, prion, eukaryotic microbe, or other agent capable of infecting a host, such as a cell in cell culture or a cell of a subject. Such infection can be in vitro, ex vivo or in vivo.


The test compounds used in the methods described herein can be, but are not limited to, chemicals, small molecules, drugs, proteins, cDNAs, antibodies, morpholinos, triple helix molecule, siRNAs, shRNAs, antisense RNAs, ribozymes or any other compound now known or identified in the future that interferes with the expression and/or function of the cellular genes described herein. The test compounds can also modulate the activity of the gene products of the cellular genes set forth herein.


Short interfering RNAs (siRNAs) are double-stranded RNAs that can induce sequence-specific post-transcriptional gene silencing, thereby decreasing or even inhibiting gene expression. In some examples, siRNA molecules are about 19-23 nucleotides in length, such as at least 21 nucleotides, for example at least 23 nucleotides. In one example, siRNA triggers the specific degradation of homologous RNA molecules, such as mRNAs, within the region of sequence identity between both the siRNA and the target RNA. For example, WO 02/44321 discloses siRNAs capable of sequence-specific degradation of target mRNAs when base-paired with 3′ overhanging ends. The direction of dsRNA processing determines whether a sense or an antisense target RNA can be cleaved by the produced siRNA endonuclease complex. Thus, siRNAs can be used to modulate transcription, for example, by silencing genes, such as one or more genes set forth in Table 1. The effects of siRNAs have been demonstrated in cells from a variety of organisms, including Drosophila, C. elegans, insects, frogs, plants, fungi, mice and humans (for example, WO 02/44321; Gitlin et al., Nature 418:430-4, 2002; Caplen et al., Proc. Natl. Acad. Sci. 98:9742-9747, 2001; and Elbashir et al., Nature 411:494-8, 2001).


In certain examples, siRNAs are directed against certain target genes, to confirm results of the gene-trap method used against the same nucleic acid sequence. Utilizing sequence analysis tools, one of skill in the art can design siRNAs to specifically target any gene set forth in Table 1 for decreased gene expression. siRNAs that inhibit or silence gene expression of any gene set forth in Table 1 can be obtained from Ambion Inc. 2130 Woodward Austin, Tex. 78744-1832 USA. The siRNAs synthesized by Ambion Inc. can by readily obtained by providing the GenBank Accession No. for a coding sequence or the Entrez Gene number for a gene, both of which are provided for rat and human coding sequences in Table 1.


Also provided herein are examples of sequences that can be utilized to decrease gene expression of the genes listed in Table 1. Specifically, Table 3 provides sense RNA sequences and antisense RNA sequences for the genes listed in Table 1. Therefore, any of the sense or antisense sequences set forth in Table 3 can be used alone or in combination with other sequences to inhibit gene expression. These sequences can comprise a 3′TT overhang and/or additional sequences that allow efficient cloning and expression of the siRNA sequences. These sequences were obtained by analyzing the open reading frames of the genes listed in Table 3. Therefore, Table 3 provides the name of each gene analyzed, the GenBank Accession No. for the mRNA of the gene, the length of the mRNA, the ORF region of the mRNA and the Locus number for each gene. The Locus number for each gene is equivalent to the Entrez Gene number listed in Table 1. Table 3 also provides the start site of the sequence in the open reading frame of the gene that is targeted by the sense RNA sequence and/or the antisense RNA sequence set forth in Table 3. The start site for the target sequence is indicated in the Name column and in the Start column. The Name column also provides a GenBank Accession No. identifier for each target sequence. Thus, it would be clear that a row in Table 3 that had the Name NM000350_siRNA458 indicates that the sense and antisense sequences correspond to GenBank Accession No. NM000350 and the start site for the target sequence is 458. For example, a target sequence for the ABCA4 gene starts at position 458. Therefore, a sequence comprising SEQ ID NO: 1 and/or a sequence comprising SEQ ID NO: 2 are two sequences that can be utilized to target ABCA4 and decrease ABCA4 gene expression. Similarly, a sequence comprising SEQ ID NO: 3 and/or a sequence comprising SEQ ID NO: 4 can be utilized to target ABCA4 expression. These examples are not meant to be limiting and pertain to every sense and antisense RNA sequence set forth in Table 3. Sequences comprising the sense and antisense RNA sequences set forth herein can be utilized to inhibit gene expression in any cell (eukaryotic or prokaryotic), animal or any other organism. These sequences can be cloned into vectors and utilized in vitro, ex vivo or in vivo to decrease gene expression.


shRNA (short hairpin RNA) is a DNA molecule that can be cloned into expression vectors to express siRNA (19-21 nt RNA duplex) for RNAi interference studies. shRNA has the following structural features: a short nucleotide sequence ranging from about 19-29 nucleotides derived from the target gene, followed by a short spacer of about 4-15 nucleotides (i.e. loop) and about a 19-29 nucleotide sequence that is the reverse complement of the initial target sequence. For example, the sense siRNa sequence for any of the genes set forth in Table 3 can be utilized to design and shRNA. As an example, a sense RNA sequence for C10orf3 (SEQ ID NO: 292) was utilized to design an shRNA with an exemplary linker sequence (CGAA). As shown below, the sense sequence is linked via the linker (CGAA) to the antisense sequence to form the top strand. The top strand and the bottom strand are annealed to make a double stranded oligonucleotide that can be cloned into an appropriate vector for expression. The double stranded oligonucleotide can have nucleotide overhangs as depicted below to facilitate cloning. These sequences can be cloned into vectors and utilized in vitro, ex vivo or in vivo to decrease gene expression.

Top Strand5′-CACCG*CCAGAAGTACCAAAGATTTCGAAAAATCTTTGGTACTTCTGG-3′(SEQ ID NO: 837)Bottom Strand5′-AAAACCAGAAGTACCAAAGATTTTTCGAAATCTTTGGTACTTCTGGC*-3′(SEQ ID NO: 838)ds Oligo for5′-CACCGCCAGAAGTACCAAAGATTTCGAAAAATCTTTGGTACTTCTGG-3′(SEQ ID NO: 839)c10orf3       |||||||||||||||||||||||||||||||||||||||||||shRNA    3′-CGGTCTTCATGGTTTCTAAAGCTTTTTAGAAACCATGAAGACCAAAA-5′(SED ID NO: 840)


Therefore, any sense sequence set forth in Table 3 can be linked to its corresponding antisense sequence with a linker to make a top strand for an shRNA. The bottom strand is the reverse complement of the top strand. The “U”s in the sequence set forth in Table 3 are replaced with “T”s to make DNA strands. The top strand and the bottom strand are then annealed to form the double stranded shRNA. As mentioned above, the top and bottom strand can have overhangs or additional sequence to facilitate cloning into an expression vector.


Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. Methods of using ribozymes to decrease or inhibit RNA expression are known in the art (for example see Kashani-Sabet, J. Investig. Dermatol. Symp. Proc., 7:76-78, 2002).


Generally, the term “antisense” refers to a nucleic acid molecule capable of hybridizing to a portion of an RNA sequence (such as mRNA) by virtue of some sequence complementarity. The antisense nucleic acids disclosed herein can be oligonucleotides that are double-stranded or single-stranded, RNA or DNA or a modification or derivative thereof, which can be directly administered to a cell (for example by administering the antisense molecule to the subject), or which can be produced intracellularly by transcription of exogenous, introduced sequences (for example by administering to the subject a vector that includes the antisense molecule under control of a promoter).


Antisense nucleic acids are polynucleotides, for example nucleic acid molecules that are at least 6 nucleotides in length, at least 10 nucleotides, at least 15 nucleotides, at least 20 nucleotides, at least 100 nucleotides, at least 200 nucleotides, such as 6 to 100 nucleotides. However, antisense molecules can be much longer. In particular examples, the nucleotide is modified at one or more base moiety, sugar moiety, or phosphate backbone (or combinations thereof), and can include other appending groups such as peptides, or agents facilitating transport across the cell membrane (Letsinger et al., Proc. Natl. Acad. Sci. USA 1989, 86:6553-6; Lemaitre et al., Proc. Natl. Acad. Sci. USA 1987, 84:648-52; WO 88/09810) or blood-brain barrier (WO 89/10134), hybridization triggered cleavage agents (Krol et al., BioTechniques 1988, 6:958-76) or intercalating agents (Zon, Pharm. Res. 5:539-49, 1988).


Examples of modified base moieties include, but are not limited to: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N˜6-sopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine.


Examples of modified sugar moieties include, but are not limited to: arabinose, 2-fluoroarabinose, xylose, and hexose, or a modified component of the phosphate backbone, such as phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, or a formacetal or analog thereof.


In a particular example, an antisense molecule is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-41, 1987). The oligonucleotide can be conjugated to another molecule, such as a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent. Oligonucleotides can include a targeting moiety that enhances uptake of the molecule by host cells. The targeting moiety can be a specific binding molecule, such as an antibody or fragment thereof that recognizes a molecule present on the surface of the host cell.


In a specific example, antisense molecules that recognize a nucleic acid set forth herein, include a catalytic RNA or a ribozyme (for example see WO 90/11364; WO 95/06764; and Sarver et al., Science 247:1222-5, 1990). Conjugates of antisense with a metal complex, such as terpyridylCu (II), capable of mediating mRNA hydrolysis, are described in Bashkin et al. (Appl. Biochem Biotechnol. 54:43-56, 1995). In one example, the antisense nucleotide is a 2′-0-methylribonucleotide (Inoue et al., Nucl. Acids Res. 15:6131-48, 1987), or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215:327-30, 1987).


The antiviral agents identified utilizing these methods can be used to inhibit viral infection in cells either in vitro, ex vivo or in vivo.


In the methods of the present invention any cell that can be infected with a virus or other pathogen, such as bacteria, parasite or fungi can be utilized. The cell can be prokaryotic or eukaryotic, such as a cell from an insect, fish, crustacean, mammal, bird, reptile, yeast or a bacterium, such as E. coli. The cell can be part of an organism, or part of a cell culture, such as a culture of mammalian cells or a bacterial culture.


The viruses of the present invention include all RNA viruses (including negative stranded RNA viruses, positive stranded RNA viruses, double stranded RNA viruses and retroviruses) and DNA viruses. Examples of viruses include, but are not limited to, HIV (including HIV-1 and HIV-2), parvovirus, papillomaviruses, measles, filovirus (for example, Marburg), SARS (severe acute respiratory syndrome) virus, hantaviruses, influenza viruses (e.g., influenza A, B and C viruses), hepatitis viruses A to G, caliciviruses, astroviruses, rotaviruses, coronaviruses, (for example, human respiratory coronavirus), picornaviruses, (for example, human rhinovirus and enterovirus), Ebola virus, human herpesvirus (such as, HSV-1-9, including zoster, Epstein-Barr, and human cytomegalovirus), foot and mouth disease virus, human adenovirus, adeno-associated virus, smallpox virus (variola), cowpox, monkey pox, vaccinia, polio, viral meningitis and hantaviruses.


For animals, viruses include, but are not limited to, the animal counterpart to any above listed human virus, avian influenza (for example, strains H5N1, H5N2, H7N1, H7N7 and H9N2), and animal retroviruses, such as simian immunodeficiency virus, avian immunodeficiency virus, pseudocowpox, bovine immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, caprine arthritis encephalitis virus and visna virus.


The methods of the present invention can also be used to assess bacterial infection and identify antibacterial agents. Specifically, the same methods are employed but instead of contacting a cell with a virus, the cell is contacted with a bacterium. Therefore, the present invention provides a method of identifying an antibacterial agent comprising a) administering the agent to a cell containing a cellular gene listed in Table 1, b) detecting the level and/or activity of the gene product produced by the cellular gene, a decrease or elimination of the gene product and/or gene product activity indicating a compound with antibacterial activity.


The present invention also provides a method of identifying an antibacterial agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1, b) contacting the cell with a bacteria; c) detecting the level of bacterial infection; and d) associating the level of bacterial infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of bacterial infection associated with a decrease or elimination of gene expression and/or activity indicating that the agent is an antibacterial agent.


Examples of bacteria include, but are not limited to, the following: Listeria (sp.), Mycobacterium tuberculosis, Rickettsia (all types), Ehrlichia, Chylamida. Further examples of bacteria that can be targeted by the present methods include M. tuberculosis, M. bovis, M. bovis strain BCG, BCG substrains, M. avium, M intracellulare, M. africanum, M. kansasii, M. marinum, M. ulcerans, M. avium subspecies paratuberculosis, Nocardia asteroides, other Nocardia species, Legionella pneumophila, other Legionella species, Salmonella typhi, other Salmonella species, Shigella species, Yersinia pestis, Pasteurella haemolytica, Pasteurella multocida, other Pasteurella species, Actinobacillus pleuropneumoniae, Listeria monocytogenes, Listeria ivanovii, Brucella abortus, other Brucella species, Cowdria ruminantium, Chlamydia pneumoniae, Chlamydia trachomatis, Chlamydia psittaci, Coxiella burnetti, other Rickettsial species, Ehrlichia species, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus agalactiae, Bacillus anthracis, Escherichia coli, Vibrio choterae, Campylobacter species, Neiserria meningitidis, Neiserria gonorrhea, Pseudomonas aeruginosa, other Pseudomonas species, Haemophilus influenzae, Haemophilus ducreyi, other Hemophilus species, Clostridium tetani, other Clostridium species, Yersinia enterolitica, and other Yersinia species.


Antibacterial agents found to be effective for one bacterium, can also be effective for other bacteria, particularly bacteria from the same family. Therefore, antibacterial agents identified for one bacteria can be tested utilizing the methods of the present invention for antibacterial activity against other bacteria.


The methods of the present invention can also be used to assess parasitic infection and identify antiparasitic agents. Specifically, the same methods are employed but instead of contacting a cell with a virus, the cell is contacted with a parasite. Therefore, the present invention provides a method of identifying an antiparasitic agent comprising a) administering the agent to a cell containing a cellular gene listed in Table 1, b) detecting the level and/or activity of the gene product produced by the cellular gene, a decrease or elimination of the gene product and/or gene product activity indicating a compound with antiparasitic activity.


The present invention also provides a method of identifying an antiparasitic agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1, b) contacting the cell with a parasite; c) detecting the level of parasitic infection; and d) associating the level of parasitic infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of parasitic infection associated with a decrease or elimination of gene expression and/or activity indicating that the agent is an antiparasitic agent.


Examples of parasites include, but are not limited to, the following: Cryptosporidium, Plasmodium (all species), American trypanosomes (T. cruzi). Furthermore, examples of protozoan and fungal species contemplated within the present methods include, but are not limited to, Plasmodium falciparum, other Plasmodium species, Toxoplasma gondii, Pneumocystis carinii, Trypanosoma cruzi, other trypanosomal species, Leishmania donovani, other Leishmania species, Theileria annulata, other Theileria species, Eimeria tenella, other Eimeria species, Histoplasma capsulatum, Cryptococcus neoformans, Blastomyces dermatitidis, Coccidioides immitis, Paracoccidioides brasiliensis, Penicillium marneffei, and Candida species.


Antiparasitic agents found to be effective for one parasite, can also be effective for other parasite, particularly parasites from the same family. Therefore, antiparasitic agents identified for one parasitic can be tested utilizing the methods of the present invention for antiparasitic activity against other parasites.


In the methods described herein, once the cell containing a cellular gene listed in Table 1 has been contacted with an agent, the level of infection can be associated with the level of gene expression and/or activity, such that a decrease or elimination of infection associated with a decrease or elimination of gene expression and/or activity indicates that the agent is effective against the pathogen. These methods can be utilized to assess the effects of an agent on bacterial infection, antiviral infection, antifungal infection, antiparasitic infection, to name a few. For example, the level of viral infection can be measured in a cell after administration of siRNA that inhibits expression of a gene set forth in Table 1. If there is a decrease in viral infection, then the siRNA is an effective antiviral agent. The level of viral infection can be assessed by measuring an antigen or other product associated with a particular viral infection (for example, p24 for HIV infection). If there is a decrease in p24 levels after administration of an siRNA directed to a gene set forth in Table 1, the siRNA targeting that gene is an effective antiviral agent against HIV. The level of viral injection can also be measured by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay (See for example, Payungporn et al. “Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection.” J Virol Methods. Sep. 22, 2005; Landolt et al. “Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses” Am J Vet Res. 2005 January; 66(1): 119-24)


Similarly, the level of viral infection can be measured in a cell, utilizing the methods set forth above and known in the art, after administration of a chemical, small molecule, drug, protein, cDNA, antibody, morpholino, antisense RNA, ribozyme or any other compound. If there is a decrease in viral infection, then the chemical, small molecule, drug, protein, cDNA, antibody, morpholino, antisense RNA, ribozyme or any other compound is an effective antiviral agent. Similar methods can be utilized to measure the levels of other types of infection such as bacterial infection, fungal infection and parasitic infection.


Antiviral agents found to be effective for one virus, can also be effective for other viruses, particularly viruses from the same family. However, it is also contemplated that an agent found to be effective against HIV can also be effective against influenza or avian flu or any other virus. Therefore, antiviral agents identified for one virus can be tested utilizing the methods of the present invention for antiviral activity against other viruses. The level of the gene product can be measured by any standard means, such as by detection with an antibody specific for the protein. The nucleic acids set forth herein and fragments thereof can be utilized as primers to amplify nucleic acid sequences, such as a gene transcript of one of the genes set forth in Table 1 by standard amplification techniques. For example, expression of a gene transcript can be quantified by RT-PCR using RNA isolated from cells. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see White (1997) and the publication entitled “PCR Methods and Applications” (1991, Cold Spring Harbor Laboratory Press), which is incorporated herein by reference in its entirety for amplification methods. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites. PCR has further been described in several patents including U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,965,188. Each of these publications is incorporated herein by reference in its entirety for PCR methods. One of skill in the art would know how to design and synthesize primers that amplify any of the nucleic acid sequences set forth in Table 1 or a fragment thereof.


A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g., 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.


The sample nucleic acid, e.g. amplified fragment, can be analyzed by one of a number of methods known in the art. The nucleic acid can be sequenced by dideoxy or other methods. Hybridization with the sequence can also be used to determine its presence, by Southern blots, dot blots, etc.


The genes and nucleic acids of the invention can also be used in polynucleotide arrays. Polynucleotide arrays provide a high throughput technique that can assay a large number of polynucleotide sequences in a single sample. This technology can be used, for example, to identify samples with reduced expression of a nucleic acid set forth in Table 1 as compared to a control sample. This technology can also be utilized to determine the effects of reduced expression of a nucleic acid set forth in Table 1. In this way, one of skill in the art can identify genes that are upregulated or downregulated upon reduction of expression of a nucleic acid set forth in Table 1. Similarly, one of skill in the art can identify genes that are upregulated or downregulated upon increased expression of a nucleic acid set forth in Table 1. In this way, other genes can be identified as targets for therapy, such as antiviral therapy, antibacterial therapy, antiparasitic therapy or antifungal therapy.


To create arrays, single-stranded polynucleotide probes can be spotted onto a substrate in a two-dimensional matrix or array. Each single-stranded polynucleotide probe can comprise at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, or 30 or more contiguous nucleotides selected from the nucleotide sequences set forth under GenBank Accession Nos. in Table 1.


The array can also be a microarray that includes probes to different polymorphic alleles of one or more genes set forth in Table 1. A polymorphism exists when two or more versions of a nucleic acid sequence exist within a population of subjects. For example, a polymorphic nucleic acid can be one where the most common allele has a frequency of 99% or less. Different alleles can be identified according to differences in nucleic acid sequences, and genetic variations occurring in more than 1% of a population (which is the commonly accepted frequency for defining polymorphism) are useful polymorphisms for certain applications.


The allelic frequency (the proportion of all allele nucleic acids within a population that are of a specified type) can be determined by directly counting or estimating the number and type of alleles within a population. Polymorphisms and methods of determining allelic Frequencies are discussed in Hartl, D. L. and Clark, A. G., Principles of Population Genetics, Third Edition (Sinauer Associates, Inc., Sunderland Mass., 1997), particularly in chapters 1 and 2.


These microarrays can be utilized to detect polymorphic alleles in samples from subjects. Such alleles may indicate that a subject is more susceptible to viral infection or less susceptible to viral infection. For example, since the present invention shows that a disruption in any of the genes set forth in Table 1 results in decreased viral infection, such microarrays can be utilized to detect polymorphic versions of the genes set forth in Table 1 that result in decreased gene expression and/or decreased activity of the gene product to identify subjects that are less susceptible to viral infection.


The substrate can be any substrate to which polynucleotide probes can be attached, including but not limited to glass, nitrocellulose, silicon, and nylon. Polynucleotide probes can be bound to the substrate by either covalent bonds or by non-specific interactions, such as hydrophobic interactions. Techniques for constructing arrays and methods of using these arrays are described in EP No. 0 799 897; PCT No. WO 97/29212; PCT No. WO 97/27317; EP No. 0 785 280; PCT No. WO 97/02357; U.S. Pat. Nos. 5,593,839; 5,578,832; EP No. 0 728 520; U.S. Pat. No. 5,599,695; EP No. 0 721 016; U.S. Pat. No. 5,556,752; PCT No. WO 95/22058; and U.S. Pat. No. 5,631,734. Commercially available polynucleotide arrays, such as Affymetrix GeneChip™, can also be used. Use of the GeneChip™ to detect gene expression is described, for example, in Lockhart et al., Nature Biotechnology 14:1675 (1996); Chee et al., Science 274:610 (1996); Hacia et al., Nature Genetics 14:441, 1996; and Kozal et al., Nature Medicine 2:753, 1996.


The level of gene product can be compared to the level of the gene product in a control cell not contacted with the compound. The level of gene product can be compared to the level of the gene product in the same cell prior to addition of the compound. Activity or function, can be measured by any standard means, such as by enzymatic assays that measure the conversion of a substrate to a product or binding assays that measure the binding of a protein to a nucleic acid, for example.


Moreover, the regulatory region of the gene can be functionally linked to a reporter gene and compounds can be screened for inhibition of the reporter gene. Such regulatory regions can be isolated from the genomic sequences and identified by any characteristics observed that are characteristic for regulatory regions of the species and by their relation to the start codon for the coding region of the gene. As used herein, a reporter gene encodes a reporter protein. A reporter protein is any protein that can be specifically detected when expressed. Reporter proteins are useful for detecting or quantitating expression from expression sequences. Many reporter proteins are known to one of skill in the art. These include, but are not limited to, β-galactosidase, luciferase, and alkaline phosphatase that produce specific detectable products. Fluorescent reporter proteins can also be used, such as green fluorescent protein (GFP), cyan fluorescent protein (CFP), red fluorescent protein (RFP) and yellow fluorescent protein (YFP).


Viral infection can also be measured via cell based assays. Briefly, cells (20,000 to 2,500,000) are infected with the desired pathogen, and the incubation continued for 3-7 days. The antiviral agent can be applied to the cells before, during, or after infection with the pathogen. The amount of virus and agent administered can be determined by skilled practitioners. In some examples, several different doses of the potential therapeutic agent can be administered, to identify optimal dose ranges. Following transfection, assays are conducted to determine the resistance of the cells to infection by various agents.


For example, if analyzing viral infection, the presence of a viral antigen can be determined by using antibody specific for the viral protein then detecting the antibody. In one example, the antibody that specifically binds to the viral protein is labeled, for example with a detectable marker such as a fluorophore. In another example, the antibody is detected by using a secondary antibody containing a label. The presence of bound antibody is then detected, for example using microscopy, flow cytometry and ELISA.


Alternatively, or in addition, the ability of the cells to survive viral infection is determined, for example, by performing a cell viability assay, such as trypan blue exclusion.


The amount of a protein listed in Table 1, in a cell, can be determines by methods standard in the art for quantitating proteins in a cell, such as Western blotting, ELISA, ELISPOT, immunoprecipitation, immunofluorescence (e.g., FACS), immunohistochemistry, immunocytochemistry, etc., as well as any other method now known or later developed for quantitating protein in or produced by a cell.


The amount of a nucleic acid listed in Table 1, in a cell, can be determined by methods standard in the art for quantitating nucleic acid in a cell, such as in situ hybridization, quantitative PCR, RT-PCR, Taqman assay, Northern blotting, ELISPOT, dot blotting, etc., as well as any other method now known or later developed for quantitating the amount of a nucleic acid in a cell.


The ability of an antiviral agent to prevent or decrease infection by a virus, such as HIV, Ebola, influenza A, SARS, smallpox, to name a few, can be assessed in animal models. Several animal models for viral infection are known in the art. For example, mouse HIV models are disclosed in Sutton et al. (Res. Initiat Treat. Action, 8:22-4, 2003) and Pincus et al. (AIDS Res. Hum. Retroviruses 19:901-8, 2003); guinea pig models for Ebola infection are disclosed in Parren et al. (J. Virol. 76:6408-12, 2002) and Xu et al. (Nat. Med. 4:37-42, 1998); and cynomolgus monkey (Macaca fascicularis) models for influenza infection are disclosed in Kuiken et al. (Vet. Pathol. 40:304-10, 2003). Such animal models can also be used to test agents for an ability to ameliorate symptoms associated with viral infection. In addition, such animal models can be used to determine the LD50 and the ED50 in animal subjects, and such data can be used to determine the in vivo efficacy of potential agents. Animal models can also be used to assess antibacterial, antifungal and antiparasitic agents.


Animals of any species, including, but not limited to, birds, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees, can be used to generate an animal model of viral infection, bacterial infection, fungal infection or parasitic infection if needed.


For example, for a model of viral infection, the appropriate animal is inoculated with the desired virus, in the presence or absence of the antiviral agent. The amount of virus and agent administered can be determined by skilled practitioners. In some examples, several different doses of the potential therapeutic agent (for example, an antiviral agent) can be administered to different test subjects, to identify optimal dose ranges. The therapeutic agent can be administered before, during, or after infection with the virus. Subsequent to the treatment, animals are observed for the development of the appropriate viral infection and symptoms associated therewith. A decrease in the development of the appropriate viral infection, or symptoms associated therewith, in the presence of the agent provides evidence that the agent is a therapeutic agent that can be used to decrease or even inhibit viral infection in a subject.


The present invention also provides a method of making compound that reduces infection, comprising: a) synthesizing a compound; b) administering the compound to a cell containing a cellular gene set forth in Table 1, c) contacting the cell with an infectious pathogen; c) detecting the level of infection; d) associating the level of infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of infection associated with a decrease or elimination of gene expression and/or activity indicating that a compound that reduces infection was made.


Also provided is a method of making compound that reduces infection, comprising: a) administering the compound to a cell containing a cellular gene set forth in Table 1, b) contacting the cell with an infectious pathogen; c) detecting the level of infection; d) associating the level of infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of infection associated with a decrease or elimination of gene expression and/or activity indicating that a compound is a compound that reduces infection; and e) placing the compound in a pharmaceutically acceptable carrier. The compounds that reduce infection can be antiviral, antibacterial, antifungal or antiparasitic compounds or any compound that reduces infection by an infectious agent.


Transgenic Cells and Non-Human Mammals


Transgenic animal models, including recombinant and knock-out animals, can be generated from the host nucleic acids described herein. Exemplary transgenic non-human mammals include, but are not limited to, mice, rabbits, rats, chickens, cows, and pigs. The present invention provides a transgenic non-human mammal that has a knock-out of one or more genes listed in Table 1 and has a decreased susceptibility to infection by pathogens, such as viruses, bacteria, fingi and parasites. Such knock-out animals are useful for reducing the transmission of viruses from animals to humans. In the transgenic animals of the present invention one or both alleles of one or more genes set forth in Table 1 can be knocked out.


By “decreased susceptibility” is meant that the animal is less susceptible to infection or experiences decreased infection by a pathogen as compared to an animal that does not have one or both alleles of a gene of Table 1 knocked out or functionally deleted. The animal does not have to be completely resistant to the pathogen. For example, the animal can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or any percentage in between less susceptible to infection by a pathogen as compared to an animal that does not have a functional deletion of a gene set forth in Table 1. Furthermore, decreasing infection or decreasing susceptibility to infection includes decreasing entry, replication, pathogenesis, insertion, lysis, or other steps in the replication strategy of a virus or other pathogen into a cell or subject, or combinations thereof.


Therefore, the present invention provides a non-human transgenic mammal comprising a functional deletion of one or more genes listed in Table 1, wherein the mammal has decreased susceptibility to infection by a pathogen, such as a virus, a bacterium, a parasite or a fungus. A functional deletion is a mutation, partial or complete deletion, insertion, or other variation made to a gene sequence that inhibits production of the gene product or renders a gene product that is not completely functional or non-functional.


Expression of the sequence used to knock-out or functionally delete the desired gene can be regulated by an appropriate promoter sequence. For example, constitutive promoters can be used to ensure that the functionally deleted gene is not expressed by the animal. In contrast, an inducible promoter can be used to control when the transgenic animal does or does not express the gene of interest. Exemplary inducible promoters include tissue-specific promoters and promoters responsive or unresponsive to a particular stimulus (such as light, oxygen, chemical concentration, such as a tetracycline inducible promoter).


For example, a transgenic mouse or other transgenic animal including a disrupted gene listed in Table 1 can be examined during exposure to various pathogens. Comparison data can provide insight into the life cycles of pathogens. Moreover, knock-out animals (such as pigs) that are otherwise susceptible to an infection (for example influenza) can be made to resist infection, conferred by disruption of the gene. If disruption of the gene in the transgenic animal results in an increased resistance to infection, these transgenic animals can be bred to establish flocks or herds that are less susceptible to infection.


Transgenic animals, including methods of making and using transgenic animals, are described in various patents and publications, such as WO 01/43540; WO 02/19811; U.S. Pub. Nos: 2001-0044937 and 2002-0066117; and U.S. Pat. Nos. 5,859,308; 6,281,408; and 6,376,743; and the references cited therein.


The transgenic animals of this invention also include conditional gene knockdown animals produced, for example, by utilizing the SIRIUS-Cre system that combines siRNA for specific gene-knockdown, Cre-loxP for tissue-specific expression and tetracycline-on for inducible expression. These animals can be generated by mating two parental lines that contain a specific siRNA of interest gene and tissue-specific recombinase under tetracycline control. See Chang et al. “Using siRNA Technique to Generate Transgenic Animals with Spatiotemporal and Conditional Gene Knockdown.” American Journal of Pathology 165: 1535-1541 (2004) which is hereby incorporated in its entirety by this reference regarding production of conditional gene knockdown animals.


The present invention also provides cells including an altered or disrupted gene listed in Table 1 that are resistant to infection by a pathogen. These cells can be in vitro, ex vivo or in vivo cells and can have one or both alleles altered. Such cells therefore include cells having decreased susceptibility to HIV infection, Ebola infection, avian flu, influenza A or any of the other pathogens described herein, including bacteria, parasites and fungi.


Screening for Resistance to Infection


Also provided herein are methods of screening host subjects for resistance to infection by characterizing a nucleotide sequence of a host nucleic acid or the amino acid sequence of a host polypeptide (such as those shown in Table 1). For example, a ANXA1 nucleic acid of a subject can be isolated, sequenced, and compared to the wildtype sequence for ANXA1. The greater the similarity between that subject's ANXA1 nucleic acid and the wildtype ANXA1 sequence, the more susceptible that person is to infection, while a decrease in similarity between that subject's ANXA1 nucleic acid and the wildtype ANXA1 sequence, the more resistant that subject may be to infection. Such screens can be performed for any host nucleic acid or the amino acid sequence of a host polypeptide set forth in Table 1, in any species.


Assessing the genetic characteristics of a population can provide information about the susceptibility or resistance of that population to viral infection. For example, polymorphic analysis of alleles in a particular human population, such as the population of a particular city or geographic area, can indicate how susceptible that population is to infection. A higher percentage of alleles substantially similar to wild-type sequences listed in Table 1 indicates that the population is more susceptible to infection, while a large number of polymorphic alleles that are substantially different than wild-type sequences listed in Table 1 indicates that a population is more resistant to infection. Such information can be used, for example, in making public health decisions about vaccinating susceptible populations.


The present invention also provides a method of screening a cell for a variant form of a gene listed in Table 1. A variant can be a gene with a functional deletion, mutation or alteration in the gene such that the amount or activity of the gene pro duct is altered. These cells containing a variant form of a gene listed in Table 1 can be contacted with a pathogen to determine if cells comprising a naturally occurring variant of a gene listed in Table 1 differ in their resistance to infection. For example, cells from an animal, for example, a chicken, can be screened for a variant form of a gene listed in Table 1. If a naturally occurring variant is found and chickens possessing a variant form of the gene in their genome are less susceptible to infection, these chickens can be selectively bred to establish flocks that are resistant to infection. By utilizing these methods flocks of chickens that are resistant to avian flu can be established. Similarly, other animals can be screened for a variant form of a gene listed in Table 1. If a naturally occurring variant is found and animals possessing a variant form of the gene in their genome are less susceptible to infection, these animals can be selectively bred to establish populations that are resistant to infection. These animals include, but are not limited to, cats, dogs, livestock (for example, cattle, horses, pigs, sheep, goats, etc.), laboratory animals (for example, mouse, rabbit, rat, gerbil, guinea pig, etc.) and avian species (for example, flocks of chickens, geese, turkeys, ducks, pheasants, pigeons, doves etc.). Therefore, the present application provides populations of animals that comprise a naturally occurring variant of a gene listed in Table 1 that results in decreased susceptibility to viral infection, thus providing populations of animals that are less susceptible to viral infection. Similarly, if a naturally occurring variant is found and animals possessing a variant form of the gene in their genome are less susceptible to bacterial, parasitic or fungal infection, these animals can be selectively bred to establish populations that are resistant to bacterial, parasitic or fungal infection.


Methods of Inhibiting Infection


Also provided by the present invention is a method of inhibiting infection in a cell comprising inhibiting expression or activity of a gene or a gene product listed in Table 1. As discussed throughout, infection can be a viral infection, bacterial infection, fungal infection or a parasitic infection, to name a few. Inhibition can occur in a cell, in vitro, ex vivo or in vivo. Expression of one or more genes from Table 1 can be inhibited. Similarly, the activity of one or more gene products listed in Table 1 can be inhibited. Inhibition or a decrease in expression does not have to be complete as this can range from a slight decrease in expression to complete ablation of expression. For example, expression can be inhibited by about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100% or any percentage in between as compared to a control cell wherein the expression of a gene listed in Table 1 has not been inhibited. Similarly, inhibition or decrease in the activity of a gene product does not have to be complete as this can range from a slight decrease to complete ablation of the activity of the gene product. For example, the activity of a gene product can be inhibited by about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100% or any percentage in between as compared to a control cell wherein activity of a gene product listed in Table 1 has not been inhibited.


Antisense oligonucleotides, RNAi molecules, ribozymes and siRNA molecules can be utilized to disrupt expression and/or decrease the activity of a gene product. Small molecules, drugs, antibodies, proteins and chemicals can also be utilized to inhibit expression and/or the activity of a gene product. Antisense oligonucleotides, RNAi molecules, ribozymes, siRNA, small molecules, chemicals, antibodies proteins, cDNAs, and any other compound now known or identified in the future to decrease expression of a gene and/or activity of a gene product set forth in Table 1 can be used alone or in combination with other therapeutic agents such as anti-viral compounds, antibacterial agents, antifungal agents, antiparasitic agents, anti-inflammatory agents, anti-cancer agents, etc.


Examples of antiviral compounds include, but are not limited to, amantadine, rimantadine, zanamavir and oseltamavir (Tamiflu) for the treatment of flu and its associated symptoms. Antiviral compounds useful in the treatment of HIV include Combivir® (lamivudine-zidovudine), Crixivan® (indinavir), Emtriva® (emtricitabine), Epivir® (lamivudine), Fortovase® (saquinavir-sg), Hivid® (zalcitabine), Invirase® (saquinavir-hg), Kaletra® (lopinavir-ritonavir), Lexiva™ (fosamprenavir), Norvir® (ritonavir), Retrovir® (zidovudine) Sustiva® (efavirenz), Videx EC® (didanosine), Videx® (didanosine), Viracept® (nelfinavir) Viramune® (nevirapine), Zerit® (stavudine), Ziagen® (abacavir), Fuzeon® (enfuvirtide) Rescriptor® (delavirdine), Reyataz® (atazanavir), Trizivir® (abacavir-lamivudine-zidovudine) Viread® (tenofovir disoprokil fumarate) and Agenerase® (amprenavir). Other antiviral compounds useful in the treatment of Ebola and other filoviruses include ribavirin and cyanovirin-N (CV-N). For the treatment of herpes virus, Zovirax® (acyclovir) is available. Antibacterial agents include, but are not limited to, antibiotics (for example, penicillin and ampicillin), sulfa Drugs and folic acid Analogs, Beta-Lactams, aminoglycosides, tetracyclines, macrolides, lincosamides, streptogramins, fluoroquinolones, rifampin, mupirocin, cycloserine, aminocyclitol and oxazolidinones.


Antifungal agents include, but are not limited to, amphotericin, nystatin, terbinafine, itraconazole, fluconazole, ketoconazole, griselfulvin.


Antiparasitic agents include, but are not limited to, anthelmintics, antinematodal Agents, antiplatyhelmintic agents, antiprotozoal agents, amebicides, antimalarials, antitrichomonal agents, aoccidiostats and trypanocidal agents.


The present invention provides a method of reducing or inhibiting infection in a subject comprising administering to the subject an amount of a composition that inhibits expression or activity of a gene or a gene product in Table 1. As discussed throughout, the infection can be from any pathogen, for example, a virus, a bacteria, a fungus or a parasite. The reduction or inhibition of infection does not have to be complete as this can range from a slight reduction in infection to elimination of the infection. For example, in the methods described herein, there can be a reduction of infection of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100% or any percentage in between. The reduction can result in amelioration of the symptoms associated with the infection to complete amelioration of the infection. However, complete amelioration of the infection is not necessary for a reduction or inhibition of infection in a subject to be effective in reducing the symptoms associated with the infection or effective in making the subject less susceptible to infection.


As utilized throughout, preventing infection refers to inhibiting the development of an infection. When referring to treatment, this refers to a method that ameliorates a sign or symptom of a disease or pathological condition related to a infection, such as inhibiting or decreasing viral infection and does not require a complete amelioration of symptoms or of the infection.


The present invention also provides a method of reducing or inhibiting infection in a subject comprising mutating ex vivo in a selected cell from the subject a gene listed in Table 1 to a mutated gene incapable of producing a functional gene product of the gene or to a mutated gene producing a reduced amount of a functional gene product of the gene and replacing the cell in the subject, thereby reducing infection of cells in the subject.


Any cell that can be infected with a virus or other pathogen, such as a bacterium, a fungus or a parasite is contemplated herein. A host cell can be prokaryotic or eukaryotic, such as a cell from an insect, crustacean, mammal, bird, reptile, yeast, or a bacterium such as E. coli. Exemplary host cells include, but are not limited to, mammalian B-lymphocyte cells, hematopoeitic cells, embryonic stem cells, embryonic germ line cells, pluripotent stem cells and totipotent stem cells.


For example, a subject susceptible to or suffering from an infection can be treated with a therapeutically effective amount of an antisense oligonucleotide, a RNAi molecule, a ribozyme or a siRNA molecule (or combinations thereof). After the antisense oligonucleotide, an RNAi molecule, a ribozyme or a siRNA molecule has taken effect (a decreased level of viral infection is observed, or symptoms associated with viral infection decrease), for example after 24-48 hours, the subject can be monitored for symptoms associated with viral infection.


Similarly, other agents, such as an antibody, polypeptide, small molecule or other drug that interacts with a host protein from Table 1 can also be used to decrease or viral infection. This interaction can be direct, such as binding to the host protein or indirect, such as binding to or modulating a protein that interacts with a host protein from Table 1. After the antibody, polypeptide, small molecule or other drug has taken effect (a decreased level of infection is observed, or symptoms associated with infection decrease), for example after 24-48 hours, the subject can be monitored for symptoms associated with infection. Other agents such as peptides and organic or inorganic molecules can also be administered to a subject in a therapeutically effective amount.


The treatments disclosed herein can also be used prophylactically, for example, to inhibit or prevent infection, such as viral infection, bacterial infection, fungal infection or parasitic infection. Such administration is indicated where the treatment is shown to have utility for treatment or prevention of the disorder. The prophylactic use is indicated in conditions known or suspected of progressing to disorders associated with infection.


In certain instances, some genes when disrupted by the present method of retrovirus insertion, resulted in overexpression of the gene product, and this overexpression inhibited viral replication. For example, upon disrupting the genomic locus comprising the sequence of CTCF this resulted in an overexpression of IGF2 which led to decreased viral replication. Therefore, the present invention provides a method of decreasing or inhibiting viral replication by overexpressing genes that lead to decreased viral replication. The present invention also provides a method of increasing the expression of genes whose overexpression decreases viral replication by disrupting the a gene, or inhibiting the gene product of a gene that results in increased expression of the gene whose overexpression decreases viral replication. For example, one could inhibit CTCF in order to increase expression of IGF2. This would be similar for any gene found to increase the expression of another gene and results in decreased viral replication.


Once a gene is found that upon disruption results in overexpression of another gene, the gene that is overexpressed can be modulated directly, i.e., via the overexpressed gene, or indirectly, i.e., via the gene that was originally disrupted (or its gene product) or via another gene (or its gene product) associated with the overexpressed gene.


Therefore, the present invention provides a method of identifying an agent that increases the expression of a gene and/or the activity of a gene product comprising contacting a cell with the agent and measuring an increase in gene expression and/or activity of the gene product.


The present invention also provides a method of identifying an agent that decreases or inhibits infection via overexpression of a gene and/or an increase in the activity of a gene product comprising administering the agent to the cell, contacting the cell with a pathogen and associating an increase in gene expression and/or activity of the gene product with the level of infection such that an increase in gene expression and/or activity of the gene product accompanied by a decrease in infection indicates that the agent inhibits infection by the pathogen via overexpression of the gene and/or an increase in the activity of the gene product.


For example, one of skill in the art can administer a compound that results in the overexpression of IGF2. This compound may interact with the IGF2 gene, IGF2 mRNA, the IGF2 protein or a fragment thereof. Information for the human IGF 2 gene and its related sequences can be found under Entrez Gene number 3481. The compound could also interact with the CTCF gene, CTCF mRNA, the CTCF protein or a fragment thereof to increase IGF2 expression. The compound can also interact with other genes, mRNAs or proteins involved in the IGF2 pathway, resulting in increased IGF2 expression.


Therefore, if disruption of gene X results in overexpression of gene Y, the gene that is overexpressed (Y) can be modulated directly, i.e. via the overexpressed gene (Y), or indirectly, i.e., via the gene that was originally disrupted (X) (or its gene product) or via another gene (or its gene product) associated with the overexpressed gene (Y). For example, one of skill in the art can administer a compound that results in the overexpression of Y. This compound may interact with the Y gene, Y mRNA or the Y protein. The compound could also interact with the X gene, X mRNA or the X protein to increase Y expression. The compound can also interact with other genes, mRNAs or proteins involved in the gene Y pathway (i.e. a cellular pathway in which gene Y is involved), resulting in increased Y expression.


Pharmaceutical Compositions and Modes of Administration


Various delivery systems for administering the therapies disclosed herein are known, and include encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis (Wu and Wu, J. Biol. Chem. 1987, 262:4429-32), and construction of therapeutic nucleic acids as part of a retroviral or other vector. Methods of introduction include, but are not limited to, mucosal, topical, intradermal, intramuscular, intraperitoneal, vaginal, rectal, intravenous, subcutaneous, intranasal, and oral routes. The compounds can be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (for example, oral mucosa, rectal, vaginal and intestinal mucosa, etc.) and can be administered together with other biologically active agents. Administration can be systemic or local. Pharmaceutical compositions can be delivered locally to the area in need of treatment, for example by topical application or local injection.


Pharmaceutical compositions are disclosed that include a therapeutically effective amount of a RNA, DNA, antisense molecule, ribozyme, siRNA, molecule, drug, protein, antibody or other therapeutic agent, alone or with a pharmaceutically acceptable carrier. Furthermore, the pharmaceutical compositions or methods of treatment can be administered in combination with (such as before, during, or following) other therapeutic treatments, such as other antiviral agents, antibacterial agents, antifungal agents and antiparasitic agents.


Delivery Systems


The pharmaceutically acceptable carriers useful herein are conventional. Remington's Pharmaceutical Sciences, by Martin, Mack Publishing Co., Easton, Pa., 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the therapeutic agents herein disclosed. In general, the nature of the carrier will depend on the mode of administration being employed. For instance, parenteral formulations usually include injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, sesame oil, glycerol, ethanol, combinations thereof, or the like, as a vehicle. The carrier and composition can be sterile, and the formulation suits the mode of administration. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.


The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. For solid compositions (for example powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, sodium saccharine, cellulose, magnesium carbonate, or magnesium stearate. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.


Embodiments of the disclosure including medicaments can be prepared with conventional pharmaceutically acceptable carriers, adjuvants and counterions as would be known to those of skill in the art.


The amount of therapeutic agent effective in decreasing or inhibiting infection can depend on the nature of the pathogen and its associated disorder or condition, and can be determined by standard clinical techniques. Therefore, these amounts will vary depending on the type of virus, bacteria, fungus, parasite or other pathogen. In addition, in vitro assays can be employed to identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.


The disclosure also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. Instructions for use of the composition can also be included.


In an example in which a nucleic acid is employed to reduce infection, for example, a viral infection, such as an antisense or siRNA molecule, the nucleic acid can be delivered intracellularly (for example by expression from a nucleic acid vector or by receptor-mediated mechanisms), or by an appropriate nucleic acid expression vector which is administered so that it becomes intracellular, for example by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (such as a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (for example Joliot et al., Proc. Natl. Acad. Sci. USA 1991, 88:1864-8). The present disclosure includes all forms of nucleic acid delivery, including synthetic oligos, naked DNA, plasmid and viral delivery, integrated into the genome or not.


As mentioned above, vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome (see e.g., Pastan et al., Proc. Natl. Acad. Sci. U.S.A. 85:4486, 1988; Miller et al., Mol. Cell. Biol. 6:2895, 1986). The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells a nucleic acid, for example an antisense molecule or siRNA. The exact method of introducing the altered nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors (Mitani et al., Hum. Gene Ther. 5:941-948, 1994), adeno-associated viral (AAV) vectors (Goodman et al., Blood 84:1492-1500, 1994), lentiviral vectors (Naidini et al., Science 272:263-267, 1996), and pseudotyped retroviral vectors (Agrawal et al., Exper. Hematol. 24:738-747, 1996). Other nonpathogenic vector systems such as the foamy virus vector can also be utilized (Park et al. “Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs.” Virology. 2005 Sep. 20). It is also possible to deliver short hairpin RNAs (shRNAs) via vector delivery systems in order to inhibit gene expression (See Pichler et al. “In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein.” Clin Cancer Res. 2005 Jun. 15; 11(12):4487-94; Lee et al. “Specific inhibition of HIV-1 replication by short hairpin RNAs targeting human cyclin Ti without inducing apoptosis.” FEBS Lett. 2005 Jun. 6; 579(14):3100-6.).


Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms (see, for example, Schwartzenberger et al., Blood 87:472-478, 1996) to name a few examples. This invention can be used in conjunction with any of these or other commonly used gene transfer methods.


Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.


EXAMPLES

Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and can provide cellular targets for new antiviral therapies.


Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2×105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signaling, vesicular transport/cytoskeletal trafficking and apoptosis.


Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection.


Cellular genes are likely to participate in all phases of viral life cycles including attachment to cellular receptors, internalization, disassembly, translation of mRNA, assembly and egress from the cells [1]. The susceptibility to virus infection varies greatly among different cell types, and virus-resistant cells frequently emerge post-infection [2-4]. This suggests that genetic determinants can influence host cell contributions to the virus life cycle. Despite examples of mammalian genes that influence virus infection, the identification of such genes has been hampered by the lack of practical methods for genetic analysis in cultured cells. In the present study, whether tagged sequence mutagenesis—a gene entrapment strategy widely used to mutate genes in mouse embryonic stem cells [5-10] could be used to identify candidate cellular genes required for lytic infection by reovirus, a small cytolytic RNA virus that replicates in the cytoplasm was tested. The mammalian reoviruses serve as useful models for virus-host cell interaction due to their capacity to replicate preferentially in proliferating and undifferentiated cells [3].


Gene traps are efficient mutagens as assessed by studies in mice of mutations induced originally in embryonic stem cells. In somatic cells, the approach assumes that loss-of-function mutations induced by gene entrapment may confer reovirus resistance as a result of gene dosage effects (e.g. haploinsufficiency), pre-existing heterozygosity or loss of heterozygosity. Following infection with the U3NeoSV1 retrovirus gene trap shuttle vector, libraries of mutagenized rat intestinal epithelial (RIE)-1 cell clones were isolated in which each clone contained a single gene disrupted by provirus integration [6]. The entrapment libraries were infected with reovirus type 1, and virus-resistant clones were selected under conditions that also selected against the emergence of persistently infected cells (PI) that may express virus resistance in the absence of cellular mutations [4]. Genes disrupted in a total of 151 reovirus resistant cells were identified by sequencing regions of genomic DNA adjacent to the entrapment vector [6]; of these, 111 contained mutations in previously characterized genes and anonymous transcription units.


Reovirus-resistant clones were selected at higher frequencies from entrapment libraries than from non-mutagenized cells, suggesting that reovirus-resistant phenotypes were induced by gene trap mutagenesis. However in any genetic screen, clones with the selected phenotype may arise from spontaneous mutations, and consequently, additional experiments are required to demonstrate that individual genes disrupted by gene entrapment actually contribute to the reovirus-resistant phenotype. For example, a mutation in Ctcf, a transcriptional repressor of insulin growth factor II (IGF-II), was one of 4 mutations associated with reovirus resistance that affected IGF-II expression and/or signaling. Subsequent experiments demonstrated that enforced IGF-II expression is sufficient to confer high levels of reovirus resistance [4]. In short, genes collectively identified by tagged sequence mutagenesis in a panel of reovirus resistant clones provide candidates for mechanistic studies of cellular processes that participate in the virus lifecycle. Since the disrupted genes do not adversely affect cell survival, drags that inhibit proteins encoded by the genes are not expected to be overtly toxic to cells. Hence, the candidate genes also include targets for novel anti-viral therapies.


RIE-1, L-Cells and Virus:


Reovirus type 1, strain Lang, was initially obtained from Bernard N. Fields. Virus was passaged in L-cells and a third passaged stock was purified over a CsCl gradient as previously described and was used for these experiments [59]. To develop PI cell lines, RIE-1 cells were infected with reovirus type 1, at a multiplicity of infection (MOI) of 5, and surviving cells were maintained in Dulbecco's modification of Eagle's minimum essential medium (DMEM) (Irvine Scientific, Santa Ana, Calif., USA). The herpes simplex virus (ESV)-1 clone, HSV-1 KOStk12, that expresses a reporter gene, lacZ, as an immediate-early gene [46] was a generous gift of Patricia Spear, Northwestern University, USA. For RIE-1 and L-cells, medium was supplemented with 10% fetal bovine serum, 2 mM per ml, L-Glutamine 100 units per ml, Penicillin, and 100 μg per ml Streptomycin (Irvine Scientific, Santa Ana, Calif., USA) [complete medium]. In some experiments, serum was omitted from the medium. The continuance of cell monolayers following infection with reovirus or HSV-1 was determined by staining with gentian violet.


Tagged Sequence Mutagenesis and Selection for Reovirus Resistance:


Following infection of RIE-1 cells with the U3neoSV1 vector, MOI of 0.1, mutagenized cells were selected for neomycin resistance in medium containing 1 mg/ml G418 sulfate (Clontech, Palo Alto, Calif., USA) [6]. Twenty libraries of mutant RIE-1 cells, and one library of A549 human adenocarcinoma cells, each consisting of 104 gene entrapment events, were expanded until approximately 103 sibling cells represented each mutant clone. These cells were plated at a sub-confluent density and incubated in serum-free media for 3 days until they became quiescent, and infected with reovirus serotype 1, MOI of 35 plaque forming units (pfu) per cell. Eighteen hours following infection, the cells were detached with trypsin, and plated in DMEM medium containing 10% fetal bovine serum (FBS) (Hyclone Laboratories, Inc., Logan, Utah, USA). After 6 hrs, the medium was removed and cells were maintained in serum-free medium until only a few cells remained attached to the flask. On average, one to ten clones were recovered from a library consisting of 107 mutant cells, an enrichment for selected cells of six orders of magnitude. Cells that survived the selection were transferred to cell culture plates in media containing 10% FBS and cells were divided for extraction of DNA and cryopreservation.


Transcription and Translation of HSV-1 Immediate Early Gene Reporter:


The transcription and translation of the HSV-1 immediate early gene reporter gene, lacZ, was determined by standard northern blot techniques and β-galactosidase assay, respectively.


Generation of Libraries of Mutagenized RIE-1 Cells:


Libraries of mutagenized cells were infected with reovirus serotype-1, strain Lang, to select for clones resistant to lytic infection. Selection of virus-resistant clones was performed in serum-free medium to suppress the emergence of persistently infected (PI) cells [4]. This is important since PI cells, which arise by a process involving adaptive mutations in both the virus and the cell genomes [60], provide a means whereby RIE-1 cells can acquire virus resistance in the absence of cellular mutations. Uninfected RIE-1 cells undergo growth arrest, whereas PI RIE-1 cells are killed in serum-free medium.


DNA Sequence Analysis:


Genomic DNA immediately adjoining the 5′ end of the proviral insert in each of 130 cell lines was cloned by plasmid rescue [6]. Approximately 300 to 600 base pairs of this flanking DNA were sequenced and compared with the non-redundant (nr) and expressed sequence tag (dbEST) nucleic acid databases [61]. The probability of a match with orthologous sequences in the databases varies due to interspecies variation, the amount of exon in the flanking DNA (in cases where the flanking DNA matches cDNA sequences), alternative splicing and sequencing errors. Matches with sequences in the database were considered potentially significant if probability score was <10−5 and the sequence was non-repetitive. In most cases, the matching gene was in the same transcriptional orientation as the provirus. Moreover, matches involving cDNA sequences were co-linear across exons present in the flanking genomic DNA and diverged at splice sites. As indicated, virtually all of the genes identified had matches to murine, rat, or human gene sequences with p<10−10.


Tagged Sequence Mutagenesis and Selection of Reovirus Resistant Clones


Twenty libraries of mutagenized RIE-1 cells, each representing approximately 104 independent gene trap events, were isolated following infection with the U3NeoSV1 gene trap retrovirus. U3NeoSV1 contains coding sequences for a neomycin resistance gene in the U3 region of the viral long terminal repeat (LTR). Selection for neomycin resistance generates clones with proviruses inserted within actively transcribed genes. Cells pooled from each entrapment library were separately infected with Type 1 reovirus at a multiplicity of infection of 35, and reovirus-resistant clones were selected in serum-free media to suppress the emergence of persistently infected (PI) cells (ref). A total of 151 reovirus-resistant clones were isolated—approximately 1 mutant per 103 gene trap clones or 1 mutant per 107 reovirus infected cells. For comparison, the frequency of recovering resistant clones from RIE-1 cells not mutagenized by gene entrapment was less than 10−8. This suggests that reovirus-resistant phenotypes were induced by gene trap mutagenesis.


Reovirus-resistant cells selected in serum-free media did not express viral antigens (FIG. 1) and did not produce infectious virus as assessed by plaque assay. Most clones were resistant to infection by high titer reovirus and were further analyzed (FIG. 2). While reovirus resistance did not initially result from the establishment of a persistent infection, many clones became persistently infected upon subsequent passages, presumably because mutant cells that display virus resistance are susceptible to the establishment of a PI state [2] from residual virus used in selection.


Identification of Genes Disrupted in Reovirus-Resistant Clones


The U3NeoSV1 gene trap vector contains a plasmid origin of replication and ampicillin resistance gene; thus, regions of genomic DNA adjacent to the targeting vector were readily cloned by plasmid rescue and sequenced [6]. The flanking sequences were compared to the nucleic acid databases to identify candidate cellular genes that confer resistance to lytic infection by reovirus when altered by gene entrapment. Altogether, the 151 cloned flanking sequences matched 111 annotated gene and transcription units in the public DNA sequence databases [non-redundant (nr), high-throughput genomic sequences (htgs), and human, mouse, and rat genome sequences [6]. 40 flanking sequences were uninformative because they matched repetitive elements or regions of genomic DNA not associated with any annotated transcription unit.


Table I lists genes disrupted in reovirus resistant clones for which some functional information is available. The Table also includes genes that encode proteins that are known to physically interact. Genes associated with particular metabolic or signaling pathways are shown in Table 2. These include gene products that could play potential roles in all aspects of virus replication: entry, disassembly, transcription, translation, and reassembly (Table 1, 2, FIG. 3). Eleven genes encoding calcyclin, insulin growth factor binding protein 5 protease (prss11), type C-like lectin protein (Clr)-f and -C, Dnaja1−/Aprataxin+ (Aprx), GATA binding protein 4 (Gata4), Bcl2 like-1 (Bcl2l1); and chromosome 10 open reading frame 3 (Chr10orf3) and myoferlin, fer-1 like protein 3 (Fer1l3), S100a6 (encoding calcyclin), and two functionally anonymous cDNAs were independently mutated in separate cell libraries (Table 1). The proviruses in these independent of mutant clones were located within 7 to over 1500 nucleotides of each other.


Resistance to HSV-1


Experiments were conducted to determine if genes were resistant to HSV-1 infection. These experiments utilized HSV-1(KOS)tk12, an infectious virus that expresses a lacZ reporter as an immediate-early gene [46]. Four clones, with mutations in the Eif3s10, AnxaI, Mgat1, and Igf2r genes, were resistant to HSV-I infection and there was a diminished capacity to express the immediate-early lacZ reporter gene. Clones with mutations in Eif3s10, Mgat1, and Ig2r also show decreases in transcription and translation of virus mRNA and cell death. Mutations in the Igf2r are known to affect HSV replication [15, 54, 58]; whereas, association of HSV replication with proteins encoded by the Eif3s10, Anxa1, and Mgat1 are novel. These data show that some of the candidate genes discovered in clones surviving reovirus infection can affect common cellular processes that are used by other viruses.

TABLE IGenbankAccessionHumanHuman# forGenbankGenBankNucleicRat GenbankAccession #Accession #AcidEntrez Gene forEntrez Gene forGENEDefinitionRat CHRHuman CHRAccessionfor mRNAfor proteinClone DesignationInsertRat GeneHuman GeneLoc310836ATP-binding2q411p22.1-p21XP_241525NM_000350NP_0003416BE65_T7AR22807631083624(Abca4)cassette, subfamilyBD069426A (ABC1),SEQ IDmember 4NO: 69from U.S.Pat. No.6,448,000;Anxa1annexin A11q519q12-q21.2U25159NM_000700NP_0006916B37H_T7AR22807225380301BD069422sequence 65from U.S.Pat. No.6,448,000;Anxa2annexin A28q2415q21-q22NM_019905NM_001002857NP_0010028577A7_rEAR22804756611302NM_001002858NP_001002858BD069397NM_004039NP_004030sequence 40from U.S.Pat. No.6,448,000;BD078939SEQ IDNO: 19from U.S.Pat. No.6,777,177;Anx3annexin A314p224q13-q22NM_012823NM_005139NP_00513070A-rEBD07902525291306SEQ IDNO: 105from U.S.Pat. No.6,777,177Aptx-/aprataxin/DnaJ5q229p13.3NW_07454NM_017692NP_06016212_3b#7-rEBD07894425927154840dnaja1(Hsp40) homolog,NM_175069NP_77823912_3B#8-rESEQ ID650283301[Hsj2]subfamily A,NM_175071NP_7782419B27_2_rENO: 24member 1NM_175072/NP_778242/U.S. Pat.NM_001539NP_001530No.6,777,177BD078943SEQ IDNO: 23from U.S.Pat. No.6,777,177BD078945SEQ IDNO; 25from U.S.Pat. No.6,777,177Atp6v0cATPase, H+10q1216p13.3NC_000016NM_001694NP_0016856BE3_lacAR228008,170667527transporting,BD069358lysosomal 16 kDa,SEQ IDV0 subunit cNO: 1 fromU.S. Pat.No.6,448,000Bcl2l1Bcl2-like13q41.220q11.21NP_238186NM_001191NP_001182L197B3E-rEBD07900824888598NM_138578NP_612815L24 5-3-rESEQ IDL24-4-4-rENO: 88from U.S.Pat. No.6,777,177,BD079032SEQ IDNO: 112,U.S. Pat.No.6,777,177Brd2bromodomain-20p126p21.3XP_238186NM_005104NP_00509536_5_2_6-rEBD0789872942766046containing 2SEQ IDNO: 67from U.S.Pat. No.6,777,177Brd3/Bromodomain-3p129q34XP_342398NM_007371/NP_031397/1A_rEAR228036,3620938019/containing 3/BD069386Wdr5WD repeat domain 5XP_342397NM_017588NP_060058SEQ ID11091NM_052821NP_438172NO: 29from U.S.Pat. No.6,448,000C9orf119+/gene of unknown3p119q34.13NW_047652XM_372143XP_3721436_3_6_2E-rEBD078967375757375757functionBC029911AAH29911SEQ IDGolga2-Golgi autoantigen,NM_022596NM_004486NP_004477NO: 47645282801Golgin subfamilyfrom U.S.a, 2Pat. No.6,177,177C10orf3chromosome 101q5410q23.33XP_220034NM_018131NP_06060114_24#6-rEAR2280545516555165open readingL24 5-3-rEBD069404frame 3L192A3E-rESEQ ID6b52-rENO: 47from U.S.Pat. No.6,448,000;BD078938SEQ IDNO: 88from U.S.Pat. No.6,777,177BD078978SEQ IDNO: 58from U.S.Pat. No.6,777,177AR228049BD069399SEQ IDNO: 42from U.S.Pat. No.6,448,000Cald1caldesmon 14q227q33NM_013146NM_004342NP_004333191E2E-rEBD07895825687800NM_033138NP_149129SEQ IDNM_033139NP_149130NO: 38NM_033140NP_149131from U.S.NM_033157NP_149347Pat. No.6,777,177Calm2calmodulin 26q11-q122p21NM_017326NM_001743NP_00173432-3-2#1E/-rEBD07892150663805(phosphorylaseSEQ IDkinase, delta)NO: 1 fromU.S. Pat.No.6,777,177Celsr2cadherin, EGF4q111p21NW_047687NM_001408NP_00139912_4b_9-rEAR228032.,834651952LAG seven-passSEQ IDG-type receptor 2NO: 25from U.S.Pat. No.6,448,000;AR228027SEQ IDNO: 20from U.S.Pat. No.6,448,000BD069377;BD069382Clr-fkiller cell lectin-4q12N/AXM_232399N/AN/A36_7_1a-rEBD078982312745N/Alike receptor F1SCA9#14_rESEQ IDNO: 62from U.S.Pat. No.6,777,177AR228038SEQ IDNO: 31from U.S.Pat. No.6,448,000Copg2/coatomer protein4q227q32NW_047355/NM_012133/NP_03626536_5_2-19b_lacAR228051,30174226958complex, subunit12cx#11-rESEQ IDgamma 2/NO: 44Tsga13testis specific geneXP_231582NM_052933NP_443165from U.S.312203114960A13-variegatedPat. No.monoallelic6,448,000;expression 1BD078955SEQ IDNO: 35from U.S.Pat. No.6,777,177,BD078941,BD069401,BD078988SEQ IDNO: 68from U.S.Pat. No.6,777,177.Cstf2tcleavage1q5210q11NW_047565NM_015235NP_05605019_9BE_rEBD07896030933823283stimulation factor,SEQ ID3′ pre-RNA,NO: 40subunit 2, 64 kDafrom U.S.Pat. No.6,777,177,BD078958SEQ IDNO: 38from U.S.Pat. No.6,777,177Csmd2CUB and sushi5q361p35.1-p34.3XP_232753NM_052896NP_443128L24_9_1-rEBD079033313040114784multiple domains 2SEQ IDNO: 113 inU.S. Pat. No.6,777,177CtcfCCCTC-binding19q1216q21-q22.3NP_114012NM_006565NP_0065566BE72_rEAR2280098372610664factor (zinc fingerBD069366protein)SEQ IDNO: 2 fromU.S. Pat.No.6,448,000;;Cutl1/cut-like 1,12q127q22.1XP_341054NM_001913NP_00190431_3_17_rEBD079017116639/1523CCAATNM_181500NP_852477BD078994displacementNM_181552/NP_853530/SEQ IDproteinNO: 74Mylc2pl+(Drosophila)XP_344098NM_138403NP_612412from U.S.36390093408myosin light chainPat. No.2, precursor6,777,177lymphocyte-specificDlx2distal-less homeo3q212q32XP_230986NM_004405NP_004396L24_4_2BE_rEBD0790372964991746box 2 similar toSEQ IDTES-1 homeoboxNO: 117from U.S.Pat. No.6,777,177Dnaja1DnaJ (Hsp40)5q229p13-p12NP_075223NM_001539NP_00153010_46_4-LacBD078944650283301homolog,12_3B#8-rESEQ IDsubfamily A,NO: 24member 1from U.S.Pat. No.6,777,177Dre1Dre1 protein11q233q27.1NM_181473NM_017644NP_06011410_4b_4-rEAR228014,30380354800Also knownSEQ IDasNO: 7 fromKLHL24U.S. Pat.No.6,448,000;BD069364BD078933SEQ IDNO: 13from U.S.Pat. No.6,777,177E2ig2Estrogen induced1q3211q13.3NP_057649NM_016565NP_057649L197B3E-rE forBD07897251287gene 2SEQ IDNO: 52from U.S.Pat. No.6,777,177Eif3s10Elongation1q5510q26NW_047570NM_003750NP_00374112PSA#6_rEAR2280112921488661initiation factor 3BD069361subunit 10SEQ IDNO: 4 fromU.S. Pat.No.6,448,000Erbb2ipErbb2 interacting2q125q13.1XP_345149NM_018695NP_061165SCA9#14_rEAR22801555914proteinScB2#19-rEBD069365SEQ IDNO: 8 fromU.S. Pat.No.6,448,000Fer1l3fer-1-like protein1q5310q24NW_047565NM_013451NP_03847914_24_#6-rEAR228049,265093, myoferlinNM_133337NP_5798996b52-reBD069399SEQ IDNO; 42from U.S.Pat. No.6,448,000Fkbp8FK506 binding16p1419p12XP_214316NM_012181NP_03631331_3_15#1_LacBD07901823770protein 8, 38 kDa31_3_15#1_rEBD07899631_3_6_2-rE.SEQ IDNO: 76from U.S.Pat. No.6,777,177;BD079016.,BD078993SEQ IDNO: 96from U.S.Pat. No.6,777,177Fusip1FUS interacting5q361p36.11XP_342949NM_006625NP_006616L28ap-rEBD07900936263010772protein (serine-NM_054016NP_473357SEQ IDarginine rich) 1NO: 89from U.S.Pat. No.6,777,177Gas5Growth arrest13q211q23.3U77829AK025846N/A10_4A_8_rEAR2280108171460674specific 5AL110141BD069360BC038733SEQ IDNO: 3 from6,448,000Gata4GATA binding15p128p23.1-p22NW_047454NM_002052NP_00204310_2A_3_12-rEAR2280232626protein 410_2A_3-rESEQ IDNO: 16from U.S.Pat. No.6,448,000BD069373;AR228024SEQ IDNO: 17from U.S.Pat. No.6,448,000Grb2Growth factor10q32.217q24-q25NP_110473NM_002086NP_00207736_5_2_19aIn process815042885receptor boundNM_203506..NP_987102.protein 2Gtf2e1/General11q223q21-q24XP_221426NM_005513/NP_005504/L195B1EBD0789752960transcription factorSEQ IDIIE, polypeptide 1,NO: 55alpha 56 kDa;from U.S.Rabl3RAB, member ofXP_340993NM_173825NP_776186Pat. No.360720285282RAS oncogene6,777,177family-like 3HM13histocompatibility20q11.21NM_030789.NP_110416RA3_A-rE81502(minor) 13, humanRA2#C_rEgene from A549cell libraryHNRPLheterogeneous1q2119q13.2NM_001533NP_001524RA2_A-rE3191nuclearribonucleoproteinL-human genefrom A549 celllibraryHoxc13Homeo box C137q3612q13.3XP_345881NM_017410.NP_059106L191B2E#3+_rEBD0789233669953229SEQ IDNO: 3 fromU.S. Pat.No.6,777,177Hp1-bp74heterochromatin5q361p36.13NM_199108NM_016287NP_05737110_3bEAR228022;31364750809protein 1, bindingBD069372protein 74SEQ IDNO: 15from U.S.Pat. No.6,448,000Hspc135+/HSPC135 protein11q213q13.2XP_340986NM_014170/NP_054889/14D#8AR228059360714/29083homologue/BD069409Mox2rCd200 receptor 2NP_076443NM_138806NP_620161SEQ ID131450NM_138939NP_620385NO: 52from U.S.NM_138940NP_620386Pat. No.NM_170780NP_7407506,448,000;Id3Inhibitor of DNA5q361p36.13-p36.12NP_037190NM_002167NP_00215821_5_8E-rEBD078974255853399binding 3,21_5_7E-rESEQ IDdominant negative21_5_9E-rENO; 54helix-loop-helixfrom U.S.proteinPat. No.6,777,177BD078924SEQ IDNO: 4 fromU.S. Pat.No.6,777,177,BD079042SEQ IDNO: 122from U.S.Pat. No.6,777,177Igf2rInsulin-like1q116q26NW_047553NM_000876NP_000867L192B3E#13_rEBD078980251513482growth factor 2SEQ IDreceptorNO: 60(IGF2R)from U.S.Pat. No.6,777,177Jak1Tyrosine-protein5q331p32.3-p31.3XP_342873NM_002227NP_00221818A_8_4E-rEBD0789693625523716kinase JAK1BD079044SEQ IDNO: 49U.S. Pat.No.6,777,177Kif13bguanylate kinase15p128p12XP_224288NM_015254NP_056069.194c4e-rEBD07897630596723303associated kinesinSEQ IDNO: 56from U.S.Pat. No.6,777,177Klhl6kelch-like 611q233q27.3NW_047358NM_130446NP_56971310_3b_2_rEAR2280208985710_4b_4-rEBD069370SEQ IDNO: 13from U.S.Pat. No.6,448,000,;BD078933SEQ IDNO; 13from U.S.Pat. No.6,777,177;AR228014SEQ IDNO: 7 fromU.S. Pat.No.6,488,000Ki-67proliferation2q2610q25XP_227096NM_002417NP_00240812_4b#11_rEAR228033,,3103824288related antigenBD069383SEQ IDNO: 26from U.S.Pat. No.6,488,000Lipc/lipase, member H8q2415q21-q23NM_012597XP_343422NM_000236/NP_000227/6BSA12_rEAR228018,24538/3990LOC363090glyceraldehyde-3-BD069368363090HumanphosphateSEQ IDGenbankdehydrogenaseNO: 11accession(phosphorylating)from U.S.Nos. andPat. No.Entrez Gene6,448,000;,correspondAR228046to Lipc geneBD069396SEQ IDNO:39 fromU.S. Pat.No.6,448,000;Madh7MAD, mothers18q12.318q21.1NW_047516NM_005904NP_005895.14A7reBD0789504092againstSEQ IDdecapentaplegicNO: 30homolog 7from U.S.(Drosophila)Pat. No.6,777,177IKBζMolecule11q123p12-q12NW_047355NM_031419NP_11360731_3_9_rEBD07901564332(MAIL)possessing ankyrinNM_001005474NP_001005474BD078992repeats induced bySEQ IDlipopolysaccharideNO: 95from U.S.Pat. No.6,777,177,Map3k7ip1Mitogen-activated7q3422q13.1NW_047780NM_006116NP_00610734X24_126-rEBD07898510454protein kinaseNM_153497NP_705717SEQ IDkinase kinase 7NO: 65interacting protein 1from U.S.Pat. No.6,777,177MaptMicrotubule-10q32.117q21.1NM_017212NM_005910NP_00590112_3B#7AR228033,3602484137associated proteinNM_016834NP_058518BD069383TAUNM_016835NP_058519SEQ IDNM_016841NP_058525NO: 26from U.S.Pat. No.6,448,000;Mgat1mannosyl (alpha-10q215q35NW_047334NM_002406NP_00239714_7#2E_rEAR228012.8151942451,3-)-glycoproteinBD069362,beta-1,2-N-acetyl-SEQ IDglucosaminyl-NO: 5 fromtransferaseU.S. Pat.No.6,448,000;BD079013SEQ IDNO: 93from U.S.Pat. No.6,777,177BD078952SEQ IDNO: 32from U.S.Pat. No.6,777,177,Mical2flavoprotein1q3311p15.3NP_872610NM_014632.NP_05544712C#A_rEAR228031,3653529645oxidoreductaseBD069381SEQ IDNO: 24from U.S.Pat. No.6,448,000;BD078931SEQ IDNO: 11form U.S.Pat. No.6,777,177,Ocilosteoclast4q3212p13XP_342770NM_001004419NP_00100441914XD#12E-rEAR228081,11393729121inhibitory lectinNM_001004420NP_001004420191E9E-rESEQ IDC-typeNM_013269NP_037401NO; 74from U.S.Pat. No.6,448,000;BD079024;BD069431.;BD078961SEQ IDNO: 41from U.S.Pat. No.6,777,177;BD078951SEQ IDNO: 31from U.S.Pat. No.6,777,177;OL16adipocyte specific8q2211q24.1NM_173154NM_024769NP_079045X236E1_T728693979827[Asam inprotein 5 andX236E1_T3humans]splice variant ol-16Numbputative inhibitor6q3114q24.3XP_234394NM_003744NP_003735SCA7#5_rEAR228078294198650of Notch signalingSEQ IDNO: 71from U.S.Pat. No.6,448,000;Pde4b-/phosphodiesterase5q321p31NP_058727NM_002600NP_00259134X25_23_LacBD0789902462651424B, cAMP-SEQ IDspecificNO: 70(phosphodiesterasefrom U.S.E4 duncePat. No.homolog,6,777,177Drosophila)Pgy1-ATP-binding4q127q21.1NM_012623NM_000927NP_00091834X23_3-rEBD078989246465243(Abcb1)/cassette, sub-SEQ IDfamily BNO: 69(MDR/TAP),from U.S.member 1Pat. No.6,777,177Prss11protease, serine,1q3710q26.3NP_113909NM_002775NP_00276612CXY#7_rEBD06942565164565411 (IGF binding)AR228075SEQ IDNO: 68from U.S.Pat. No.6,448,000PsaAminopeptidase10q3117q21NW-047338NM_006310NP_0063018C5_6_rEBD069403;505589520puromycinAR228053sensitiveSEQ IDNO: 46from U.S.Pat. No.6,448,000Psma7proteasome3q4320q13.33XP_342599NM_002792NP_00278312CX#11E_rEBD078983296745688(prosome,NM_152255NP_68946835 5 1 4a-rE ISEQ IDmacropain)NO: 62subunit, alphafrom U.S.type, 7Pat. No.6,777,177Pts6-pyruvoyl-8q2311q22.3-q23.3NP_058916NM_000317NP_00030819D5E_rEBD078942294985805tetrahydropterinSEQ IDsynthaseNO; 22from U.S.Pat. No.6,777,177Rfp2ret finger protein 215p1213q14NM_005798NM_005798NP_0057891A_A549_6_rE10206or Trim13NM_052811NP_434698NM_213590NP_998755Rps18S18 ribosomal5q246p21.3XP_232915NM_022551NP_07204512_4b#11_rEAR2280282980146222protein, cytosolic,12_4b#7_rEBD069378substrate forSEQ IDCa2+/calmodulin-NO: 21activated proteinfrom U.S.kinase IIPat. No.6,448,000;Rin2ras association3q4120p11XP_230647NM_018993NP_06186612_3B#10-rEAR22802631149454453(RalGDS/AF-6)BD069376domain containingSEQ IDprotein JC265;NO: 19RAB5 interactingfromprotein 26,448,000Ror1Receptor tyrosine5q331p32-p31XP_238402NM_005012NP_00500312_6B#6_rEAR228030,1170944919kinase-like orphanBD069380receptor 1SEQ IDNO: 23from U.S.Pat. No.6,448,000RragaRas-related GTP5q329p21.3NP_446425NM_006570NP_006561L193A1E#A_rEBD07897711704410670binding ASEQ IDNO: 57from U.S.Pat. No.6,777,177RykReceptor-like8q323q22XP_343459NM_002958NP_00294919-7ae_rEBD0789591405856259tyrosine kinaseSEQ IDNO; 39from U.S.Pat. No.6,777,177S100a6/S100 calcium2q341q21NP_445937NM_014624/NP_055439/L25_10-LacAR228013.,852476277binding protein A618_3#3E-rE isSEQ ID(calcyclin)/SEQ ID NO: 6NO: 6 fromS100a1S-100 protein,XP_215606NM_006271NP_006262and 3_2_4-rE isU.S. Pat.2952146271alpha chain61 and 110 fromNo.U.S. pat. No.6,777,1776,777,177BD069363,SEQ ID NO: 111BD079030is L25-10-rESEQ IDSEQ ID NO: 114NO: fromis 17-L25-27#7-U.S. Pat.rENos. 61 andSEQ ID NO: 109110is 3_2_13-rE6,777,177SEQ ID NO: 115BD078981,is L21C1E-rEBD079031SEQ IDNO: 111from U.S.Pat. No.6,777,177,BD079034SEQ IDNO; 114from U.S.Pat. No.6,777,177,BD079029SEQ IDNO; 109from U.S.Pat. No.6,777,177,BD079035SEQ IDNO: 115from U.S.Pat. No.6,777,177,Scmh1sex comb on5q361p34XP_342901NM_012236NP_03636838_17#2_rEIn process22955midleg homolog 1(Drosophila)Serp1Stress-associated15q113q25.1NM_030835NM_014445NP_055260191E8E_rEBD0789628088127230endoplasmicSEQ IDreticulum protein 1NO: 42from U.S.Pat. No.6,777,177Srp19signal recognition18p125q21-q22NW_047510NM_003135.NP_00312614C_2E_rEBD0789632916856728particle 19 kDaSEQ IDNO; 43from U.S.Pat. No.6,777,177,Stmn1Stathmin,8q311p36.1-p35XP_343442NM_005563NP_005554SCA6#1_rEAR228025,3631083925microtubule-NM_203399NP_981944BD069375depolymerizingNM_203401NP_981946SEQ IDproteinNO: 18from U.S.Pat. No.6,448,000;Tpm1tropomyosin 18q2415q22.1NW_047799NM_000366NP_0003576BE60_rEBD078934248517168(alpha)SEQ IDNO: 14from U.S.Pat. No.6,777,177Trim52Tripartite motif-15q225q35.3XM_224468NM_032765NP_116154L24_26_2A-rEBD07901129045884851containing 52L24_3_2B-rESEQ IDL24_26_1-BLNO: 91from U.S.Pat. No.6,777,177;BD079005SEQ IDNO: 85from U.S.Pat. No.6,777,177;BD079002SEQ IDNO: 82from U.S.Pat. No.6,777,177Tsec-2+/tsec-2+/C1-6q2414q24NW_047761NM_005956NP_00594736_5_2_196-rEAR2280552991524522Mthfd1tetrahydrofolateNM_02250814D#18-rEBD06940564300synthaseSEQ IDNO; 48from U.S.Pat. No.6,448,000,Ube1cubiquitin-4q343p24.3-p13NP_476553NM_003968NP_00395912_3B#2_rEAR2280291175539039activating enzymeNM_198195NP_937838BD069379E1CNM_198197NP_937840SEQ IDNO; 22from6,448,000,Zfp207zinc finger protein10q2617q12XP_221231NM_003457NP_00344831 3 5-rEBD0789953037637756207SEQ IDNO: 75from U.S.Pat. No.6,777,177Znf7Zinc finger protein 77q348q24XP_235457NM_003416NP_0034071bw_lac3151017553









TABLE 2








Classification of trapped genes according to function.


Trapped genes are listed by the official HUGO Gene Nomenclature


Committee names, when available. Functional placement of genes


or their products are determined by literature assignments. Some


genes perform more than one cellular role, and are classified arbitrarily


and others have undefined roles.

















Transcription



Brd2



Brd3



Ctcf



E2f2



Gtf2e1



Hnrpl



Hoxc13



Hp1-bp74



Id3



Znf207



Zfp7



Translation



Cstf2



Eif3s10



Srp19



Cytoskeletal-



Related



Anx3



Cald1



Calm2



Mapt



Ppm1a



Rps18



Stmn1



Tpm1



Kif13b



Apoptosis



Bcl2l



Cycs



IkB□



Mical2



Rfp2



Membrane



Abca4



Csmd2



Celsr2



Erbb2ip



OL16



Pgy1



Rab13



Serp1



Metabolism



Gas5



Lipc



Mgat1



Pts



Signaling



E2ip2



Fusip1



Fkbp8



Gata4



Grb2



Jak1



Madh7



Map3k7ip1



Pde4b



Rraga



Ryk



Chaperonin



Dnaja1



Ubiquitination/Proteosome



Ube1c



Psma7



Vesicle/



Trafficking



Anxa1



Anxa2



Atp6v0c



Copg2



Golga2



Hm13



Igf2r



Psa



Rin2



Rabl3



S100a6



Unassigned



Aptx



Clr-f



Dre1



Dlx2



Hspc135



Klhl6



Mox2r



Numb



Ocil



Ror1



Scmh1



Trim52



Wdr5























TABLE 3










Gene Name:
ABCA4
GenBank Accession No:
NM_000350
GI:
4557875






Organism:

Homo sapiens

Length:
7318
ORF Region:
82-6903





Locus:
24
Blast database:
Human
ORF GC%
52.58









Definition:

Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 4 (ABCA4), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000350_siRNA_458
458
GGACAGAGCUACACAUCUU (SEQ ID NO: 1)
AAGAUGUGUAGCUCUGUCC (SEQ ID NO: 2)
ORF
47.36842105






NM_000350_siRNA_869
869
GCCGUUCUCAAGGUAUCAA (SEQ ID NO: 3)
UUGAUACCUUGAGAACGGC (SEQ ID NO: 4)
ORF
47.36842105





NM_000350_siRNA_880
880
GGUAUCAAUCUGAGAUCUU (SEQ ID NO: 5)
AAGAUCUCAGAUUGAUACC (SEQ ID NO: 6)
ORF
36.84210526





NM_000350_siRNA_1734
1734
GGUAUUCCCUGACAUGUAU (SEQ ID NO: 7)
AUACAUGUCAGGGAAUACC (SEQ ID NO: 8)
ORF
42.10526316





NM_000350_siRNA_1864
1864
GCUGAUCCCGUGGAAGAUU (SEQ ID NO: 9)
AAUCUUCCACGGGAUCAGC (SEQ ID NO: 10)
ORF
52.63157895



















Gene Name:
ANXA1
GenBank Accession No:
NM_000700
GI:
4502100






Organism:

Homo sapiens

Length:
1399
ORF Region:
75-1115





Locus:
301
Blast database:
Human
ORF GC%
44.48












Definition:

Homo sapiens annexin A1 (ANXA1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000700_siRNA_318
318
GCAGCAUAUCUCCAGGAAA (SEQ ID NO: 11)
UUUCCUGGAGAUAUGCUGC (SEQ ID NO: 12)
ORF
47.36842105






NM_000700_siRNA_609
609
GCUUUGCUUUCUCUUGCUA (SEQ ID NO: 13)
UAGCAAGAGAAAGCAAAGC (SEQ ID NO: 14)
ORF
42.10526316





NM_000700_siRNA_775
775
GCAGAGUGUUUCAGAAAUA (SEQ ID NO: 15)
UAUUUCUGAAACACUCUGC (SEQ ID NO: 16)
ORF
36.84210526





NM_000700_siRNA_942
942
GGAACUCGCCAUAAGGCAU (SEQ ID NO: 17)
AUGCCUUAUGGCGAGUUCC (SEQ ID NO: 18)
ORF
52.63157895





NM_000700_siRNA_1058
1058
GGAUGAAACCAAAGGAGAU (SEQ ID NO: 19)
AUCUCCUUUGGUUUCAUCC ((SEQ ID NO: 20)
ORF
42.10526316



















Gene Name:
ANXA2
GenBank Accession No.
NM_001002857
GI:
50845385






Organism:

Homo sapiens

Length:
1644
ORF Region
137-1156





Locus:
302
Blast database:
Human
ORF GC%
48.14












Definition:

Homo sapiens annexin A2 (ANXA2), transcript varient 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001002857_siRNA_844
844
CCCUUAUGACAUGUUGGAA (SEQ ID NO: 21)
UUCCAACAUGUCAUAAGGG (SEQ ID NO: 22)
ORF
42.10526316






NM_001002857_siRNA_845
845
CCUUAUGACAUGUUGGAAA (SEQ ID NO: 23)
UUUCCAACAUGUCAUAAGG (SEQ ID NO: 24)
ORF
36.84210526





NM_001002857_siRNA_1071
1071
GCAAGUCCCUGUACUAUUA (SEQ ID NO: 25)
UAAUAGUACAGGGACUUGC (SEQ ID NO: 26)
ORF
42.10526316



















Gene Name:
ANXA2
GenBank Accession No.
NM_001002858
GI:
50845387






Organism:

Homo sapiens

Length:
1635
ORF Region:
74-1147





Locus:
302
Blast database:
Human
ORF GC%
48.89












Definition:

Homo sapiens annexin AS (ANXA2), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_001002858_siRNA_835
835
CCCUUAUGACAUGUUGGAA (SEQ ID NO: 27)
UUCCAACAUGUCAUAAGGG (SEQ ID NO: 28)
ORF
42.10526316






NM_001002858_siRNA_836
836
CCUUAUGACAUGUUGGAAA (SEQ ID NO: 29)
UUUCCAACAUGUCAUAAGG (SEQ ID NO: 30)
ORF
36.84210526





NM_001002858_siRNA_1062
1062
GCAAGUCCCUGUACUAUUA (SEQ ID NO: 31)
UAAUAGUACAGGGACUUGC (SEQ ID NO: 32)
ORF
42.10526316



















Gene Name:
ANXA2
GenBank Accession No.
NM_004039
GI:
50845389






Organism:

Homo sapiens

Length:
1563
ORF Region:
56-1075





Locus:
302
Blast database:
Human
ORF GC%
48.14












Definition:

Homo sapiens annexin A2 (ANXA2), transcript variant 3, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_004039_siRNA_763
763
CCCUUAUGACAUGUUGGAA (SEQ ID NO: 33)
UUCCAACAUGUCAUAAGGG (SEQ ID NO: 34)
ORF
42.10526316






NM_004039_siRNA_764
764
CCUUAUGACAUGUUGGAAA (SEQ ID NO: 35)
UUUCCAACAUGUCAUAAGG (SEQ ID NO: 36)
ORF
36.84210526





NM_004039_siRNA_990
990
GCAAGUCCCUGUACUAUUA (SEQ ID NO: 37)
UAAUAGUACAGGGACUUGC (SEQ ID NO: 38)
ORF
42.10526316



















Gene Name:
ANXA3
GenBank Accession No.
NM_005139
GI:
4826642






Organism:

Homo sapiens

Length:
1339
ORF Region:
47-1018





Locus:
306
Blast database:
Human
ORF GC%
42.8












Definition:

Homo sapiens annexin A3 (ANXA3), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_005139_siRNA_317
317
CCAGCAGUCUUUGAUGCAA (SEQ ID NO: 39)
UUGCAUCAAAGACUGCUGG (SEQ ID NO: 40)
ORF
47.36842105






NM_005139_siRNA_332
332
GCAAAGCAGCUAAAGAAAU (SEQ ID NO: 41)
AUUUCUUUAGCUGCUUUGC (SEQ ID NO: 42)
ORF
36.84210526





NM_005139_siRNA_405
405
GGACAAGCAGGCAAAUGAA (SEQ ID NO: 43)
UUCAUUUGCCUGCUUGUCC (SEQ ID NO: 44)
ORF
47.36842105





NM_005139_siRNA_411
411
GCAGGCAAAUGAAGGAUAU (SEQ ID NO: 45)
AUAUCCUUCAUUUGCCUGC (SEQ ID NO: 46)
ORF
42.10526316





NM_005139_siRNA_827
827
GCCUUGAAGGGUAUUGGAA (SEQ ID NO: 47)
UUCCAAUACCCUUCAAGGC (SEQ ID NO: 48)
ORF
47.36842105



















Gene Name:
APTX
GenBank Accession No.
NM_017692
GI:
28329424






Organism:

Homo sapiens

Length:
2016
ORF Region:
605-1111





Locus:
54840
Blast database:
Human
ORF GC%
47.93












Definition:

Homo sapiens aprataxin (APTX),transcript variant 4, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_017692_siRNA_956
956
GCUGUGAUCGAGAUGGUAC (SEQ ID NO: 49)
GUACCAUCUCGAUCACAGC (SEQ ID NO: 50)
ORF
52.63157895






NM_017692_siRNA_983_983
GGUAGAGUAACUGUCCGAG (SEQ ID NO: 51)
CUCGGACAGUUACUCUACC (SEQ ID NO: 52)
ORF
52.63157895





NM_017692_siRNA_1005
1005
GGAUGCCUGACUCUUGAA (SEQ ID NO: 53)
UUCAAGAGCUCAGGCAUCC (SEQ ID NO: 54)
ORF
52.63157895



















Gene Name:
APTX
GenBank Accession No.
NM_175069
GI:
28329429






Organism:

Homo sapiens

Length:
2036
ORF Region:
25-945





Locus:
54840
Blast database:
Human
ORF GC%
48.0












Definition:

Homo sapiens aprataxin (APTX), transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_175069_siRNA_105
105
GCACCAGCGAAUCAGACUU (SEQ ID NO: 55)
AAGUCUGAUUCGCUGGUGC (SEQ ID NO: 56)
ORF
52.63157895






NM_175069_siRNA_266
266
GCAUUGACUCAGUCGUAAU (SEQ ID NO: 57)
AUUACGACUGAGUCAAUGC (SEQ ID NO: 58)
ORF
42.10526316





NM_175069_siRNA_389
389
GCCUGGAAACACACAGGAA (SEQ ID NO: 59)
UUCCUGUGUGUUUCCAGGC (SEQ ID NO: 60)
ORF
52.63157895





NM_175069_siRNA_652
652
CCAAAGGCCCGUUACCAUU (SEQ ID NO: 61)
AAUGGUAACGGGCCUUUGG (SEQ ID NO: 62)
ORF
52.63157895





NM_175069_siRNA_720
720
GGAACACCUUGAACUCCUU (SEQ ID NO: 63)
AAGGAGUUCAAGGUGUUCC (SEQ ID NO: 64)
ORF
47.36842105



















Gene Name:
APTX
GenBank Accession No.
NM_175071
GI:
28329426






Organism:

Homo sapiens

Length:
1836
ORF Region:
425-931





Locus:
54840
Blast database:
Human
ORF GC%
47.93












Definition:

Homo sapiens aprataxin (APTX), transcript variant 5, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_175071_siRNA_799
799
GGCUGGUAGAGUAACUGUC (SEQ ID NO: 65)
GACAGUUACUCUACCAGCC (SEQ ID NO: 66)
ORF
52.63157895






NM_175071_siRNA_803
803
GGUAGAGUAACUGUCCGAG (SEQ ID NO: 67)
CUCGGACAGUUACUCUACC (SEQ ID NO: 68)
ORF
52.63157895





NM_175071_siRNA_825
825
GGAUGCCUGAGCUCUUGAA (SEQ ID NO: 69)
UUCAAGAGCUCAGGCAUCC (SEQ ID NO: 70)
ORF
52.63157895



















Gene Name:
APTX
GenBank Accession No.
NM_175072
GI:
28329432






Organism:

Homo sapiens

Length:
2041
ORF Region:
372-1136





Locus:
54840
Blast database:
Human
ORF GC%
47.98












Definition:

Homo sapiens aprataxin (APTX), transcript variant 3, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_175072_siRNA_981
951
GCUGUGAUCGAGAUGGUAC (SEQ ID NO: 71)
GUACCAUCUCGAUCACAGC (SEQ ID NO: 72)
ORF
52.63157895






NM_75072_siRNA_1030
1030
GGAUGCCUGAGCUCUUGAA (SEQ ID NO: 73)
UUCAAGAGCUCAGGCAUCC (SEQ ID NO: 74)
ORF
52.63157895





NM_175072_siRNA_1094
1094
UCCUCAGCUGAAAGAACAU (SEQ ID NO: 75)
AUGUUCUUUCAGCUGAGGA SE ID NO: 76
ORF
42.10526316



















Gene Name:
DNAJA1
GenBank Accession No.
NM_001539
GI:
49472820






Organism:

Homo sapiens

Length:
1538
ORF Region:
184-1377





Locus:
3301
Blast database:
Human
ORF GC%
43.22












Definition:

Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 1 (DNAJA1),mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_001539_siRNA_642
642
CCGAGGUACUGGAAUGCAA (SEQ ID NO: 77)
UUGCAUUCCAGUACCUCGG (SEQ ID NO: 78)
ORF
52.63157895






NM_001539_siRNA_646
646
GGUACUGGAAUGCAAAUAA (SEQ ID NO: 79)
UUAUUUGCAUUCCAGUACC (SEQ ID NO: 80)
ORF
36.84210526





NM_001539_siRNA_682
682
CCUGGAAUGGUUCAGCAAA (SEQ ID NO: 81)
UUUGCUGAACCAUUCCAGG (SEQ ID NO: 82)
ORF
47.36842105





NM_001539_siRNA_779
779
GGAAGAUAGUUCGAGAGAA (SEQ ID NO: 83)
UUCUCUCGAACUAUCUUCC (SEQ ID NO: 84)
ORF
42.10526316





NM_001539_siRNA_840
840
CCAGAAGAUAACAUUCCAU (SEQ ID NO: 85)
AUGGAAUGUUAUCUUCUGG (SEQ ID NO: 86)
ORF
36.84210526



















Gene Name:
ATP6V0C
GenBank Accession No.
NM_001694
GI:
19913436






Organism:

Homo sapiens

Length:
1126
ORF Region:
153-620





Locus:
527
Blast database:
Human
ORF GC%
63.47












Definition:

Homo sapiens ATPase, H+ transporting, lysosomal 15kDa, V0 subunit c(ATP6V0C), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_001694_siRNA_388
388
CCCUGAAUGACGACAUCAG (SEQ ID NO: 87)
CUGAUGUCGUCAUUCAGGG (SEQ ID NO: 88)
ORF
52.63157895






NM_001694_siRNA_529
529
GACUAUUCGUGGGCAUGAU (SEQ ID NO: 89)
AUCAUGCCCACGAAUAGUC (SEQ ID NO: 90)
ORF
47.36842105





NM_001694_siRNA_535
535
UCGUGGGCAUGAUCCUGAU (SEQ ID NO: 91)
AUCAGGAUCAUGCCCACGA (SEQ ID NO: 92)
ORF
52.63157895



















Gene Name:
BCL2L1
GenBank Accession No.
NM_001191
GI:
20336333






Organism:

Homo sapiens

Length:
2386
ORF Region:
367-879





Locus:
598
Blast database:
Human
ORF GC%
57.12












Definition:

Homo sapiens BCL2-like 1 (BCL2L1), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_001191_siRNA_753
753
GGAACUCUAUGGGAACAAU (SEQ ID NO: 93)
AUUGUUCCCAUAGAGUUCC (SEQ ID NO: 94)
ORF
42.10526316






NM_0O1191_siRNA_857
857
GCUCACUCUUCAGUCGGAA (SEQ ID NO: 95)
UUCCGACUGAAGAGUGAGC (SEQ ID NO: 96)
ORF
52.63157895





NM_001191_siRNA_859
859
UCACUCUUCAGUCGGAAAU (SEQ ID NO: 97)
AUUUCCGACUGAAGAGUGA (SEQ ID NO: 98)
ORF
42.10526316



















Gene Name:
BCL2L1
GenBank Accession No.
NM_138578
GI:
IL20336334






Organism:

Homo sapiens

Length:
2575
ORF Region:
367-1068





Locus:
598
Blast database:
Human
ORF GC%
56.84












Definition:

Homo sapiens BCL2-like 1 (BCL2L1), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_138578_siRNA_514
514
GCCAUCAAUGGCAACCCAU (SEQ ID NO: 99)
AUGGGUUGCCAUUGAUGGC (SEQ ID NO: 100)
ORF
52.63157895






NM_138578_siRNA_676
676
GCAUUCAGUGACCUGACAU (SEQ ID NO: 101)
AUGUCAGGUCACUGAAUGC (SEQ ID NO: 102)
ORF
47.36842105





NM_138578_siRNA_716
716
GGACAGCAUAUCAGAGCUU (SEQ ID NO: 103)
AAGCUCUGAUAUGCUGUCC (SEQ ID NO: 104)
ORF
47.36842105





NM_138578_siRNA_818
818
GCGUGGAAAGCGUAGACAA (SEQ ID NO: 105)
UUGUCUACGCUUUCCACGC (SEQ ID NO: 106)
ORF
52.63157895





NM_138578_siRNA_872
872
GGAUGGCCACUUACCUGAA (SEQ ID NO: 107)
UUCAGGUAAGUGGCCAUCC (SEQ ID NO: 108)
ORF
52.63157895



















Gene Name:
BRD2
GenBank Accession No.
NM_005104
GI:
12408641






Organism:

Homo sapiens

Length:
4693
ORF Region:
1702-4107





Locus:
6046
Blast database:
Human
ORF GC%
49.26












Definition:

Homo sapiens bromodomain containing 2 (BRD2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_005104_siRNA_1851
1851
GGUGCCUGCUUUGCAACUU (SEQ ID NO: 109)
AAGUUGCAAAGCAGGCACC (SEQ ID NO: 110)
ORF
52.63157895






NM_005104_siRNA_2229
2229
GGUUGCAUCAAUGCCACAA (SEQ ID NO: 111)
UUGUGGCAUUGAUGCAACC (SEQ ID NO: 112)
ORF
47.36842105





NM_005104_siRNA_2694
2694
GCCUGACUCUCAGCAACAA (SEQ ID NO: 113)
UUGUUGCUGAGAGUCAGGC (SEQ ID NO: 114)
ORF
52.63157895





NM_005104_siRNA_2944
2944
GCUGCUGAUGUACGGCUUA (SEQ ID NO: 115)
UAAGCCGUACAUCAGCAGC (SEQ ID NO: 116)
ORF
52.63157895





NM_005104_siRNA_2969
2969
CCAACUGCUAUAAGUACAA (SEQ ID NO: 117)
UUGUACUUAUAGCAGUUGG (SEQ ID NO: 118)
ORF
36.84210526



















Gene Name:
BRD3
GenBank Accession No.
NM_007371
GI:
12408642






Organism:

Homo sapiens

Length:
3085
ORF Region:
140-2320





Locus:
8019
Blast database:
Human
ORF GC%
55.03












Definition:

Homo sapiens bromodomain containing 3 (BRD3), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%














NM_007371_siRNA_1098
1098
GGGAGAUGCUAUCCAAGAA (SEQ ID NO: 119)
UUCUUGGAUAGCAUCUCCC (SEQ ID NO: 120)
ORF
47.36842105






NM_007371_siRNA_1279
1279
CCGGCUGAUGUUCUCGAAU (SEQ ID NO: 121)
AUUCGAGAACAUCAGCCGG (SEQ ID NO: 122)
ORF
52.63157895





NM_007371_siRNA_1921
1921
GGUAGUGCACAUCAUCCAA (SEQ ID NO: 123)
UUGGAUGAUGUGCACUACC (SEQ ID NO: 124)
ORF
47.36842105





NM_007371_siRNA_2017
2017
GCGGGAACUGGAGAGAUAU (SEQ ID NO: 125)
AUAUCUCUCCAGUUCCCGC (SEQ ID NO: 126)
ORF
52.63157895



















Gene Name:
WDR5
GenBank Accession No.
NM_017588
GI:
61744459






Organism:

Homo sapiens

Length:
3163
ORF Region:
172-1176





Locus:
11091
Blast database:
Human
ORF GC%
48.96












Definition:

Homo sapiens WD repeat domain 5 (WDR5), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_017588_siRNA_424
424
GGUCACAAGCUGGGAAUAU (SEQ ID NO: 127)
AUAUUCCCAGCUUGUGACC (SEQ ID NO: 128)
ORF
47.36842105






NM_017588_siRNA_452
452
CCUGGUCGUCAGAUUCUAA (SEQ ID NO: 129)
UUAGAAUCUGACGACCAGG (SEQ ID NO: 130)
ORF
47.36842105





NM_017588_siRNA_1032
1032
CCUUCAGACGAAAGAGAUU (SEQ ID NO: 131)
AAUCUCUUUCGUCUGAAGG (SEQ ID NO: 132)
ORF
42.10526316



















Gene Name:
C9orf119
GenBank Accession No.
XM_372143
GI:
51467631






Organism:

Homo sapiens

Length:
884
ORF Region:
1-636





Locus:
375757
Blast database:
Human
ORF GC%
59.12












Definition:
PREDICTED: Homo sapiens chromosome 9 open reading frame 119 (C9orf119), mRNA.
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















XM_372143_siRNA_501
501
GGACCACAUUACCCAGCUU (SEQ ID NO: 133)
AAGCUGGGUAAUGUGGUCC (SEQ ID NO: 134)
ORF
52.63157895






XM_372143_siRNA_512
512
CCCAGCUUCACGAGUACAA (SEQ ID NO: 135)
UUGUACUCGUGAAGCUGGG (SEQ ID NO: 136)
ORF
52.63157895





XM_372143_siRNA_513
513
CCAGCUUCACGAGUACAAU (SEQ ID NO: 137)
AUUGUACUCGUGAAGCUGG (SEQ ID NO: 138)
ORF
47.36842105



















Gene Name:
GOLGA2
GenBank Accession No.
NM_004486
GI:
47078236






Organism:

Homo sapiens

Length:
4304
ORF Region:
50-3022





Locus:
2801
Blast database:
Human
ORF GC%
55.84












Definition:

Homo sapiens golgi autoantigen, golgin subfamily a, 2 (GOLGA2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_004486_siRNA_406
406
CCAACAGCUCAAUGGUCUU (SEQ ID NO: 139)
AAGACCAUUGAGCUGUUGG (SEQ ID NO: 140)
ORF
47.36842105






NM_004486_siRNA_528
528
CCAGCUAUGUAACAAACAA (SEQ ID NO: 141)
UUGUUUGUUACAUAGCUGG (SEQ ID NO: 142)
ORF
36.84210526





NM_004486_siRNA_655
655
GCAGUUACAGGUUCACAUU (SEQ ID NO: 143)
AAUGUGAACCUGUAACUGC (SEQ ID NO: 144)
ORF
42.10526316





NM_018131_siRNA_292
292
CCAGAAGUACCAAAGAUUU (SEQ ID NO: 145)
AAAUCUUUGGUACUUCUGG (SEQ ID NO: 146)
ORF
36.84210526





NM_018131_siRNA_494
494
GGAGAAGAAUGCUUAUCAA (SEQ ID NO: 147)
UUGAUAAGCAUUCUUCUCC (SEQ ID NO: 148)
ORF
36.84210526





NM_018131_siRNA_551
551
CCAACUGAAGGCCAGAUAU (SEQ ID NO: 149)
AUAUCUGGCCUUCAGUUGG (SEQ ID NO: 150)
ORF
47.36842105





NM_018131_siRNA_753
753
CCAAACUGCUUCAACUCAU (SEQ ID NO: 151)
AUGAGUUGAAGCAGUUUGG (SEQ ID NO: 152)
ORF
42.10526316



















Gene Name:
CALD1
GenBank Accession No.
NM_033138
GI:
44680104






Organism:

Homo sapiens

Length:
5233
ORF Region:
460-2841





Locus:
800
Blast database:
Human
ORF GC%
37.41












Definition:

Homo sapiens caldesmon 1 (CALD1),transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_033138_siRNA_695
695
CCAAGACAACCACCACAAA
UUUGUGGUGGUUGUCUUGG
ORF
47.36842105






NM_033138_siRNA_826
826
CCAACAAUAACAGAUGCAA (SEQ ID NO: 153)
UUGCAUCUGUUAUUGUUGG (SEQ ID NO: 154)
ORF
36.84210526





NM_033138_siRNA_926
926
GCCAAGAAAGAUACGAGAU (SEQ ID NO: 155)
AUCUCGUAUCUUUCUUGGC (SEQ ID NO: 156)
ORF
42.10526316





NM_033138_siRNA_2638
2638
GCAGCAGGCACACCAAAUA (SEQ ID NO: 157)
UAUUUGGUGUGCCUGCUGC (SEQ ID NO: 158)
ORF
52.63157895



















Gene Name:
CALM2
GenBank Accession No.
NM_001743
GI:
20428653






Organism:

Homo sapiens

Length:
1128
ORF Region:
69-518





Locus:
805
Blast database:
Human
ORF GC%
39.12












Definition:

Homo sapiens calmodulin 2 (phosphorylase kinase, delta) (CALM2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001743_siRNA_138
138
GGUGAUGGAACUAUAACAA (SEQ ID NO: 159)
UUGUUAUAGUUCCAUCACC (SEQ ID NO: 160)
ORF
36.84210526






NM_001743_siRNA_328
328
GAGAAGCAUUCCGUGUGUU (SEQ ID NO: 161)
AACACACGGAAUGCUUCUC (SEQ ID NO: 162)
ORF
47.36842105





NM_001743_siRNA_333
333
GCAUUCCGUGUGUUUGAUA (SEQ ID NO: 163)
UAUCAAACACACGGAAUGC (SEQ ID NO: 164)
ORF
42.10526316



















Gene Name:
CELSR2
GenBank Accession No.
NM_001408
GI:
13325063






Organism:

Homo sapiens

Length:
10531
ORF Region:
63-8834





Locus:
1952
Blast database:
Human
ORF GC%
60.9












Definition:

Homo sapiens cadherin, EGF LAG seven-pass G-type receptor 2(flamingo homolog, Drosophila) (CELSR2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001408_siRNA_1997
1997
CCAGAUCACCAGUGGCAAU (SEQ ID NO: 165)
AUUGCCACUGGUGAUCUGG (SEQ ID NO: 166)
ORF
52.63157895






NM_001408_siRNA_2011
2011
GCAAUACUCGAAACCGCUU (SEQ ID NO: 167)
AAGCGGUUUCGAGUAUUGC (SEQ ID NO: 168)
ORF
47.36842105





NM_001408_siRNA_2950
2950
GCAACAUCCCUGAGGUCUU (SEQ ID NO: 169)
AAGACCUCAGGGAUGUUGC (SEQ ID NO: 170)
ORF
52.63157895





NM_001408_siRNA_4427
4427
GCAGCUGAAAUACUACAAU (SEQ ID NO: 171)
AUUGUAGUAUUUCAGCUGC (SEQ ID NO: 172)
ORF
36.84210526





NM_001408_siRNA_5512
5512
GCAGCUGUGAUCCAGGUUA (SEQ ID NO: 173)
UAACCUGGAUCACAGCUGC (SEQ ID NO: 174)
ORF
52.63157895



















Gene Name:
COPG2
GenBank Accession No.
NM_012133
GI:
66348036






Organism:

Homo sapiens

Length:
1703
ORF Region:
61-828





Locus:
26958
Blast database:
Human
ORF GC%
42.45












Definition:

Homo sapiens coatomer protein complex, subunit gamma 2 (COPG2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_012133_siRNA_97
97
GGUAGUGGCUCCAAUCCUU (SEQ ID NO: 175)
AAGGAUUGGAGCCACUACC (SEQ ID NO: 176)
ORF
52.63157895






NM_012133_siRNA_147
147
GGAGGCUCGUAUAUUCAAU (SEQ ID NO: 177)
AUUGAAUAUACGAGCCUCC (SEQ ID NO: 178)
ORF
42.10526316





NM_012133_siRNA_232
232
GGUGAACACUUUGGAACAA (SEQ ID NO: 179)
UUGUUCCAAAGUGUUCACC (SEQ ID NO: 180)
ORF
42.10526316





NM_012133_siRNA_380
380
GCAGUCUGACUAAAGACAU (SEQ ID NO: 181)
AUGUCUUUAGUCAGACUGC (SEQ ID NO: 182)
ORF
42.10526316





NM_012133_siRNA_548
548
CCCUGCACAUGAUGAAGAU (SEQ ID NO: 183)
AUCUUCAUCAUGUGCAGGG (SEQ ID NO: 184)
ORF
47.36842105



















Gene Name:
TSGA13
GenBank Accession No.
NM_052933
GI:
31377632






Organism:

Homo sapiens

Length:
1700
ORF Region:
458-1285





Locus:
114960
Blast database:
Human
ORF GC%
46.02












Definition:

Homo sapiens testis specific, 13 (TSGA13), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_052933_siRNA_1130
1130
GCGAGUGAAAGGCCAAUUU (SEQ ID NO: 185)
AAAUUGGCCUUUCACUCGC (SEQ ID NO: 186)
ORF
47.36842105






NM_052933_siRNA_1140
1140
GGCCAAUUUCCAAAGUGAU (SEQ ID NO: 187)
AUCACUUUGGAAAUUGGCC (SEQ ID NO: 188)
ORF
42.10526316





NM_052933_siRNA_1141
1141
GCCAAUUUCCAAAGUGAUU (SEQ ID NO: 189)
AAUCACUUUGGAAAUUGGC (SEQ ID NO: 190)
ORF
36.84210526



















Gene Name:
CSTF2T
GenBank Accession No.
NM_015235
GI:
46094083






Organism:

Homo sapiens

Length:
4127
ORF Region:
47-1897





Locus:
23283
Blast database:
Human
ORF GC%
54.14












Definition:

Homo sapiens cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64kDa, tau variant (CSTF2T), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_015235_siRNA_219
219
GCUAUGGCUUCUGCGAAUA (SEQ ID NO: 191)
UAUUCGCGAAGCCAUAGC (SEQ ID NO: 192)
ORF
47.36842105






NM_015235_siRNA_340
340
GGAGGAGUUAAAGAGCCUU (SEQ ID NO: 193)
AAGGCUCUUUAACUCCUCC (SEQ ID NO 194)
ORF
47.36842105





NM_015235_siRNA_641
641
CCACUGAUCCCAGGCAAAU (SEQ ID NO: 195)
AUUUGCCUGGGAUCAGUGG (SEQ ID NO: 196)
ORF
52.63157895





NM_015235_siRNA_1138
1138
GCAUCAUGCCUCUGGUCAU (SEQ ID NO: 197)
AUGACCAGAGGCAUGAUGC (SEQ ID NO: 198)
ORF
52.63157895





NM_015235_siRNA_1167
1167
GCCCUUCCUCACAUGAGAU (SEQ ID NO: 199)
AUCUCAUGUGAGGAAGGGC (SEQ ID NO: 200)
ORF
52.63157895



















Gene Name:
CSMD2
GenBank Accession No.
NM_052896
GI:
38045884






Organism:

Homo sapiens

Length:
13113
ORF Region:
30-10493





Locus:
114784
Blast database:
Human
ORF GC%
57.15












Definition:

Homo sapiens CUB and Shushi multiple domains (CSMD2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_052896_siRNA_224
224
GCUUGUGUUCCAGUCCUUU (SEQ ID NO: 201)
AAAGGACUGGAACACAAGC (SEQ ID NO: 202)
ORF
47.36842105






NM_052896_siRNA_520
520
GCUGCAACCUUGGCUUCUU (SEQ ID NO: 203)
AAGAAGCCAAGGUUGCAGC (SEQ ID NO: 204)
ORF
52.631S7895





NM_052896_siRNA_797
797
GGAAGUCACUGGGACAGAA (SEQ ID NO: 205)
UUCUGUCCCAGUGACUUCC (SEQ ID NO: 206)
ORF
52.63157893





NM_052896_siRNA_931
931
CCCAAUACCAAGUCAAGAA (SEQ ID NO: 207)
UUCUUGACUUGGUAUUGGG (SEQ ID NO: 208)
ORF
42.10526316





NM_052896_siRNA_938
938
CCAAGUCAAGAAGCAAAUU (SEQ ID NO: 209)
AAUUUGCUUCUUGACUUGG (SEQ ID NO: 210)
ORF
36.84210526



















Gene Name:
CTCF
GenBank Accession No.
NM_006565
GI:
62952500






Organism:

Homo sapiens

Length:
3797
ORF Region:
291-2474





Locus:
10664
Blast database:
Human
ORF GC%
48.81












Definition:

Homo sapiens CCCTC-binding factor (zinc finger protein) (CTCF), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006565_siRNA_812
812
GGUGGAGACACUAGAACA (SEQ ID NO: 211)
UUGUUCUAGUGUCUCCACC (SEQ ID NO: 212)
ORF
47.36842105






NM_006565_siRNA_1211
1211
CCUCCUGAGGAAUCACCUU (SEQ ID NO: 213)
AAGGUGAUUCCUCAGGAGG (SEQ ID NO: 214)
ORF
52.63157895





NM_006565_siRNA_1540
1540
CCCAAAGUGGUACCAUGAA (SEQ ID NO: 215)
UUCAUGGUACCAUUUGGG (SEQ ID NO: 216)
ORF
47.36842105





NM_006565_siRNA_1667
1667
GCAUUCCUAUAUUGAGCAA (SEQ ID NO: 217)
UUGCUCAAUAUAGGAAUGC (SEQ ID NO: 218)
ORF
36.84210526





NM_006565_siRNA_2285
2285
CCAGCCAACAGCUAUCAUU (SEQ ID NO: 219)
AAUGAUGCUGUUGGCUGG (SEQ ID NO: 220)
ORF
47.36842105



















Gene Name:
CUTL1
GenBank Accession No
NM_001913
GI:
31652235






Organism:

Homo sapiens

Length:
2942
ORF Region:
20-2056





Locus:
1523
Blast database:
Human
ORF GC%
55.38












Definition:

Homo sapiens cut-like 1, CCAAT displacement protein (Drosophila)(CUTL1), transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001913_siRNA_418
418
GGAAGAAUACAACAAGGAA (SEQ ID NO: 221)
UUCCUUGUUGUAUUCUUCC (SEQ ID NO: 222)
ORF
36.84210526






NM_001913_siRNA_1357
1357
GCAGGACCUGAGCAUCAUU (SEQ ID NO: 223)
AAUGAUGCUCAGGUCCUGC (SEQ ID NO: 224)
ORF
52.63157895





NM_001913_siRNA_1507
1507
CCAGGUGGAUUCACUGCUU (SEQ ID NO: 225)
AAGCAGUGAAUCCACCUGG (SEQ ID NO:226)
ORF
52.63157895





NM_001913_siRNA_1644
1644
CCGACAACAUCAAGCUCUU (SEQ ID NO: 227)
AAGAGCUUGAUGUUGUCGG (SEQ ID NO: 228)
ORF
47.36842105





NM_001913_siRNA_2002
2002
GCACAAGUUCCACGAGAAU (SEQ ID NO: 229)
AUUCUCGUGGAACUUGUGC (SEQ ID NO: 230)
ORF
47.36842105



















Gene Name:
MYLC2PL
GenBank Accession No.
NM_138403
GI:
40286635






Organism:

Homo sapiens

Length:
681
ORF Region:
1-681





Locus:
93408
Blast database:
Human
ORF GC%
54.78












Definition:

Homo sapiens myosin light chain 2, precursor lymphocyte-specific (MYLC2PL), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_138403_siRNA_321
321
GGACUUGAGGGACACCUUU (SEQ ID NO: 231)
AAAGGUGUCCCUCAAGUCC (SEQ ID NO: 232)
ORF
52.63157895






NM_138403_siRNA_350
350
GCCGCAUCAAUGUCAAGAA (SEQ ID NO: 233)
UUCUUGACAUUGAUGCGGC (SEQ ID NO: 234)
ORF
47.36842105





NM_138403_siRNA_473
473
CCAUUCUCCACGCCUUCAA (SEQ ID NO: 235)
UUGAAGGCGUGGAGAAUGG (SEQ ID NO: 236)
ORF
52.63157895





NM_138403_siRNA_588
588
GCAGAUGUUUGCAGCGUUU (SEQ ID NO: 237)
AAACGCUGCAAACAUCUGC (SEQ ID NO: 238)
ORF
47.36842105



















Gene Name:
DLX2
GenBank Accession No.
NM_004405
GI:
6996003






Organism:

Homo sapiens

Length:
2091
ORF Region:
1-987





Locus:
1746
Blast database:
Human
ORF GC%
61.81












Definition:

Homo sapiens distal-less homeo box 2 (DLX2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_004405_siRNA_676
676
GCUUCUCCACCUUGUGCUU (SEQ ID NO: 239)
AGGCACAAGGUGGAGAAGC (SEQ ID NO: 240)
ORF
52.63157895



















Gene Name:
KLHL24
GenBank Accession No.
NM_017644
GI:
62865888






Organism:

Homo sapiens

Length:
7331
ORF Region:
296-2098





Locus:
54800
Blast database:
Human
ORF GC%
42.55












Definition:

Homo sapiens kelch-like 24 (Drosophila) (KLHL24), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_017644_siRNA_558
558
GCAGCUACUUUCAGAGCUAU (SEQ ID NO: 241)
AUAGCUCUGAAGUAGCUGC (SEQ ID NO: 242)
ORF
47.36842105






NM_017644_siRNA_594
594
GGGAAAGCCGAGAAAUGUU (SEQ ID NO: 243)
AACAUUUCUCGGCUUUCCC (SEQ ID NO: 244)
ORF
47.36842105





NM_017644_siRNA_778
778
GCAACUUGAUCCUUGUAAU (SEQ ID NO: 245)
AUUACAAGGAUCAAGUUGC (SEQ ID NO: 246)
ORF
36.84210526





NM_017644_siRNA_811
811
GCGCUUUGCUGAUACCCAU (SEQ ID NO: 247)
AUGGGUAUCAGCAAAGCGC (SEQ ID NO: 248)
ORF
52.63157895





NM_017644_siRNA_913
913
GCUUGACAAAGAUGAACUU (SEQ ID NO: 249)
AAGUUCAUCUUUGUCAAGC (SEQ ID NO: 250)
ORF
36.84210526





NM_017644_siRNA_1679
1679
GGACCUGAUGAUAAUACUU (SEQ ID NO: 251)
AAGUAUUAUCAUCAGGUCC (SEQ ID NO: 252)
ORF
36.84210526



















Gene Name:
CHCHD8 aka
GenBank Accession No.
NM_016565
GI:
46198303




E2IG2





Organism:

Homo sapiens

Length:
833
ORF Region:
106-369





Locus:
51287
Blast database:
Human
ORF GC%
60.99












Definition:

Homo sapiens coiled-coil-helix-coiled-coil-helix domain containing8 (CHCHD8), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_016565_siRNA_115
115
UCAGUCCCUCAAGGCCAUA (SEQ ID NO: 256)
UAUGGCCUUGAGGGACUGA (SEQ ID NO: 254)
ORF
52.63157895






NM_016565_siRNA_138
138
GACCCAACGGGUGAAGAAA (SEQ ID NO: 255)
UUUCUUCACCCGUUGGGUC (SEQ ID NO: 256)
ORF
52.63157895





NM_016565_siRNA_140
140
CCCAACGGGUGAAGAAAGA (SEQ ID NO: 257)
UCUUUCUUCACCCGUUGGG (SEQ ID NO: 258)
ORF
52.63157895



















Gene Name:
EIF3S10
GenBank Accession No.
NM_003750
GI:
4503508






Organism:

Homo sapiens

Length:
5256
ORF Region:
114-262





Locus:
8661
Blast database:
Human
ORF GC%
46.81












Definition:

Homo sapiens eukaryotic translation initiation factor 3, subunit 10theta, 150/170kDa (EIF3S10), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003750_siRNA_298
298
GCAAGAGCCACUUGGCAAA (SEQ IDN O: 259)
UUUGCCAAGUGGCUCUUGC (SEQ ID NO: 260)
ORF
52.63157895






NM_003750_siRNA_440
440
GCAGAUGGUCUUAGAUAUA (SEQ ID NO: 261)
UAUAUCUAAGACCAUCUGC (SEQ ID NO: 262)
ORF
36.84210526





NM_003750_siRNA_626
626
GCGCCUGUACCAUGAUAUU (SEQ ID NO: 263)
AAUAUCAUGGUACAGGCGC (SEQ ID NO: 264)
ORF
47.36842105





NM_003750_siRNA_635
635
CCAUGAUAUUGCCCAGCAA (SEQ ID NO: 265)
UUGCUGGGCAAUAUCAUGG (SEQ ID NO: 266)
ORF
47.36842105





NM_003750_siRNA_1328
1328
GCGAGUCACAAAGGUUCUA (SEQ ID NO: 267)
UAGAACCUUUGUGACUCGC (SEQ ID NO: 268)
ORF
47.36842105



















Gene Name:
ERBB2IP
GenBank Accession No.
NM_018695
GI:
56237019






Organism:

Homo sapiens

Length:
6916
ORF Region:
309-4424





Locus:
55914
Blast database:
Human
ORF GC%
38.63












Definition:

Homo sapiens erbb2 interacting protein (ERBB2IP), transcriptvariant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_018695_siRNA_899
899
GGAAGUGCCUGAAGUACUU (SEQ ID NO: 269)
AAGACUUCAGGCACUUCC (SEQ I DNO: 270)
ORF
47.36842105






NM_018695_siRNA_920
920
GCAACUAAGUGGAUUGAAA (SEQ ID NO: 271)
UUUCAAUCCACUUAGUUGC (SEQ ID NO: 272)
ORF
36.84210526





NM_018695_siRNA_1106
1106
GCAGUUCCUGAGACUAUU (SEQ ID NO: 273)
AAUAGUCUCAGGAAGCUGC (SEQ ID NO: 274)
ORF
47.36842105





NM_018695_siRNA_1598
1598
GCCAAGGACUGAGGAUGUU (SEQ ID NO: 275)
AACAUCCUCAGUCCUUGGC (SEQ ID NO: 276)
ORF
52.63157895





NM_018695_siRNA_2568
2568
GCUGAUGACACUCACAAAU (SEQ ID NO: 277)
AUUUGUGAGUGUCAUCAGC (SEQ ID NO: 278)
ORF
42.10526316





NM_018695_siRNA_3434
3434
CCAUUUACAUCAGAGACUU (SEQ ID NO: 279)
AAGUCUCUGAUGUAAAUGG (SEQ ID NO: 280)
ORF
36.84210526



















Gene Name:
FER1L3
GenBank Accession No.
NM_013451
GI:
19718757






Organism:

Homo sapiens

Length:
6829
ORF Region:
89-6274





Locus:
26509
Blast database:
Human
ORF GC%
47.63












Definition:

Homo sapiens fer-1-like 3, myoferlin (C. elegans) (FER1L3), transcript varient 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_013451_siRNA_1529
1529
GCUGCAUCAUAUACAGUAA (SEQ ID NO: 281)
UUACUGUAUAUGAUGCAGC (SEQ ID NO: 282)
ORF
36.84210526






NM_013451_siRNA_1589
1589
CCUUGUUACCUGAAUCUUU (SEQ ID NO: 283)
AAAGAUUCAGGUAACAAGG (SEQ ID NO: 284)
ORF
36.84210526





NM_013451_siRNA_1747
1747
GCUUGAGCCCAUUUCAAAU (SEQ ID NO: 285)
AUUUGAAAUGGGCUCAAGC (SEQ ID NO: 286)
ORF
42.10526316





NM_013451_siRNA_3081
3081
CCAUUCCUCCUGAUCAUAA (SEQ ID NO: 287)
UUAUGAUCAGGAGGAAUGG (SEQ ID NO: 288)
ORF
42010526316





NM_013451_siRNA_5017
5017
CCGAUUCCUUUCCCGCUUU (SEQ ID NO: 289)
AAAGCGGGAAAGGAAUCGG (SEQ ID NO: 290)
ORF
52.63157895



















Gene Name:
FER1L3
GenBank Accession No.
NM_133337
GI:
19718758






Organism:

Homo sapiens

Length:
6790
ORF Region:
89-6235





Locus:
26509
Blast database:
Human
ORF GC%
47.64












Definition:

Homo sapiens fer-1-like 3, myfoerlin (C. elegans) (FER1L3), transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_133337_siRNA_1501
1501
GGAAGUAAACACAGGAGAA (SEQ ID NO: 291)
UUCUCCUGUGUUUACUUCC (SEQ ID NO: 292)
ORF
42.10526316






NM_133337_siRNA_1550
1550
CCUUGUUACCUGAAUCUUU (SEQ ID NO: 293)
AAAGAUUCAGGUAACAAGG (SEQ ID NO: 294)
ORF
36.84210526





NM_133337_siRNA_1708
1708
GCUUGAGCCCAUUUCAAAU (SEQ ID NO: 295)
AUUUGAAAUGGGCUCAAGC (SEQ ID NO: 296)
ORF
42.10526316





NM_133337_siRNA_3042
3042
CCAUUCCUCCUGAUCAUAA (SEQ ID NO: 297)
UUAUGAUCAGGAGGAAUGG (SEQ ID NO: 298)
ORF
42.10526316



















Gene Name:
FKBP8
GenBank Accession No.
NM_012181
GI:
52630439






Organism:

Homo sapiens

Length:
1787
ORF Region:
114-1355





Locus:
23770
Blast database:
Human
ORF GC%
62.08












Definition:

Homo sapiens FK506 binding protein 8, 38kDa (FKBP8), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_012181_siRNA_855
855
GCCAUCAAGGCUAUCACCU (SEQ ID NO: 299)
AGGUGAUAGCCUUGAUGGC (SEQ ID NO: 300)
ORF
52.63157895






NM_012181_siRNA_916
916
UCCUGCAGUUGAAGGUGAA (SEQ ID NO: 301)
UUCACCUUCAACUGCAGGA (SEQ ID NO: 302)
ORF
47.36842105





NM_012181_siRNA_1019
1019
CCAGCCAGACAACAUCAAG (SEQ ID NO: 303)
CUUGAUGUUGUCUGGCUGG (SEQ ID NO: 304)
ORF
52.63157895





NM_012181_siRNA_1022
1022
GCCAGACAACAUCAAGGCU (SEQ ID NO: 305)
AGCCUUGAUGUUGUCUGGC (SEQ ID NO: 306)
ORF
52.63157895





NM_012181_siRNA_1141
1141
UCCACGCAGAGCUCUCAAA (SEQ ID NO: 307)
UUUGAGAGCUCUGCGUGGA (SEQ IDN O: 308)
ORF
52.63157895



















Gene Name:
FUSIP1
GenBank Accession No.
NM_006625
GI:
16905515






Organism:

Homo sapiens

Length:
1842
ORF Region:
77-628





Locus:
10772
Blast database:
Human
ORF GC%
45.66












Definition:

Homo sapiens FUS interacting protein (serine/arginine-rich) 1(FUSIP1), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006625_siRNA_157
157
GCGUGAAUUUGGUCGUUAU (SEQ ID NO: 309)
AUAACGACCAAAUUCACGC (SEQ ID NO: 310)
ORF
42.10526316






NM_006625_siRNA_567
567
GACCAAACUGCAGCUGGAA (SEQ ID NO: 311)
UUCCAGCUGCAGUUUGGUC (SEQ ID NO: 312)
ORF
52.63157895





NM_006625_siRNA_569
569
CCAAACUGCAGCUGGAAUA (SEQ ID NO: 313)
UAUUCCAGCUGCAGUUUGG (SEQ ID NO: 314)
ORF
47.36842105



















Gene Name:
FUSIP1
GenBank Accession No.
NM_054016
GI:
16905516






Organism:

Homo sapiens

Length:
2924
ORF Region:
77-865





Locus:
10772
Blast database:
Human
ORF GC%
43.98












Definition:

Homo sapiens FUS interacting protein (serine/arginine-rich) 1(FUSIP1), transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_054016_siRNA_157
157
GCGUGAAUUUGGUCGUUAU (SEQ ID NO: 315)
AUAACGACCAAAUUCACGC (SEQ ID NO: 316)
ORF
42.10526316






NM_054016_siRNA_169
169
UCGUUAUGGUCCUAUAGUU (SEQ ID NO: 317)
AACUAUAGGACCAUAACGA (SEQ ID NO: 318)
ORF
36.84210526





NM_054016_siRNA_220
220
CCGUCCAAGAGGAUUUGCU (SEQ ID NO: 319)
AGCAAAUCCUCUUGGACGG (SEQ ID NO: 320)
ORF
52.63157895



















Gene Name:

GenBank Accession No.
AK025846
GI:
10438485






Organism:

Homo sapiens

Length:
2388
ORF Region:





Locus:

Blast database:
Human
ORF GC%












Definition:

Homo sapiens cDNA: FLJ22193 fls, clone HRC01108, gas5 mRNA

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















AK025846_siRNA_246
246
GCAGAUGUGCUUCAUGCAU (SEQ ID NO: 321)
AUGCAUGAAGCACAUCUGC (SEQ ID NO: 322)

47.36842105






AK025846_siRNA_1968
1968
GCUAUACCUUUGCUUCUUU (SEQ ID NO: 323)
AAAGAAGCAAAGGUAUAGC (SEQ ID NO: 324)

36.84210526





AK025846_siRNA_2088
2088
CCCAACUACUGUUUCAGUU (SEQ ID NO: 325)
AACUGAAACAGUAGUUGGG (SEQ ID NO: 326)

42.10526316





AK025846_siRNA_2287
2287
CCAGGAGCUGGAAUACAAA (SEQ ID NO: 327)
UUUGUAUUCCAGCUCCUGG (SEQ ID NO: 328)

47.36842105





AK025846_siRNA_2296
2296
GGAAUACAAAUGAGGACUU (SEQ ID NO: 329)
AAGUCCUCAUUUGUAUUCC (SEQ ID NO: 330)

36.84210526



















Gene Name:
GATA4
GenBank Accession No.
NM_002052
GI:
33188460






Organism:

Homo sapiens

Length:
3372
ORF Region:
519-1847





Locus:
2626
Blast database:
Human
ORF GC%
68.78












Definition:

Homo sapiens GATA binding protein 4 (GATA4), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002052_siRNA_1158
1158
GGCAGAGAGUGUGUCAACU (SEQ ID NO: 331)
AGUUGACACACUCUCUGCC (SEQ ID NO: 332)
ORF
52.63157895






NM_002052_siRNA_1243
1243
GCCUCUACCACAAGAUGAA (SEQ ID NO: 333)
UUCAUCUUGUGGUAGAGGC (SEQ ID NO: 334)
ORF
47.36842105





NM_002052_siRNA_1477
1477
GGAAGCCCAAGAACCUGAA (SEQ ID NO: 335)
UUCAGGUUCUUGGGCUUCC (SEQ ID NO: 336)
ORF
52.63157895





NM_002052_siRNA_1482
1482
CCCAAGAACCUGAAUAAAU (SEQ ID NO: 337)
AUUUAUUCAGGUUCUUGGG (SEQ ID NO: 338)
ORF
36.84210526



















Gene Name:
GRB2
GenBank Accession No.
NM_002086
GI:
45359857






Organism:

Homo sapiens

Length:
3317
ORF Region:
358-1011





Locus:
2885
Blast database:
Human
ORF GC%
50.77












Definition:

Homo sapiens growth factor receptor-bound protein 2 (GRB2),transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002086_siRNA_365
365
CCAUCGCCAAAUAUGACUU (SEQ ID NO: 339)
AAGUCAUAUUUGGCGAUGG (SEQ ID NO: 340)
ORF
42.10526316






NM_002086_siRNA_464
464
GGUACAAGGCAGAGCUUAA (SEQ ID NO: 341)
UUAAGCUCUGCCUUGUACC (SEQ ID NO: 342)
ORF
47.36842105





NM_002086_siRNA_494
494
GCUUCAUUCCCAAGAACUA (SEQ ID NO: 343)
UAGUUCUUGGGAAUGAAGC (SEQ ID NO: 344)
ORF
42.10526316





NM_002086_siRNA_779
779
CCAGAAACCAGCAGAUAUU (SEQ ID NO: 345)
AAUAUCUGCUGGUUUCUGG (SEQ ID NO: 346)
ORF
42.10526316





NM_002086_siRNA_840
840
CCAGGCCCUCUUUGACUUU (SEQ ID NO: 347)
AAAGUCAAAGAGGGCCUGG (SEQ ID NO: 348)
ORF
52.63157895



















Gene Name:
GTF2E1
GenBank Accession No.
NM_005513
GI:
5031726






Organism:

Homo sapiens

Length:
2969
ORF Region:
55-1374





Locus
2960
Blast database:
Human
ORF GC%
47.88












Definition:

Homo sapiens general transcription factor IIE, polypeptide 1 (alphasubunit, 56kD) (GTF2E1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_005513_siRNA_198
198
GCUGGAGCUGCUCAAGUUU (SEQ ID NO: 349)
AAACUUGAGCAGCUCCAGC (SEQ ID NO: 350)
ORF
52.63157895






NM_005513_siRNA_378
378
CCACAUGAGAAGAAGAAUU (SEQ ID NO: 351)
AAUUCUUCUUCUCAUGUGG (SEQ ID NO: 352)
ORF
36.84210526





NM_005513_siRNA_885
885
GCCUAUUUGGUUGAGAGAA (SEQ ID NO: 353)
UUCUCUCAACCAAAUAGGC (SEQ ID NO: 354)
ORF
42.10526316





NM_00S513_siRNA_950
950
GCAUAGAUAUGGACGCAUU (SEQ ID NO: 355)
AAUGCGUCCAUAUCUAUGC (SEQ ID NO: 356)
ORF
42.10526316





NM_005513_siRNA_1349
1349
GCAUGUUUGAGGACCUCUU (SEQ ID NO: 357)
AAGAGGUCCUCAAACAUGC (SEQ ID NO:358)
ORF
47.36842105



















Gene Name:
RABL3
GenBank Accession No.
NM_173825
GI:
62751416






Organism:

Homo sapiens

Length:
3449
ORF Region:
31-741





Locus:
283282
Blast database:
Human
ORF GC%
43.75












Definition:

Homo sapiens RAB, member of RAS oncogene family-like 3 (RABL3), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_173825_siRNA_47
47
GGGUGAAGGUACUGGUGUU (SEQ ID NO: 359)
AACACCAGUACCUUCACCC (SEQ ID NO: 360)
ORF
52.63157895






NM_173825_siRNA_266
266
GCACAAGAGCAGUAUUCUA (SEQ ID NO: 361)
UAGAAUACUGCUCUUGUGC (SEQ ID NO: 362)
ORF
42.10526316





NM_173825_siRNA_467
467
GGACUAAACUGGACCAGAU (SEQ ID NO: 363)
AUCUGGUCCAGUUUAGUCC (SEQ ID NO: 364)
ORF
47.36842105





NM_173825_siRNA_528
528
CCUGGCUGAGGAUUUCAAU (SEQ ID NO: 365)
AUUGAAAUCCUCAGCCAGG (SEQ ID NO: 366)
ORF
47.36842105



















Gene Name:
HM13
GenBank Accession No.
NM_030789
GI:
30581114






Organism:

Homo sapiens

Length:
1604
ORF Region:
115-1248





Locus:
81502
Blast database:
Human
ORF GC%
54.77












Definition:

Homo sapiens histocompatibility (minor) 13 (HM13), transcriptvariant, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_030789_siRNA_293
293
GCAAGAAUGCUUCAGACAU (SEQ ID NO: 367)
AUGUCUGAAGCAUUCUUGC (SEQ ID NO: 368)
ORF
42.10526316






NM_030789_siRNA_420
420
CCUCCUGCUGUCCAUGUAU (SEQ ID NO: 369)
AUACAUGGACAGCAGGAGG (SEQ ID NO: 370)
ORF
52.63157895





NM_030789_siRNA_645
645
GCUGAGGAAGCACUGGAUU (SEQ ID NO: 371)
AAUCCAGUGCUUCCUCAGC (SEQ ID NO: 372)
ORF
52.63157895





NM_030789_siRNA_870
870
CCUCGAAGCAAACAACUUU (SEQ ID NO: 373)
AAAGUUGUUUGCUUCGAGG (SEQ ID NO: 374)
ORF
42.10526316





NM_030789_siRNA_1155
1155
GGAGUCAAAUCCUAAGGAU (SEQ ID NO: 375)
AUCCUUAGGAUUUGACUCC (SEQ ID NO: 376)
ORF
42.10526316



















Gene Name:
HNRPL
GenBank Accession No.
NM_001533
GI:
52632382






Organism:

Homo sapiens

Length:
2129
ORF Region:
12-1781





Locus:
3191
Blast database:
Human
ORF GC%
51.53












Definition:

Homo sapiens heterogeneous nuclear ribonucleoprotein L (HNRPL),transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001533_siRNA_480
480
GCAGCCGACAACCAAAUAU (SEQ ID NO: 377)
AUAUUUGGUUGUCGGCUGC (SEQ ID NO: 378)
ORF
47.36842105






NM_001533_siRNA_716
716
GGUGGAAUUUGACUCAGUU (SEQ ID NO: 379)
AACUGAGUCAAAUUCCACC (SEQ ID NO: 380)
ORF
42.10526316





NM_001533_siRNA_719
719
GGAAUUUGACUCAGUUCAA (SEQ ID NO: 381)
UUGAACUGAGUCAAAUUCC (SEQ ID NO: 382)
ORF
36.84210526





NM_001533_siRNA_793
793
GCACUCUGAAGAUCGAAUA (SEQ ID NO: 383)
UAUUCGAUCUUCAGAGUGC (SEQ ID NO: 384)
ORF
42.10526316



















Gene Name:
HOXC13
GenBank Accession No.
NM_017410
GI:
24497535






Organism:

Homo sapiens

Length:
2435
ORF Region:
116-1108





Locus:
3229
Blast database:
Human
ORF GC%
62.34












Definition:

Homo sapiens homeo box C13 (HOXC13), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_017410_siRNA_154
154
GAGCCUUAUGUACGUCUAU (SEQ ID NO: 385)
AUAGACGUACAUAAGGCUC (SEQ ID NO: 386)
ORF
42.10526316






NM_017410_siRNA_912
912
CCUACACUAAGGUGCAGCU (SEQ ID NO: 387)
AGCUGCACCUUAGUGUAGG (SEQ ID NO: 388)
ORF
52.63157895





NM_017410_siRNA_1066
1066
GGUGGUCAGCAAAUCGAAA (SEQ ID NO: 389)
UUUCGAUUUGCUGACCACC (SEQ ID NO: 390)
ORF
47.36842105





NM_017410_siRNA_1074
1074
GCAAAUCGAAAGCGCCUCA (SEQ ID NO: 391)
UGAGGCGCUUUCGAUUUGC (SEQ ID NO: 392)
ORF
52.63157895



















Gene Name:
HP1BP3
GenBank Accession No.
NM_016287
GI:
56676329






Organism:

Homo sapiens

Length:
1855
ORF Region:
101-1762





Locus:
50809
Blast database:
Human
ORF GC%
47.24












Definition:

Homo sapiens heterchromatin protein 1, binding protein 3 (HP1BP3), mRNA also known as HP1-BP74

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_016287_siRNA_576
576
CCAAGAUGGAUGCAAUCUU (SEQ ID NO: 393)
AAGAUUGCAUCCAUCUUGG (SEQ ID NO: 394)
ORF
42.10526316






NM_016287_siRNA_990
990
GGCCUCAGCUGUUGAAGAA (SEQ ID NO: 395)
UUCUUCAACAGCUGAGGCC (SEQ ID NO: 396)
ORF
52.63157895





NM_016287_siRNA_1112
1112
GGUGGAAGCCUGAUGGAAU (SEQ ID NO: 397)
AUUCCAUCAGGCUUCCACC (SEQ ID NO: 398)
ORF
52.63157895



















Gene Name:
HSPC135
GenBank Accession No.
NM_014170
GI:
56549684






Organism:

Homo sapiens

Length:
1364
ORF Region:
48-902





Locus:
29083
Blast database:
Human
ORF GC%
46.91












Definition:

Homo sapiens HSPC135 protein (HSPC135), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_014170_siRNA_533
533
GGUGGACAUGCCAGGUUAU (SEQ ID NO: 399)
AUAACCUGGCAUGUCCACC (SEQ ID NO: 400)
ORF
52.63157895






NM_014170_siRNA_638
638
GGAUAGCGUUGUUGGAAUU (SEQ ID NO: 401)
AAUUCCAACAACGCUAUCC (SEQ ID NO: 402)
ORF
42.10526316





NM_014170_siRNA_849
849
GGAAUCCACCUGUUGAGAU (SEQ ID NO: 403)
AUCUCAACAGGUGGAUUCC (SEQ ID NO: 404)
ORF
47.36842105





NM_014170_siRNA_854
854
CCACCUGUUGAGAUGCUUU (SEQ ID NO: 405)
AAAGCAUCUCAACAGGUGG (SEQ ID NO: 406)
ORF
47.36842105



















Gene Name:
CD200R1
GenBank Accession No.
NM_138806
GI:
41327722






Organism:

Homo sapiens

Length:
2272
ORF Region:
234-1280





Locus:
131450
Blast database:
Human
ORF GC%
43.18












Definition:

Homo sapiens CD200 receptor 1 (CD200R1), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_138806_siRNA_341
341
GCAAACUAGCAAGGAGAAU (SEQ ID NO: 407)
AUUCUCCUUGCUAGUUUGC (SEQ ID NO: 408)
ORF
42.10526316






NM_138806_siRNA_429
429
GCAGAAGUUAACACUUCAU (SEQ ID NO: 409)
AUGAAGUGUUAACUUCUGC (SEQ ID NO: 410)
ORF
36.84210526





NM_138806_siRNA_462
462
GCUACAAAUGCUGUGCUUU (SEQ ID NO: 411)
AAAGCACAGCAUUUGUAGC (SEQ ID NO: 412)
ORF
42.10526316





NM_138806_siRNA_590
590
GGAAACCAACUGUACUGAU (SEQ ID NO: 413)
AUCAGUACAGUUGGUUUCC (SEQ ID NO: 414)
ORF
42.10526316





NM_138806_siRNA_869
869
GCAAGAAUACUGGAGCAAU (SEQ ID NO: 415)
AUUGCUCCAGUAUUCUUGC (SEQ ID NO: 416)
ORF
42.10526316





NM_138806_siRNA_1230
1230
GCAUCUGAGGCAUUACAAA (SEQ ID NO: 417)
UUUGUAAUGCCUCAGAUGC (SEQ ID NO: 418)
ORF
42.10526316



















Gene Name:
ID3
GenBank Accession No.
NM_002167
GI:
32171181






Organism:

Homo sapiens

Length:
1203
ORF Region:
368-727





Locus:
3399
Blast database:
Human
ORF GC%
64.17












Definition:

Homo sapiens inhibitor of DNA binding 3, dominant negativehelix-loop-helix protein (ID3), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002167_siRNA_561
561
GCCAGGUGGAAAUCCUACA (SEQ ID NO: 419)
UGUAGGAUUUCCACCUGGC (SEQ ID NO: 420)
ORF
52.63157895






NM_002167_siRNA_580
580
GCGCGUCAUCGACUACAUU (SEQ ID NO: 421)
AAUGUAGUCGAUGACGCGC (SEQ ID NO: 422)
ORF
52.63157895





NM_002167_siRNA_680
680
GCUCCGGAACUUGUCAUCU (SEQ ID NO: 423)
AGAUGACAAGUUCCGCAGC (SEQ ID NO: 424)
ORF
52.63157895



















Gene Name:
IGF2R
GenBank Accession No.
NM_000876
GI:
4504610






Organism:

Homo sapiens

Length:
9090
ORF Region:
148-7623





Locus:
3482
Blast database:
Human
ORF GC%
52.23












Definition:

Homo sapiens insulin-like growth factor 2 receptor (IGF2R), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000876_siRNA_461
461
CCAGAUCUCUCCUGGAAUU (SEQ ID NO: 425)
AAUUCCAGGAGAGAUCUGG (SEQ ID NO: 426)
ORF
47.36842105






NM_000576_siRNA_558
558
CCUGGGAACUCCUGAAUUU (SEQ ID NO: 427)
AAAUUCAGGAGUUCCCAGG (SEQ ID NO: 428)
ORF
47.36842105





NM_000876_siRNA_649
649
GCAAAUAAGGAGGUGCCAU (SEQ ID NO: 429)
AUGGCACCUCCUUAUUUGC (SEQ ID NO: 430)
ORF
47.36842105





NM_000876_siRNA_1146
1146
GCAGCAGGAUGUCUCCAUA (SEQ ID NO: 431)
UAUGGAGACAUCCUGCUGC (SEQ ID NO: 432)
ORF
52.63157895





NM_000876_siRNA_1927
1927
GCACCAGUGUUGAGAACUU (SEQ ID NO: 433)
AAGUUCUCAACACUGGUGC (SEQ ID NO: 434)
ORF
47.36842105





NM_000876_siRNA_2092
2092
GCCUAUAAAGUUGAGACAA (SEQ ID NO: 435)
UUGUCUCAACUUUAUAGGC (SEQ ID NO: 436)
ORF
36.84210526





NM_000876_siRNA_2735
2735
GCAGCCUCCUUCUGGAAUA (SEQ ID NO: 437)
UAUUCCAGAAGGAGGCUGC (SEQ ID NO: 438)
ORF
52.63157895





NM_000876_siRNA_3901
3901
GCUGGCGAAUACACUUAUU (SEQ ID NO: 439)
AAUAAGUGUAUUCGCCAGC (SEQ ID NO: 440)
ORF
42.10526316





NM_000876_siRNA_6587
6587
GCUUCAGCCUCGGAGAUAU (SEQ ID NO: 441)
AUAUCUCCGAGGCUGAAGC (SEQ ID NO: 442)
ORF
52.63157895





NM_000876_siRNA_6849
6849
GGAUAAGACCAAGUCUGUU (SEQ ID NO: 443)
AACAGACUUGGUCUUAUCC (SEQ ID NO: 444)
ORF
42.10526316



















Gene Name:
JAK1
GenBank Accession No.
NM_002227
GI:
4504802






Organism:

Homo sapiens

Length:
4
3541
ORF Region:
76-3504





Locus:
3716
Blast database:
Human
ORF GC%
47.54












Definition:

Homo sapiens Janus kinase 1 (a protein tyrosine kinase) (JAK1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002227_siRNA_297
297
GCUCUGGUAUGCUCCAAAU (SEQ ID NO: 445)
AUUUGGAGCAUACCAGAGC (SEQ ID NO: 446)
ORF
47.36842105






NM_002227_siRNA_320
320
CCAUCACCGUUGAUGACAA (SEQ ID NO: 447)
UUGUCAUCAACGGUGAUGG (SEQ ID NO: 448)
ORF
47.36842105





NM_002227_siRNA_380
380
CCAAUUGGCAUGGAACCAA (SEQ ID NO: 449)
UUGGUUCCAUGCCAAUUGG (SEQ ID NO: 450)
ORF
47.36842105





NM_002227_siRNA_387
387
GCAUGGAACCAACGACAAU (SEQ ID NO: 451)
AUUGUCGUUGGUUCCAUGC (SEQ ID NO: 452)
ORF
47.36842105





NM_002227_siRNA_621
621
CCUGGCCAUCUCACACUAU (SEQ ID NO: 453)
AUAGUGUGAGAUGGCCAGG (SEQ ID NO: 454)
ORF
52.63157895





NM_002227_siRNA_626
626
CCAUCUCACACUAUGCCAU (SEQ ID NO: 455)
AUGGCAUAGUGUGAGAUGG (SEQ ID NO: 456)
ORF
47.36842105





NM_002227_siRNA_1511
1511
CCCAGAAGCAGUUCAAGAA (SEQ ID NO: 457)
UUCUUGAACUGCUUCUGGG (SEQ ID NO: 458)
ORF
47.36842105





NM_002227_siRNA_1701
1701
GCUGGUGGCUACUAAGAAA (SEQ ID NO: 459)
UUUCUUAGUAGCCACCAGC (SEQ ID NO: 460)
ORF
47.36842105





NM_002227_siRNA_1814
1814
GCACGAGAACACACAUCUA (SEQ ID NO: 461)
UAGAUGUGUGUUCUCGUGC (SEQ ID NO: 462)
ORF
47.36842105





NM_002227_siRNA_2022
2022
GGAGAAUAUCAUGGUGGAA (SEQ ID NO: 463)
UUCCACCAUGAUAUUCUCC (SEQ ID NO: 464)
ORF
42.10526316



















Gene Name:
KIF13B
GenBank Accession No.
NM_016254
GI:
46852171






Organism:

Homo sapiens

Length:
8796
ORF Region:
91-5571





Locus:
23303
Blast database:
Human
ORF GC%
52.64












Definition:

Homo sapiens kinesin family member 13B (KIF13B), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_015254_siRNA_141
141
GCGAGAGACUGACUUGCAU (SEQ ID NO: 465)
AUGCAAGUCAGUCUCUCGC (SEQ ID NO: 466)
ORF
52.63157895






NM_015254_siRNA_631
631
CCUUAUGUCGACGGACUUU (SEQ ID NO: 467)
AAAGUCCGUCGACAUAAGG (SEQ ID NO: 468)
ORF
47.36842105





NM_015254_siRNA_1374
1374
GCUUGAGAGUCUUGGAAUA (SEQ ID NO: 469)
UAUUCCAAGACUCUCAAGC (SEQ ID NO: 470)
ORF
42.10526316





NM_015254_siRNA_1473
1473
GCUUCUGGUGUACUAUUUA (SEQ ID NO: 471)
UAAAUAGUACACCAGAAGC (SEQ ID NO: 472)
ORF
36.84210526





NM_015254_siRNA_4479
4479
GCUCCUCAAGUCUCUCUUU (SEQ ID NO: 473)
AAAGAGAGACUUGAGGAGC (SEQ ID NO: 474)
ORF
47.36842105



















Gene Name:
MKI67
GenBank Accession No.
NM_002417
GI:
19923216






Organism:

Homo sapiens

Length:
12515
ORF Region:
197-9967





Locus:
4288
Blast database:
Human
ORF GC%
47.35












Definition:

Homo sapiens antigen identified by monoclonal antibody Ki-67(MKI67), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002417_siRNA_727
727
GGGAACAACUAAUGUUCAU (SEQ ID NO: 475)
AUGAACAUUAGUUGUUCCC (SEQ ID NO: 476)
ORF
36.84210526






NM_002417_siRNA_1913
1913
GCACAAAGCUUGGUUAUAA (SEQ ID NO: 477)
UUAUAACCAAGCUUUGUGC (SEQ ID NO: 478)
ORF
36.84210526





NM_002417_siRNA_3621
3621
GCACAAAGCAAUGGCCUAA (SEQ ID NO: 479)
UUAGGCCAUUGCUUUGUGC (SEQ ID NO: 480)
ORF
47.36842105





NM_002417_siRNA_6317
6317
GCGUUUAAGGAAUCUGCAA (SEQ ID NO: 481)
UUGCAGAUUCCUUAAACGC (SEQ ID NO: 482)
ORF
42.10526316





NM_002417_siRNA_8846
8846
GCAUUUAAGCAACCUGCAA (SEQ ID NO: 483)
UUGCAGGUUGCUUAAAUGC (SEQ ID NO: 484)
ORF
42.10526316





NM_002417_siRNA_9505
9505
GCAAAUAACUGAGGUCUUU (SEQ ID NO: 485)
AAAGACCUCAGUUAUUUGC (SEQ ID NO: 486)
ORF
36.84210526



















Gene Name:
LIPC
GenBank Accession No.
NM_000236
GI:
4557722






Organism:

Homo sapiens

Length:
1603
ORF Region:
58-1557





Locus:
3990
Blast database:
Human
ORF GC%
52.34












Definition:

Homo sapiens lipase, hepatic (LIPC), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000236_siRNA_122
122
CCCUUGGACAAAGCCUGAA (SEQ ID NO: 487)
UUCAGGCUUUGUCCAAGGG (SEQ ID NO: 488)
ORF
52.63157895






NM_000236_siRNA_646
646
GGACCUUUGUUUGAGGGAA (SEQ ID NO: 489)
UUCCCUCAAACAAAGGUCC (SEQ ID NO: 490)
ORF
47.36842105





NM_000236_siRNA_767
767
CCAUAGGACACUAUGACUU (SEQ ID NO: 491)
AAGUCAUAGUGUCCUAUGG (SEQ ID NO: 492)
ORF
42.10526316





NM_000236_siRNA_1058
1058
GCAAGAGCAAGAGGCUCUU (SEQ ID NO: 493)
AAGAGCCUCUUGCUCUUGC (SEQ ID NO: 494)
ORF
52.63157895





NM_000236_siRNA_1229
1229
GCAAAGGAAUUGCUAGUAA (SEQ ID NO: 495)
UUACUAGCAAUUCCUUUGC (SEQ ID NO: 496)
ORF
36.84210526



















Gene Name:
NFKBTZ
GenBank Accession:
NM_031419
GI:
53832022






Organism:

Homo sapiens

Length:
3983
ORF Region:
116-2272





Locus:
64332
Blast database:
Human
ORF GC%
53.0












Definition:

Homo sapiens nuclear factor of kappa light polypeptide geneenhancer in B-cells inhibitor, zeta (NFKBIZ),





transcript variant 1, mRNA (MAIL)
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_031419_siRNA_490
490
GCACAUCCGAAGUCAUAAA (SEQ ID NO: 497)
UUUAUGACUUCGGAUGUGC (SEQ ID NO: 498)
ORF
42.10526316






NM_031419_siRNA_616
616
GCCCGAUUCGUUGUCUGAU (SEQ ID NO: 499)
AUCAGACAACGAAUCGGGC (SEQ ID NO: 500)
ORF
52.63157895





NM_031419_siRNA_965
965
GCUUCCCUGUACCAGUAUU (SEQ ID NO: 501)
AAUACUGGUACAGGGAAGC (SEQ ID NO: 502)
ORF
47.36842105





NM_031419_siRNA_1175
1175
GCUAAUCCCAUGCAGACUU (SEQ ID NO: 503)
AAGUCUGCAUGGGAUUAGC (SEQ ID NO: 504)
ORF
47.36842105





NM_031419_siRNA_1494
1494
CCUAUGUUCUUGCAAGAAA (SEQ ID NO: 505)
UUUCUUGCAAGAACAUAGG (SEQ ID NO: 506)
ORF
36.84210526





NM_031419_siRNA_1520
1520
GCACUUCACAUGCUGGAUA (SEQ ID NO: 507)
UAUCCAGCAUGUGAAGUGC (SEQ ID NO: 508)
ORF
47.36842105





NM_031419_siRNA_1801
1801
CCACAAUGCUGUGGUCCAU (SEQ ID NO: 509)
AUGGACCACAGCAUUGUGG (SEQ ID NO: 510)
ORF
52.63157895





NM_031419_siRNA_1816
1816
CCAUGAACUCCAGAGAAAU (SEQ ID NO: 511)
AUUUCUCUGGAGUUCAUGG (SEQ ID NO: 512)
ORF
42.10526316





NM_031419_siRNA_1840
1840
GCCUCAUUCACCUGAAGUU (SEQ ID NO: 513)
AACUUCAGGUGAAUGAGGC (SEQ ID NO: 514)
ORF
47.36842105





NM_031419_siRNA_2092
2092
GCAGUAUCGGUUGACACAA (SEQ ID NO: 515)
UUGUGUCAACCGAUACUGC (SEQ ID NO: 516)
ORF
47.36842105



















Gene Name:
NFKBIZ
GenBank Accession No.
NM_001005474
GI:
53832023






Organism:

Homo sapiens

Length:
3782
ORF Region:
260-2116





Locus:
64332
Blast database:
Human
ORF GC%
49.49












Definition:

Homo sapiens nuclear factor of kappa light polypedtide geneenhancer in B-cells inhibitor, zeta (NFKBIZ),





transcript variant 2, mRNA.
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001005474_siRNA_334
334
GCACAUCCGAAGUCAUAAA (SEQ ID NO: 517)
UUUAUGACUUCGGAUGUGC (SEQ ID NO: 518)
ORF
42.10526316






NM_001005474_siRNA_460
460
GCCCGAUUCGUUGUCUGAU (SEQ ID NO: 519)
AUCAGACAACGAAUCGGGC (SEQ ID NO: 520)
ORF
52.63157895





NM_001005474_siRNA_809
809
GCUUCCCUGUACCAGUAUU (SEQ ID NO: 521)
AAUACUGGUACAGGGAAGC (SEQ ID NO: 522)
ORF
47.36842105





NM_001005474_siRNA_1019
1019
GCUAAUCCCAUGCAGACUU (SEQ ID NO: 523)
AAGUCUGCAUGGGAUUAGC (SEQ ID NO: 524)
ORF
47.36842105





NM_001005474_siRNA_1338
1338
CCUAUGUUCUUGCAAGAAA (SEQ ID NO: 525)
UUUCUUGCAAGAACAUAGG (SEQ ID NO: 526)
ORF
36.84210526





NM_001005474_siRNA_1364
1364
GCACUUCACAUGCUGGAUA (SEQ ID NO: 527)
UAUCCAGCAUGUGAAGUGC (SEQ ID NO: 528)
ORF
47.36842105





NM_001005474_siRNA_1645
1645
CCACAAUGCUGUGGUCCAU (SEQ ID NO: 529)
AUGGACCACAGCAUUGUGG (SEQ ID NO: 530)
ORF
52.63157895





NM_001005474_siRNA_1660
1660
CCAUGAACUCCAGAGAAAU (SEQ ID NO: 531)
AUUUCUCUGGAGUUCAUGG (SEQ ID NO: 532)
ORF
42.10526316





NM_001005474_siRNA_1684
1684
GCCUCAUUCACCUGAAGUU (SEQ ID NO: 533)
AACUUCAGGUGAAUGAGGC (SEQ ID NO: 534)
ORF
47.36842105





NM_001005474_siRNA_1936
1936
GCAGUAUCGGUUGACACAA (SEQ ID NO: 535)
UUGUGUCAACCGAUACUGC (SEQ ID NO: 536) ORF
47.36842105



















Gene Name:
MAP3K7IP1
GenBank Accession No.
NM_006116
GI:
47717114






Organism:

Homo sapiens

Length:
3240
ORF Region:
50-1564





Locus:
10454
Blast database:
Human
ORF GC%
60.73












Definition:

Homo sapiens mitogen-activated protein kinase kinase kinase 7 interacting protein 1 (MAP3K7IP1), transcript





variant alpha, mRNA.





Sequence:
NM_006116
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006116_siRNA_219
219
GGAGUGAGAACAACUGCUU (SEQ ID NO: 537)
AAGCAGUUGUUCUCACUCC (SEQ ID NO: 538)
ORF
47.36842105






NM_006116_siRNA_267
267
GCAACCGAGUGACCAACUU (SEQ ID NO: 539)
AAGUUGGUCACUCGGUUGC (SEQ ID NO: 540)
ORF
52.63157895





NM_006116_siRNA_831
831
CCAAGUCCAAACCAAUCAU (SEQ ID NO: 543)
AUGAUUGGUUUGGACUUGG (SEQ ID NO: 544)
ORF
42.10526316



















Gene Name:
MAP3K7IP1
GenBank Accession No.
NM_153497
GI:
47717113






Organism:

Homo sapiens

Length:
1994
ORF Region:
51-1438





Locus:
10454
Blast database:
Human
ORF GC%
60.12












Definition:

Homo sapiens mitogen-activated protein kinase kinase kinase 7 interacting protein 1 (MAP3K7IP1), transcript





variant beta, mRNA.



















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_153497_siRNA_219
219
GGAGUGAGAACAACUGCUU (SEQ ID NO: 545)
AAGCAGUUGUUCUCACUCC (SEQ ID NO: 546)
ORF
47.36842105






NM_153497_siRNA_267
267
GCAACCGAGUGACCAACUU (SEQ ID NO: 547)
AAGUUGGUCACUCGGUUGC (SEQ ID NO: 548)
ORF
52.63157895





NM_153497_siRNA_685
685
GGAUGAGCUCUUCCGUCUU (SEQ ID NO: 549)
AAGACGGAAGAGCUCAUCC (SEQ ID NO: 550)
ORF
52.63157895





NM_153497_siRNA_831
831
CCAAGUCCAAACCAAUCAU (SEQ ID NO: 551)
AUGAUUGGUUUGGACUUGG (SEQ ID NO: 552)
ORF
42.10526316



















Gene Name:
MAPT
GenBank Accession No.
NM_005910
GI:
6754637






Organism:

Homo sapiens

Length:
2796
ORF Region:
237-1562





Locus:
4137
Blast database:
Human
ORF GC%
58.68












Definition:

Homo sapiens microtubule-associated protein tau (MAPT), transcriptvariant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_005910_siRNA_1054
1054
GGAAGGUGCAGAUAAUUAA (SEQ ID NO: 553)
UUAAUUAUCUGCACCUUCC (SEQ ID NO: 554)
ORF
36.84210526






NM_005910_siRNA_1147
1147
GCAGUGUGCAAAUAGUCUA (SEQ ID NO: 555)
UAGACUAUUUGCACACUGC (SEQ ID NO: 556)
ORF
42.10526316





NM_005910_siRNA_1192
1192
CCUCCAAGUGUGGCUCAUU (SEQ ID NO: 557)
AAUGAGCCACACUUGGAGG (SEQ ID NO: 558)
ORF
52.63157895



















Gene Name:
MAPT
GenBank Accession No.
NM_016834
GI:
8400710






Organism:

Homo sapiens

Length:
2622
ORF Region:
237-1388





Locus:
4137
Blast database:
Human
ORF GC%
58.43












Definition:

Homo sapiens microtubule-assoclated protein tau (MAPT), transcriptvariant 3, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_016834_siRNA_877
877
GCGGGAAGGUGCAGAUAAU (SEQ ID NO: 559)
AUUAUCUGCACCUUCCCGC (SEQ ID NO: 560)
ORF
52.63157895






NM_016834_siRNA_973
973
GCAGUGUGCAAAUAGUCUA (SEQ ID NO: 561)
UAGACUAUUUGCACACUGC (SEQ ID NO: 562)
ORF
42.10526316





NM_016834_siRNA_1018
1018
CCUCCAAGUGUGGCUCAUU (SEQ ID NO: 563)
AAUGAGCCACACUUGGAGG (SEQ ID NO: 564)
ORF
52.63157895



















Gene Name:
MAPT
GenBank Accession No.
NM_016836
GI:
8400712






Organism:

Homo sapiens

Length:
3747
ORF Region:
237-2513





Locus:
4137
Blast database:
Human
ORF GC%
60.52












Definition:

Homo sapiens microtubule-associated protein tau (MAPT), transcriptvariant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_016835_siRNA_250
250
GCCAGGAGUUCGAAGUGAU (SEQ ID NO: 565)
AUCACUUCGAACUCCUGGC (SEQ ID NO: 566)
ORF
52.63157895






NM_016835_siRNA_797
797
GCUCAAGCACCAGCUUCUA (SEQ ID NO: 567)
UAGAAGCUGGUGCUUGAGC (SEQ ID NO: 568)
ORF
52.63157895





NM_016835_siRNA_1413
1413
GCCAAGACAUCCACACGUU (SEQ ID NO: 569)
AACGUGUGGAUGUCUUGGC (SEQ ID NO: 570)
ORF
52.63157895





NM_016835_siRNA_2098
2098
GCAGUGUGCAAAUAGUCUA (SEQ ID NO: 571)
UAGACUAUUUGCACACUGC (SEQ ID NO: 572)
ORF
42.10526316



















Gene Name:
MGAT1
GenBank Accession No.
NM_002406
GI:
6031182






Organism:

Homo sapiens

Length:
2937
ORF Region:
497-1834





Locus:
4245
Blast database:
Human
ORF GC%
65.1












Definition:

Homo sapiens mannosyl (alpha-1,3-)-glycoproteinbeta-1,2-N-acetylglucosaminyltransferase (MGAT1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002406_siRNA_541
541
CCUCUUUGUGGCCUGGAAU (SEQ ID NO: 573)
AUUCCAGGCCACAAAGAGG (SEQ ID NO: 574)
ORF
52.63157895






NM_002406_siRNA_1026
1026
GCAAGUUCCAGGGCUACUA (SEQ ID NO: 575)
UAGUAGCCCUGGAACUUGC (SEQ ID NO: 576)
ORF
52.63157895





NM_002406_siRNA_1668
1668
GGGACAGCUUCAAGGCUUU (SEQ ID NO: 577)
AAAGCCUUGAAGCUGUCCC (SEQ ID NO: 578)
ORF
52.63157895



















Gene Name:
MICAL2
GenBank Accession No.
NM_014632
GI:
41281417






Organism:

Homo sapiens

Length:
3934
ORF Region:
289-3663





Locus:
9645
Blast database:
Human
ORF GC%
53.75












Definition:

Homo sapiens microtubule associated monoxygenase, calponin and LIMdomain containing 2 (MICAL2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_014632_siRNA_372
372
CCUCCAGGCCUUCAACAUU (SEQ ID NO: 579)
AAUGUUGAAGGCCUGGAGG (SEQ ID NO: 580)
ORF
52.63157895






NM_014632_siRNA_473 473
CCAAAGCCCUGUGGUACAA (SEQ ID NO: 581)
UUGUACCACAGGGCUUUGG (SEQ ID NO: 582)
ORF
52.63157895





NM_014632_siRNA_585
585
GCGCACUGCCAUUGAACUU (SEQ ID NO: 583)
AAGUUCAAUGGCAGUGCGC (SEQ ID NO: 584)
ORF
52.63157895





NM_014632_siRNA_746
746
CCAUCGACCAUAUCAGUAU (SEQ ID NO: 585)
AUACUGAUAUGGUCGAUGG (SEQ ID NO: 586)
ORF
42.10526316





NM_014632_siRNA_753
753
CCAUAUCAGUAUUCGCCAA (SEQ ID NO: 587)
UUGGCGAAUACUGAUAUGG (SEQ ID NO: 588)
ORF
42.10526316





NM_014632_siRNA_912
912
CCAUUCUCUGUCGGAGUUU (SEQ ID NO: 589)
AAACUCCGACAGAGAAUGG (SEQ ID NO: 590)
ORF
47.36842105





NM_014632_siRNA_1136
1136
GCAUAGAUCUUGAGAACAU (SEQ ID NO: 591)
AUGUUCUCAAGAUCUAUGC (SEQ ID NO: 592)
ORF
36.84210526





NM_014632_siRNA_1338
1338
GCUGCCAUCCUUAGACUUU (SEQ ID NO: 593)
AAAGUCUAAGGAUGGCAGC (SEQ ID NO: 594)
ORF
47.36842105





NM_014632_siRNA_2402
2402
GCAGUAAGGAAGGUGGAAA (SEQ ID NO: 595)
UUUCCACCUUCCUUACUGC (SEQ ID NO: 596)
ORF
47.36842105





NM_014632_siRNA_3111
3111
CCAUUUGAGAACAGUGCAU (SEQ ID NO: 597)
AUGCACUGUUCUCAAAUGG (SEQ ID NO: 598)
ORF
42.10526316



















Gene Name:
CLEC2D
GenBank Accession No.
NM_001004419
GI:
52426781






Organism:

Homo sapiens

Length:
1821
ORF Region:
23-607





Locus:
29121
Blast database:
Human
ORF GC%
41.71












Definition:

Homo sapiens C-type lectin domain family 2, member D (CLEC2D),transcript variant 2, mRNA. (OCIL)

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_001004419_siRNA_506
506
GCCAACUUGUAUGUUGCAA (SEQ ID NO: 599)
UUGCAACAUACAAGUUGGC (SEQ ID NO: 600)
ORF
42.10526316






NM_001004419_siRNA_507
507 CCAACUUGUAUGUUGCAAA (SEQ ID NO: 601)
UUUGCAACAUACAAGUUGG (SEQ ID NO: 602)
ORF
36.84210526





NM_001004419_siRNA_551
551
CCAAGACCUGUCAUGGUUU (SEQ ID NO: 603)
AAACCAUGACAGGUCUUGG (SEQ ID NO: 604)
ORF
47.36842105





NM_001004419_siRNA_582
582
GCAGGAGAGUGUGCCUAUU (SEQ ID NO: 605)
AAUAGGCACACUCUCCUGC (SEQ ID NO:606)
ORF
52.63157895



















Gene Name:
CLEC2D
GenBank Accession No.
NM_001004420
GI:
52426783






Organism:

Homo sapiens

Length:
1814
ORF Region:
23-391





Locus:
29121
Blast database:
Human
ORF GC%
40.11












Definition:

Homo sapiens C-type lectin domain family 2, member D (CLEC2D), transcript variant 3, mRNA. (OCIL)

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_013269_siRNA_402
402
GCCCAUCUGAUCACUGGAU (SEQ ID NO: 613)
AUCCAGUGAUCAGAUGGGC (SEQ ID NO: 614)
ORF
52.63157695






NM_013269_siRNA_441
441
GCCAACCAUGGAAAUGGAU (SEQ ID NO: 615)
AUCCAUUUCCAUGGUUGGC (SEQ ID NO: 616)
ORF
47.36842105





NM_013269_siRNA_500
500
GCAGGAGAGUGUGCCUAUU (SEQ ID NO: 617)
AAUAGGCACACUCUCCUGC (SEQ ID NO: 618)
ORF
52.63157895





NM_013269_siRNA_561
561
GGAAGUGGAUUUGUUCCAA (SEQ ID NO: 619)
UUGGAACAAAUCCACUUCC (SEQ ID NO: 620)
ORF
42.10526316



















Gene Name:
ASAM
GenBank Accession No.
NM_024769
GI:
41393588






Organism:

Homo sapiens

Length:
2645
ORF Region:
360-1481





Locus:
79827
Blast database:
Human
ORF GC%
51.61












Definition:

Homo sapiens adipocyte-specific adhesion molecule (ASAM), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_024769_siRNA_391
391
CCUACUAUGUUGGAACCUU (SEQ ID NO: 621)
AAGGUUCCAACAUAGUAGG (SEQ ID NO: 622)
ORF
42.10526316






NM_024769_siRNA_682
682
GGUACACCUGUAAGGUUAA (SEQ ID NO: 623)
UUAACCUUACAGGUGUACC (SEQ ID NO: 624)
ORF
42.10526316





NM_024769_siRNA_780
780
GGAGAGCUGACAGAAGGAA (SEQ ID NO: 625)
UUCCUUCUGUCAGCUCUCC (SEQ ID NO: 626)
ORF
52.63157895





NM_024769_siRNA_1022
1022
GCGAGUAACUGUACAGUAU (SEQ ID NO: 627)
AUACUGUACAGUUACUCGC (SEQ ID NO: 628)
ORF
42.10526316





NM_024769_siRNA_1406
1406
CCAUGCUAAUCUGACCAAA (SEQ ID NO: 629)
UUUGGUCAGAUUAGCAUGG (SEQ ID NO: 630)
ORF
42.10526316



















Gene Name:
NUMB
GenBank Accession No.
NM_003744
GI
54144623






Organism:

Homo sapiens

Length:
3614
ORF Region:
321-2243





Locus:
8650
Blast database:
Human
ORF GC%
52.06












Definition:

Homo sapiens numb homolog (Drosophilia) (NUMB), transcript variant3, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003744_siRNA_700
700
GCUGGAUCUGUCACUGCUU (SEQ ID NO: 631)
AAGCAGUGACAGAUCCAGC (SEQ ID NO: 632)
ORF
52.63157895






NM_003744_siRNA_864
864
GGAUCAUUCCGUGUCACAA (SEQ ID NO: 633)
UUGUGACACGGAAUGAUCC (SEQ ID NO: 634)
ORF
47.36842105





NM_003744_siRNA_1139
1139
CCAGAAGAUGUCACCCUUU (SEQ ID NO: 635)
AAAGGGUGACAUCUUCUGG (SEQ ID NO: 636)
ORF
47.36842105





NM_003744_siRNA_1402
1402
CCUUCCAUGUGCUUGCUAA (SEQ ID NO: 637)
UUAGCAAGCACAUGGAAGG (SEQ ID NO: 638)
ORF
47.36842105





NM_003744_siRNA_1615
1615
GGUUAGAAGAGGUGUCUAA (SEQ ID NO: 639)
UUAGACACCUCUUCUAACC (SEQ ID NO: 640)
ORF
42.10526316





NM_003744_siRNA_1999
1999
CCACCAGUCCCUUCUUUAA (SEQ ID NO: 641)
UUAAAGAAGGGACUGGUGG (SEQ ID NO: 642)
ORF
47.36842105



















Gene Name:
PDE48
GenBank Accession No.
NM_002600
GI:
32171240






Organism:

Homo sapiens

Length:
3186
ORF Region:
139-2349





Locus:
5142
Blast database:
Human
ORF GC%
46.32












Definition:

Homo sapiens phosphodiesterase 4B, cAMP-specific (phosphodiesteraseE4 dunce homolog, Drosophila) (PDE4B), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002600_siRNA_218
218
CCUACAGUUCUUCCAGUAA (SEQ ID NO: 643)
UUACUGGAAGAACUGUAGG (SEQ ID NO: 644)
ORF
42.10526316






NM_002600_siRNA_527
527
GCAGAGAGUCAUUUCUCUA (SEQ ID NO: 645)
UAGAGAAAUGACUCUCUGC (SEQ ID NO: 646)
ORF
42.10526316





NM_002600_siRNA_945
945
CCAGGUGUCUGAAUACAUU (SEQ ID NO: 647)
AAUGUAUUCAGACACCUGG (SEQ ID NO: 648)
ORF
42.10526316





NM_002600_siRNA_1499
1499
CCAAUCAGUUUCUCAUCAA (SEQ ID NO: 649)
UUGAUGAGAAACUGAUUGG (SEQ ID NO: 650)
ORF
36.84210526





NM_002600_siRNA_1763
1763
GCGUUCUUCUCCUAGACAA (SEQ ID NO: 651)
UUGUCUAGGAGAAGAACGC (SEQ ID NO: 652)
ORF
47.36842105





NM_002600_siRNA_2050
2050
GCUCAGGACAUUCUCGAUA (SEQ ID NO: 653)
UAUCGAGAAUGUCCUGAGC (SEQ ID NO: 654)
ORF
47.36842105



















Gene Name:
ABCB1
GenBank Accession No.
NM_000927
GI:
42741658






Organism:

Homo sapiens

Length:
4872
ORF Region:
419-4261





Locus:
5243
Blast database:
Human
ORF GC%
43.69












Definition:

Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000927_siRNA_761
761
GCCUAUUAUUACAGUGGAA (SEQ ID NO: 655)
UUCCACUGUAAUAAUAGGC (SEQ ID NO: 656)
ORF
36.84210526






NM_000927_siRNA_1330
1330
GCUGAUCUAUGCAUCUUAU (SEQ ID NO: 657)
AUAAGAUGCAUAGAUCAGC (SEQ ID NO: 658)
ORF
36.84210526





NM_000927_siRNA_1470
1470
GCAUUGAAGCAUUUGCAAA (SEQ ID NO: 659)
UUUGCAAAUGCUUCAAUGC (SEQ ID NO: 660)
ORF
36.84210526





NM_000927_siRNA_1732
1732
GCUGAUGCAGAGGCUCUAU (SEQ ID NO: 661)
AUAGAGCCUCUGCAUCAGC (SEQ ID NO: 662)
ORF
52.63157895





NM_000927_siRNA_2309
2309
GCAGGAAAUGAAGUUGAAU (SEQ ID NO: 663)
AUUCAACUUCAUUUCCUGC (SEQ ID NO: 664)
ORF
36.84210526





NM_000927_siRNA_2815
2815
GGAUGUGAGUUGGUUUGAU (SEQ ID NO: 665)
AUCAAACCAACUCACAUCC (SEQ ID NO: 666)
ORF
42.10526316





NM_000927_siRNA_3915
3915
GCACUAAAGUAGGAGACAA (SEQ ID NO: 667)
UUGUCUCCUACUUUAGUGC (SEQ ID NO: 668)
ORF
42.10526316



















Gene Name:
HTRA1
GenBank Accession No.
NM_002775
GI:
73747816






Organism:

Homo sapiens

Length:
2133
ORF Region:
113-1555





Locus:
5654
Blast database:
Human
ORF GC%
59.26












Definition:

Homo sapiens HtrA serine peptidase 1 (HTRA1), mRNA. (PRSS11)

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002775_siRNA_597
597
CCAACAGUUUGCGCCAUAA (SEQ ID NO: 669)
UUAUGGCGCAAACUGUUGG (SEQ ID NO: 670)
ORF
47.36842105






NM_002775_siRNA_716
716
GCUACUGGGUCUGGGUUUA (SEQ ID NO: 671)
UAAACCCAGACCCACUAGC (SEQ ID NO: 672)
ORF
52.63157895





NM_002775_siRNA_1073
1073
GCCAUCAUCAACUAUGGAA (SEQ ID NO: 673)
UUCCAUAGUUGAUGAUGGC (SEQ ID NO: 674)
ORF
42.10526316





NM_002775_siRNA_1114
1114
CCUGGACGGUGAAGUGAUU (SEQ ID NO: 675)
AAUCACUUCACCGUCCAGG (SEQ ID NO: 676)
ORF
52.63157895





NM_002775_siRNA_1535
1535
CCCGAAGAAAUUGACCCAU (SEQ ID NO: 677)
AUGGGUCAAUUUCUUCGGG (SEQ ID NO: 678)
ORF
47.36842105



















Gene Name:
NPEPPS
GenBank Accession No.
NM_006310
GI:
15451906






Organism:

Homo sapiens

Length:
4177
ORF Region:
196-2823





Locus:
9520
Blast database:
Human
ORF GC%
44.79












Definition:

Homo sapiens aminopeptidase puromycin sensitive (NPEPPS), mRNA.







Sequence:
NM_006310
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006310_siRNA_1939
1939
GCUCGAGCUGGAAUCAUUA (SEQ ID NO: 679)
UAAUGAUUCCAGCUCGAGC (SEQ ID NO: 680)
ORF
47.36842105






NM_006310_siRNA_2539
2539
GCUGCUUGGAAAUUCAUAA (SEQ ID NO: 681)
UUAUGAAUUUCCAAGCAGC (SEQ ID NO: 682)
ORF
36.84210526





NM_006310_siRNA_2622
2622
GCUAUCAGUUGAGGGAUUU (SEQ ID NO: 683)
AAAUCCCUCAACUGAUAGC (SEQ ID NO: 684)
ORF
42.10526316



















Gene Name:
PSMA7
GenBank Accession No.
NM_002792
GI:
23110945






Organism:

Homo sapiens

Length:
984
ORF Region:
116-862





Locus:
5688
Blast database:
Human
ORF GC%
50.47












Definition:

Homo sapiens proteasome (prosome, macropain) subunit, alpha type, 7(PSMA7), transcript variant 1, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002792_siRNA_266
266
GCCAAACUGCAGGAUGAAA (SEQ ID NO: 685)
UUUCAUCCUGCAGUUUGGC (SEQ ID NO: 686)
ORF
47.36842105






NM_002792_siRNA_300
300
UCUGUGCUUUGGAUGACAA (SEQ ID NO: 687)
UUGUCAUCCAAAGCACAGA (SEQ ID NO: 688)
ORF
42.10526316





NM_002792_siRNA_348
348
CCGAUGCAAGGAUAGUCAU (SEQ ID NO: 689)
AUGACUAUCCUUGCAUCGG (SEQ ID NO: 690)
ORF
47.36842105



















Gene Name:
PTS
GenBank Accession No.
NM_000317
GI:
4506330






Organism:

Homo sapiens

Length:
921
ORF Region:
69-506





Locus:
5805
Blast database:
Human
ORF GC%
43.16












Definition:

Homo sapiens 6-pyruvoyltetrahydropterin synthase (PTS), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000317_siRNA_137
137
CCACCGAUUGUACAGUAAA (SEQ ID NO: 691)
UUUACUGUACAAUCGGUGG (SEQ ID NO: 692)
ORF
42.10526316






NM_000317_siRNA_275
275
GGUUAUGAAUCUGGCUGAU (SEQ ID NO: 693)
AUCAGCCAGAUUCAUAACC (SEQ ID NO: 694)
ORF
42.10526316





NM_000317_siRNA_413
413
GGACAACCUCCAGAAAGUU (SEQ ID NO: 695)
AACUUUCUGGAGGUUGUCC (SEQ ID NO: 696)
ORF
47.36842105



















Gene Name:
RIN2
GenBank Accession No.
NM_018993
GI:
35493905






Organism:

Homo sapiens

Length:
4529
ORF Region:
37-2724





Locus:
54453
Blast database:
Human
ORF GC%
55.92












Definition:

Homo sapiens Ras and Rab interactor 2 (RIN2), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_018993_siRNA_471
471
GGAAUUUGCCAUAAAGGAA (SEQ ID NO: 697)
UUCCUUUAUGGCAAAUUCC (SEQ ID NO: 698)
ORF
36.84210526






NM_018993_siRNA_569
569
GCAGGGAUGUUCUACCAUU (SEQ ID NO: 699)
AAUGGUAGAACAUCCCUGC (SEQ ID NO: 700)
ORF
47.36842105





NM_018993_siRNA_1034
1034
GCAUGCCAGAAACAGUCAA (SEQ ID NO: 701)
UUGACUGUUUCUGGCAUGC (SEQ ID NO: 702)
ORF
47.36842105





NM_018993_siRNA_1376
1376
GCAUGCCUCUGUUUGGCUA (SEQ ID NO: 703)
UAGCCAAACAGAGGCAUGC (SEQ ID NO: 704)
ORF
52.63157895





NM_018993_siRNA_2236
2236
GGAGGCUAUUACUUGACAA (SEQ ID NO: 705)
UUGUCAAGUAAUAGCCUCC (SEQ ID NO: 706)
ORF
42.10526316



















Gene Name:
ROR1
GenBank Accession No.
NM_005012
GI:
4826867






Organism:

Homo sapiens

Length:
3358
ORF Region:
376-3189





Locus:
4919
Blast database:
Human
ORF GC%
47.45












Definition:

Homo sapiens receptor tyrosine kinase-like orphan receptor 1 (ROR1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_005012_siRNA_932
932
CCGUCUAUAUGGAGUCUUU (SEQ ID NO: 707)
AAAGACUCCAUAUAGACGG (SEQ ID NO: 708)
ORF
42.10526316






NM_005012_siRNA_1543
1543
GCUUGCGAUUCAAAGGAUU (SEQ ID NO: 709)
AAUCCUUUGAAUCGCAAGC (SEQ ID NO: 710)
ORF
42.10526316





NM_005012_siRNA_1920
1920
GCAAUGGAUGGAAUUUCAA (SEQ ID NO: 711)
UUGAAAUUCCAUCCAUUGC (SEQ ID NO: 712)
ORF
36.84210526





NM_005012_siRNA_2817
2817
GCGAUUCAUUCCCAUCAAU (SEQ ID NO: 713)
AUUGAUGGGAAUGAAUCGC (SEQ ID NO: 714)
ORF
42.10526316





NM_005012_siRNA_3031
3031
CCACACAUGUCAAUUCCAA (SEQ ID NO: 715)
UUGGAAUUGACAUGUGUGG (SEQ ID NO: 716)
ORF
42.10526316








Organism:

Homo sapiens

Length:
1657
ORG Region:
287-1228





Locus:
10670
Blast database:
Human
ORF GC%
51.39












Definition:

Homo sapiens Ras-related GTP binding A (RRAGA), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006570_siRNA_351
351
GCAUGAGGUCGAUAAUCUU (SEQ ID NO: 717)
AAGAUUAUCGACCUCAUGC (SEQ ID NO: 718)
ORF
42.1052316






NM_006570_siRNA_510_510
CCAGCCAGCGAGACAAUAU (SEQ ID NO: 719)
AUAUUGUCUCGCUGGCUGG (SEQ ID NO: 720)
ORF
52.63157895





NM_006570_siRNA_673
673
GGAUCUGGUUCAGGAGGAU (SEQ ID NO: 721)
AUCCUCCUGAACCAGAUCC (SEQ ID NO: 722)
ORF
52.63157895





NM_006570_siRNA_1056
1056
CCAACUUCGCUGCUUUCAU (SEQ ID NO: 723)
AUGAAAGCAGCGAAGUUGG (SEQ ID NO: 724)
ORF
47.36842105



















Gene Name:
RYK
GenBank Accession No.
NM_002958
GI:
54607017






Organism:

Homo sapiens

Length:
2951
ORF Region:
91-1914





Locus:
6259
Blast database:
Human
ORF GC%
42.38












Definition:

Homo sapiens RYK receptor-like tyrosine kinase (RYK), transcriptvariant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_002958_siRNA_558
558
GCUUUCCUGUACUGGCAAA (SEQ ID NO: 725)
UUUGCCAGUACAGGAAAGC (SEQ ID NO: 726)
ORF
47.36842105






NM_002958_siRNA_748
748
GCAGCUCCAACCACUUCUA (SEQ ID NO: 727)
UAGAAGUGGUUGGAGCUGC (SEQ ID NO: 728)
ORF
52.63157895





NM_002958_siRNA_1367
1367
GCAAGUUAGUAGAGGCCAA (SEQ ID NO: 729)
UUGGCCUCUACUAACUUGC (SEQ ID NO: 730)
ORF
47.36842105





NM_002958_siRNA_1413
1413
CCUGGUACACAUGGCUAUU (SEQ ID NO: 731)
AAUAGCCAUGUGUACCAGG (SEQ ID NO: 732)
ORF
47.36842105





NM_002958_siRNA_1779
1779
GCCAAUCAACUGUCCUGAU (SEQ ID NO: 733)
AUCAGGACAGUUGAUUGGC (SEQ ID NO: 734) ORF
47.36842105



















Gene Name:
S100A6
GenBank Accession No.
NM_014624
GI:
52352807






Organism:

Homo sapiens

Length:
683
ORF Region:
315-587





Locus:
6277
Blast database:
Human
ORF GC%
56.05












Definition:

Homo sapiens S100 calcium binding protein A6 (calcyclin) (5100A6), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_014G24_siRNA_455
455
GCUGCAGGAUGCUGAAAUU (SEQ ID NO: 735)
AAUUUCAGCAUCCUGCAGC (SEQ ID NO: 736)
ORF
47.36842105






NM_014624_siRNA_474
474
GCAAGGCUGAUCGAAGACU (SEQ ID NO: 737)
AGUCUUCCAUCAGCCUUGC (SEQ ID NO: 738)
ORF
52.63157895





NM_014624_siRNA_479
479
GCUGAUGGAAGACUUGGAC (SEQ ID NO: 739)
GUCCAAGUCUUCCAUCAGC (SEQ ID NO: 740)
ORF
52.63157895



















Gene Name:
S100A1
GenBank Accession No.
NM_006271
GI:
5454031






Organism:

Homo sapiens

Length:
607
ORF Region:
114-398





Locus:
6271
Blast database:
Human
ORF GC%
55.44












Definition:

Homo sapiens S100 calcium binding protein A1 (S100A1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_006271_siRNA_136
136
CGAUGGAGACCCUCAUCAA (SEQ ID NO: 741)
UUGAUGAGGGUCUCCAUCG (SEQ ID NO: 742)
ORF
52.63157895






NM_006271_siRNA_137
137
GAUGGAGACCCUCAUCAAC (SEQ ID NO: 743)
GUUGAUGAGGGUCUCCAUC (SEQ ID NO: 744)
ORF
52.63157895



















Gene Name:
SCMH1
GenBank Accession No.
NM_012236
GI:
16912641






Organism:

Homo sapiens

Length:
3250
ORF Region:
485-2260





Locus:
22955
Blast database:
Human
ORF GC%
54.79












Definition:

Homo sapiens sex comb on midleg homolog 1 (Drosophila) (SCMH1), transcript variant 2, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_012236_siRNA_876
876
GGAAGAACCCUCAUUUCAU (SEQ ID NO: 745)
AUGAAAUGAGGGUUCUUCC (SEQ ID NO: 746)
ORF
42.10526316






NM_012236_siRNA_1632
1632
GGGAACAGCAUACCCUCAA (SEQ ID NO:747)
UUGAGGGUAUGCUGUUCCC (SEQ ID NO: 748)
ORF
52.63157895





NM_012236_siRNA_1743
1743
CCUUUACACAGACUCACUU (SEQ ID NO:749)
AAGUGAGUCUGUGUAAAGG (SEQ ID NO: 750)
ORF
42.10526316





NM_012236_siRNA_1804
1804
CCUACCAGGUGAAACCUUU (SEQ ID NO: 751)
AAAGGUUUCACCUGGUAGG (SEQ ID NO: 752)
ORF
47.36842105



















Gene Name:
SERP1
GenBank Accession No.
NM_014445
GI:
19923408






Organism:

Homo sapiens

Length:
2488
ORF Region:
316-516





Locus:
27230
Blast database:
Human
ORF GC%
50.25












Definition:

Homo sapiens stress-associated endoplasmic reticulum protein 1 (SERP1), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_014445_siRNA_323
323
CCAAGCAAAGGAUCCGUAU (SEQ ID NO: 753)
AUACGGAUCCUUUGCUUGG (SEQ ID NO: 754)
ORF
47.36842105






NM_014445_siRNA_434
434
CCUGGUUAUUGGCUCUCUU (SEQ ID NO: 755)
AAGAGAGCCAAUAACCAGG (SEQ ID NO: 756)
ORF
47.36842105





NM_014445_siRNA_437
437
GGUUAUUGGCUCUCUUCAU (SEQ ID NO: 757)
AUGAAGAGAGCCAAUAACC (SEQ ID NO: 758)
ORF
42.10526316



















Gene Name:
SRP19
GenBank Accession No.
NM_003135
GI:
4507212






Organism:

Homo sapiens

Length
894
ORF Region:
82-516





Locus:
6728
Blast database;
Human
ORF GC%
41.38












Definition:

Homo sapiens signal recognition particle 19kDa (SRP19), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003135_siRNA_110
110
CCGACCAGGACAGGUUUAU (SEQ ID NO: 759)
AUAAACCUGUCCUGGUCGG (SEQ ID NO: 760)
ORF
52.63157895






NM_003135_siRNA-244
244
GCAGUUGGACUUAACGUAU (SEQ ID NO: 761)
AUACGUUAAGUCCAACUGC (SEQ ID NO: 762)
ORF
42.10526316





NM_003135_siRNA_454
454
GCUGACCAAAGUCUUCAAC (SEQ ID NO: 763)
GUUGAAGACUUUGGUCAGC (SEQ ID NO: 764)
ORF
47.36842105



















Gene Name:
TPM1
GenBank Accession No.
NM_000366
GI:
63252894






Organism:

Homo sapiens

Length:
1294
ORF Region:
192-1046





Locus:
7168
Blast database:
Human
ORF GC%
50.77












Definition:

Homo sapiens tropomyosin 1 (alpha) (TPM1), transcript variant 5, mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_000366_siRNA_688
688
CCCGUAAGCUGGUCAUCAU (SEQ ID NO 765)
AUGAUGACCAGCUUACGGG (SEQ ID NO: 766)
ORF
52.63157595






NM_000366_siRNA_915
915
GCGGAGAGGUCAGUAACUA (SEQ ID NO: 767)
UAGUUACUGACCUCUCCGC (SEQ ID NO: 768)
ORF
52.63157895





NM_000366_siRNA_1020
1020
GCUCUCAACGAUAUGACUU (SEQ ID NO: 769)
AAGUCAUAUCGUUGAGAGC (SEQ ID NO: 770)
ORF
42.10526316



















Gene Name:
TRIM52
GenBank Accession No.
NM_032765
GI:
34147443






Organism:

Homo sapiens

Length:
2244
ORF Region:
306-1199





Locus:
84851
Blast database:
Human
ORF GC%
48.77












Definition:

Homo sapiens tripartite motif-containing 52 (TRIM52), mRNA.

















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_032765_siRNA_1115
1115
CCAGGAAAUAAAGUUGGAA (SEQ ID NO: 771)
UUCCAACUUUAUUUCCUGG (SEQ ID NO: 772)
ORF
36.84210526






NM_032765_siRNA_1142
1142
GGUGGGAAUACUUCAGAUA (SEQ ID NO: 773)
UAUCUGAAGUAUUCCCACC (SEQ ID NO: 774)
ORF
42.10526316





NM_032765_siRNA_1145
1145
GGGAAUACUUCAGAUAGAG (SEQ ID NO: 775)
CUCUAUCUGAAGUAUUCCC (SEQ ID NO: 776)
ORF
42.10526316





NM_032765_siRNA_1171
1171
GCAUUCACAGCAAGGCCUA (SEQ ID NO: 777)
UAGGCCUUGCUGUGAAUGC (SEQ ID NO: 778)
ORF
52.63157895



















Gene Name:
MTHFD1
GenBank Accession No.
NM_005956
GI:
13699867






Organism:

Homo sapiens

Length:
3110
ORF Region:
54-2861





Locus:
4522
Blast database:
Human
ORF GC%
49.11





Definition:





Sequence:
NM_005956
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_005956_siRNA_184
184
GCAACAGAGAUGAUUCCAA (SEQ ID NO: 779)
UUGGAAUCAUCUCUGUUGC (SEQ ID NO: 780)
ORF
42.10526316






NM_005956_siRNA_696
696
GCAACUGGUCAGCCUGAAA (SEQ ID NO: 781)
UUUCAGGCUGACCAGUUGC (SEQ ID NO: 782)
ORF
52.63157895





NM_005956_siRNA_1429
1429
CCAUUGAUGCUCGGAUAUU (SEQ ID NO: 783)
AAUAUCCGAGCAUCAAUGG (SEQ ID NO: 784)
ORF
42.10526316





NM_005956_siRNA_1780
1780
CCACUUCUCUAGAAGACAU (SEQ ID NO: 785)
AUGUCUUCUAGAGAAGUGG (SEQ ID NO: 786)
ORF
42.10526316





NM_005956_siRNA_2482
2482
GCAGCUUCCAGCUCCUUUA (SEQ ID NO: 787)
UAAAGGAGCUGGAAGCUGC (SEQ ID NO: 788)
ORF
52.63157895



















Gene Name:
UBE1C
GenBank Accession No.
NM_003966
GI:
38045941






Organism:

Homo sapiens

Length:
2136
ORF Region:
21-1412





Locus:
9039
Blast database:
Human
ORF GC%
42.25





Definition:





Sequence:
NM_003968
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003968_siRNA_133
133
GGAACCAUGUAAAGAAGUU (SEQ ID NO: 789)
AACUUCUUUACAUGGUUCC (SEQ ID NO: 790)
ORF
36.84210526






NM_003968_siRNA_393
393
GCUGAAGUUGCUGCAGAAU (SEQ ID NO: 791)
AUUCUGCAGCAACUUCAGC (SEQ ID NO: 792)
ORF
47.36842105





NM_003968_siRNA_594
594
CCAAGCUCCAUUGUCCCUU (SEQ ID NO: 793)
AAGGGACAAUGGAGCUUGG (SEQ ID NO: 794)
ORF
52.63157895





NM_003968_siRNA_1023
1023
GCAUACAUUCCCUUGAAUA (SEQ ID NO: 795)
UAUUCAAGGGAAUGUAUGC (SEQ ID NO: 796)
ORF
36.84210526





NM_003968_siRNA_1197
1197
GCUUCUCUGCAAAUGAAAU (SEQ ID NO: 797)
AUUUCAUUUGCAGAGAAGC (SEQ ID NO: 798)
ORF
36.84210526



















Gene Name:
UBE1C
GenBank Accession No.
NM_198195
GI:
3805943






Organism:

Homo sapiens

Length:
2094
ORF Region:
21-1370





Locus:
9039
Blast database:
Human
ORF GC%
42.08





Definition:





Sequence:
NM_198195
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_198195_siRNA_35
35
GGAGCCAAUGGCUGUUGAU (SEQ ID NO: 799)
AUCAACAGCCAUUGGCUCC (SEQ ID NO: 800)
ORF
52.63157895






NM_198195_siRNA_91
91
GGAACCAUGUAAAGAAGUU (SEQ ID NO: 801)
AACUUCUUUACAUGGUUCC (SEQ ID NO: 802)
ORF
36.84210526





NM_198195_siRNA_351
351
GCUGAAGUUGCUGCAGAAU (SEQ ID NO: 803)
AUUCUGCAGCAACUUCAGC (SEQ ID NO: 804)
ORF
47.36842105





NM_198195_siRNA_552
552
CCAAGCUCCAUUGUCCCUU (SEQ ID NO: 805)
AAGGGACAAUGGAGCUUGG (SEQ ID NO: 806)
ORF
52.63157895





NM_198195_siRNA_981
981
GCAUACAUUCCCUUGAAUA (SEQ ID NO: 807)
UAUUCAAGGGAAUGUAUGC (SEQ ID NO: 808)
ORF
36.84210526





NM_198195_siRNA_1155
1155
GCUUCUCUGCAAAUGAAAU
AUUUCAUUUGCAGAGAAGC
ORF
36.84210526



















Gene Name:
UBE1C
GenBank Accession No.
NM_198197
GI:
38045945






Organism:

Homo sapiens

Length:
2015
ORF Region:
200-1291





Locus:
9039
Blast database:
Human
ORF GC%
40.39





Definition:





Sequence:
NM_98197
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_198197_siRNA_272
272
GCUGAAGUUGCUGCAGAAU (SEQ ID NO: 809)
AUUCUGCAGCAACUUCAGC (SEQ ID NO: 810)
ORF
47.36842105






NM_198197_siRNA_473
473
CCAAGCUCCAUUGUCCCUU (SEQ ID NO: 811)
AAGGGACAAUGGAGCUUGG (SEQ ID NO: 812)
ORF
52.63157895





NM_198197_siRNA_902
902
GCAUACAUUCCCUUGAAUA (SEQ ID NO: 813)
UAUUCAAGGGAAUGUAUGC (SEQ ID NO: 814)
ORF
36.84210526





NM_198197_siRNA_1076
1076
GCUUCUCUGCAAAUGAAAU (SEQ ID NO: 815)
AUUUCAUUUGCAGAGAAGC (SEQ ID NO: 816)
ORF
36.84210526



















Gene Name:
ZNF207
GenBank Accession No.
NM_003457
GI:
75750493






Organism:

Homo sapiens

Length:
2348
ORF Region:
204-1640





Locus:
7756
Blast database:
Human
ORF GC%
48.3





Definition:





Sequence:
NM_003457
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003457_siRNA_747
747
CCACCUGGAAUGAUGCCAA (SEQ ID NO: 817)
UUGGCAUCAUUCCAGGUGG (SEQ ID NO: 818)
ORF
52.63157895






NM_003457_siRNA_888
888
GCGCCAGGUAUUCUUAAUA (SEQ ID NO: 819)
UAUUAAGAAUACCUGGCGC (SEQ ID NO: 820)
ORF
42.10526316





NM_003457_siRNA_1014
1014
GCUUCAUCCAAUUCAGAAA (SEQ ID NO: 821)
UUUCUGAAUUGGAUGAAGC (SEQ ID NO: 822)
ORF
36.84210526





NM_003457_siRNA_1230
1230
CCAGCGGCUUCAAUAACAA (SEQ ID NO: 823)
UUGUUAUUGAAGCCGCUGG (SEQ ID NO: 824)
ORF
47.36842105





NM_003457_siRNA_1257
1257
GCUACACUUACAACAACUA (SEQ ID NO: 825)
UAGUUGUUGUAAGUGUAGC (SEQ ID NO: 826)
ORF
36.84210526



















Gene Name:
ZNF7
GenBank Accession No.
NM_003416
GI:
4508034






Organism:

Homo sapiens

Length:
2351
ORF Region:
239-2299





Locus:
7553
Blast database:
Human
ORF GC%
48.62





Definition:





Sequence:
NM_003416
















Name
Start
Sense RNA Sequence 5′-3′
Antisense RNA Sequence 5′-3′
Region
GC%
















NM_003416_stealth_1839
1839
UCAGUAUGAGCACACAGCUUACAAU (SEQ ID NO: 827)
AUUGUAAGCUGUGUGCUCAUACUGA (SEQ ID NO: 828)
ORF
40






NM_003416_stealth_1843
1843
GCACACAGCUUACAAUACAUCAAAG (SEQ ID NO: 829)
CUUUGAUGUAUUGUAAGCUGUGUGC (SEQ ID NO: 830)
ORF
36





NM_003416_stealth_1848
1848
GCACACAGCUUACAAUACAUCAAAG (SEQ ID NO: 831)
CUUUGAUGUAUUGUAAGCUGUGUGC (SEQ ID NO: 832)
ORF
40





NM_003416_stealth_2089
2089
AGGGUCCACCUUUGUGAGCCGUAAA (SEQ ID NO: 833)
UUUACGGCUCACAAAGGUGGACCCU (SEQ ID NO: 834)
ORF
52





NM_003146_stealth_2163
2163
UAUUUAGGUGGCGUUCACACCUAAU (SEQ ID NO: 835)
AUUAGGUGUGAACGCCACCUAAAUA (SEQ ID NO: 836)
ORF
40









REFERENCES



  • 1. Op De Beeck A, Caillet-Fauquet P: Viruses and the cell cycle. Prog Cell Cycle Res 1997, 3:1-19.

  • 2. Dermody T S, Nibert M L, Wetzel J D, Tong X, Fields B N: Cells and viruses with mutations affecting viral entry are selected during persistent infections of L cells with mammalian reoviruses. J Virol 1993, 67(4):2055-2063.

  • 3. Taterka J, Sutcliffe M, Rubin D H: Selective reovirus infection of murine hepatocarcinoma cells during cell division. A model of viral liver infection. J Clin Invest 1994, 94(1):353-360.

  • 4. Sheng J, Organ E L, Hao C, Wells K S, Ruley H E, Rubin D H: Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection. BMC Cell Biol 2004, 5(1):32.

  • 5. Hansen J, Floss T, Van Sloun P, Fuchtbauer E M, Vauti F, Arnold H H, Schnutgen F, Wurst W, von Melchner H, Ruiz P: A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci USA 2003, 100(17):9918-9922.

  • 6. Hicks G G, Shi E G, Li X M, Li C H, Pawlak M, Ruley H E: Functional genomics in mice by tagged sequence mutagenesis. Nat Genet 1997, 16(4):338-344.

  • 7. Salminen M, Meyer B I, Gruss P: Efficient poly A trap approach allows the capture of genes specifically active in differentiated embryonic stem cells and in mouse embryos. Dev Dyn 1998, 212(2):326-333.

  • 8. Stryke D, Kawamoto M, Huang C C, Johns S J, King L A, Harper C A, Meng E C, Lee R E, Yee A, L'Italien L et al: BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Res 2003, 31(1):278-281.

  • 9. Wiles M V, Vauti F, Otte J, Fuchtbauer E M, Ruiz P, Fuchtbauer A, Arnold H H, Lehrach H, Metz T, von Melchner H et al: Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat Genet. 2000, 24(1):13-14.

  • 10. Zambrowicz B P, Friedrich G A, Buxton E C, Lilleberg S I, Person C, Sands A T: Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 1998, 392(6676):608-611.

  • 11. Osipovich A B, White-Grindley E K, Hicks G G, Roshon M J, Shaffer C, Moore J H, H.E. R: Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment. Nucleic Acids Res 2004, in press.

  • 12. De Ceuninck F, Poiraudeau S, Pagano M, Tsagris L, Blanchard O, Willeput J, Corvol M: Inhibition of chondrocyte cathepsin B and L activities by insulin-like growth factor-II (IGF-II) and its Ser29 variant in vitro: possible role of the mannose 6-phosphate/IGF-II receptor. Mol Cell Endocrinol 1995, 113(2):205-213.

  • 13. Martinez C G, Guinea R, Benavente J, Carrasco L: The entry of reovirus into L cells is dependent on vacuolar proton-ATPase activity. J Virol 1996, 70(1):576-579.

  • 14. Guinea R, Carrasco L: Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J Virol 1995, 69(4):2306-2312.

  • 15. Brunetti C R, Burke R L, Kornfeld S, Gregory W, Masiarz F R, Dingwell K S, Johnson D C: Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 1994, 269(25):17067-17074.

  • 16. Zeng F Y, Gerke V, Gabius H J: Identification of annexin II, annexin VI and glyceraldehyde-3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart. Int J Biochem 1993, 25(7):1019-1027.

  • 17. Lee K H, Na D S, Kim J W: Calcium-dependent interaction of annexin I with annexin II and mapping of the interaction sites. FEBS Lett 1999, 442(2-3):143-146.

  • 18. Filipek A, Wojda U, Lesniak W: Interaction of calcyclin and its cyanogen bromide fragments with annexin II and glyceraldehyde 3-phosphate dehydrogenase. Int J Biochem Cell Biol 1995, 27(11):1123-1131.

  • 19. Pietropaolo R L, Compton T: Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 1997, 71(12):9803-9807.

  • 20. Golitsina N L, Kordowska J, Wang C L, Lehrer S S: Ca2+-dependent binding of calcyclin to muscle tropomyosin. Biochem Biophys Res Commun 1996, 220(2):360-365.

  • 21. Hida K, Wada J, Zhang H, Hiragushi K, Tsuchiyama Y, Shikata K, Makino H: Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res 2000, 41(10):1615-1622.

  • 22. Katoh M: IGSF11 gene, frequently up-regulated in intestinal-type gastric cancer, encodes adhesion molecule homologous to CXADR, FLJ22415 and ESAM. Int J Oncol 2003, 23(2):525-531.

  • 23. Barton E S, Forrest J C, Connolly J L, Chappell J D, Liu Y, Schnell F J, Nusrat A, Parkos C A, Dermody T S: Junction adhesion molecule is a receptor for reovirus. Cell 2001, 104(3):441-451.

  • 24. Weiner H L, Powers M L, Fields B N: Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis 1980, 141(5):609-616.

  • 25. Rubin D H, Wetzel J D, Williams W V, Cohen J A, Dworkin C, Dermody T S: Binding of type 3 reovirus by a domain of the sigma 1 protein important for hemagglutination leads to infection of murine erythroleukemia cells. J Clin Invest 1992, 90(6):2536-2542.

  • 26. Sizova D V, Kolupaeva V G, Pestova T V, Shatsky I N, Hellen C U: Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 1998, 72(6):4775-4782.

  • 27. McGregor F, Phelan A, Dunlop J, Clements J B: Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 1996, 70(3):1931-1940.

  • 28. Pitha P M, Au W C, Lowther W, Juang Y T, Schafer S L, Burysek L, Hiscott J, Moore P A: Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth. Biochimie 1998, 80(8-9):651-658.

  • 29. Hawiger J: Innate immunity and inflammation: a transcriptional paradigm. Immunol Res 2001, 23(2-3):99-109.

  • 30. Lau J F, Horvath C M: Mechanisms of Type I interferon cell signaling and STAT-mediated transcriptional responses. Mt Sinai J Med 2002, 69(3):156-168.

  • 31. Werner-Felmayer G, Werner E R, Fuchs D, Hausen A, Reibnegger G, Schmidt K, Weiss G, Wachter H: Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem 1993, 268(3): 1842-1846.

  • 32. Reiss C S, Komatsu T: Does nitric oxide play a critical role in viral infections? J Virol 1998, 72(6):4547-4551.

  • 33. Pertile T L, Karaca K, Sharma J M, Walser M M: An antiviral effect of nitric oxide: inhibition of reovirus replication. Avian Dis 1996, 40(2):342-348.

  • 34. Takekawa M, Maeda T, Saito H: Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. Embo J 1998, 17(16):4744-4752.

  • 35. Rousse S, Lallemand F, Montarras D, Pinset C, Mazars A, Prunier C, Atfi A, Dubois C: Transforming growth factor-beta inhibition of insulin-like growth factor-binding protein-5 synthesis in skeletal muscle cells involves a c-Jun N-terminal kinase-dependent pathway. J Biol Chem 2001, 276(50):46961-46967.

  • 36. Uchida K, Suzuki H, Ohashi T, Nitta K, Yumura W, Nihei H: Involvement of MAP kinase cascades in Smad7 transcriptional regulation. Biochem Biophys Res Commun 2001, 289(2):376-381.

  • 37. Arsura M, Panta G R, Bilyeu J D, Cavin L G, Sovak M A, Oliver A A, Factor V, Heuchel R, Mercurio F, Thorgeirsson S S et al: Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 2003, 22(3):412-425.

  • 38. Amir R E, Iwai K, Ciechanover A: The NEDD8 pathway is essential for SCF(beta-TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem 2002, 277(26):23253-23259.

  • 39. Tanaka K, Kawakami T, Tateishi K, Yashiroda H, Chiba T: Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway. Biochimie 2001, 83(3-4):351-356.

  • 40. Sakurai H, Shigemori N, Hasegawa K, Sugita T: TGF-beta-activated kinase 1 stimulates NF-kappa B activation by an NF-kappa B-inducing kinase-independent mechanism. Biochem Biophys Res Commun 1998, 243(2):545-549.

  • 41. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K: TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996, 272(5265):1179-1182.

  • 42. Bhat N R, Shen Q, Fan F: TAK1-mediated induction of nitric oxide synthase gene expression in glial cells. J Neurochem 2003, 87(1):238-247.

  • 43. Yanagisawa M, Nakashima K, Takeda K, Ochiai W, Takizawa T, Ueno M, Takizawa M, Shibuya H, Taga T: Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7. Genes Cells 2001, 6(12):1091-1099.

  • 44. Asano K, Vornlocher H P, Richter-Cook N J, Merrick W C, Hinnebusch A G, Hershey J W: Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 1997, 272(43):27042-27052.

  • 45. Higaki S, Gebhardt B M, Lukiw W J, Thompson H W, Hill J M: Effect of immunosuppression on gene expression in the HSV-1 latently infected mouse trigeminal ganglion. Invest Opthalmol Vis Sci 2002, 43(6): 1862-1869.

  • 46. Spear B T, Longley T, Moulder S, Wang S L, Peterson M L: A sensitive lacZ-based expression vector for analyzing transcriptional control elements in eukaryotic cells. DNA Cell Biol 1995, 14(7):635-642.

  • 47. Pier G B, Grout M, Zaidi T, Meluleni G, Mueschenborn S S, Banting G, Ratcliff R, Evans M J, Colledge W H: Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 1998, 393(6680):79-82.

  • 48. Perkins M E, Wu T W, Le Blancq S M: Cyclosporin analogs inhibit in vitro growth of Cryptosporidium parvum. Antimicrob Agents Chemother 1998, 42(4):843-848.

  • 49. Clarke P, Tyler K L: Reovirus-induced apoptosis: A minireview. Apoptosis 2003, 8(2):141-150.

  • 50. Richardson-Burns S M, Tyler K L: Regional differences in viral growth and central nervous system injury correlate with apoptosis. J Virol 2004, 78(10):5466-5475.

  • 51. Clarke P, Meintzer S M, Widmann C, Johnson G L, Tyler K L: Reovirus infection activates JNK and the JNK-dependent transcription factor c-Jun. J Virol 2001, 75(23):11275-11283.

  • 52. Clarke P, Meintzer S M, Moffitt L A, Tyler K L: Two distinct phases of virus-induced nuclear factor kappa B regulation enhance tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in virus-infected cells. J Biol Chem 2003, 278(20):18092-18100.

  • 53. Bender F C, Whitbeck J C, Ponce de Leon M, Lou H, Eisenberg R J, Cohen G H: Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol 2003, 77(17):9542-9552.

  • 54. Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B: The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 2003, 77(6):3759-3767.

  • 55. Schelling J R, Gentry D J, Dubyak G R: Annexin II inhibition of G protein-regulated inositol trisphosphate formation in rat aortic smooth muscle. Am J Physiol 1996, 270(4 Pt 2):F682-690.

  • 56. Babiychuk E B, Monastyrskaya K, Burkhard F C, Wray S, Draeger A: Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. Faseb J 2002, 16(10):1177-1184.

  • 57. Pittis M G, Muzzolin L, Giulianini P G, Garcia R C: Mycobacteria-containing phagosomes associate less annexins I, VI, VII and XI, but not II, concomitantly with a diminished phagolysosomal fusion. Eur J Cell Biol 2003, 82(1):9-17.

  • 58. Brunetti C R, Dingwell K S, Wale C, Graham F L, Johnson D C: Herpes simplex virus gD and virions accumulate in endosomes by mannose 6-phosphate-dependent and -independent mechanisms. J Virol 1998, 72(4):3330-3339.

  • 59. Rubin D H, Kornstein M J, Anderson A O: Reovirus serotype 1 intestinal infection: a novel replicative cycle with ileal disease. J Virol 1985, 53(2):391-398.

  • 60. Ahmed R, Canning W M, Kauffman R S, Sharpe A H, Hallum J V, Fields B N: Role of the host cell in persistent viral infection: coevolution of L cells and reovirus during persistent infection. Cell 1981, 25(2):325-332.

  • 61. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

  • 62. Raynor C M, Wright J F, Waisman D M, Pryzdial E L: Annexin II enhances cytomegalovirus binding and fusion to phospholipid membranes. Biochemistry 1999, 38(16):5089-5095.

  • 63. Glomb-Reinmund S, Kielian M: The role of low pH and disulfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus. Virology 1998, 248(2):372-381.

  • 64. Roberts P C, Kipperman T, Compans R W: Vesicular stomatitis virus G protein acquires pH-independent fusion activity during transport in a polarized endometrial cell line. J Virol 1999, 73(12):10447-10457.

  • 65. Luo T, Douglas J L, Livingston R L, Garcia J V: Infectivity enhancement by HIV-1 Nef is dependent on the pathway of virus entry: implications for HIV-based gene transfer systems. Virology 1998, 241(2):224-233.

  • 66. Platt G M, Simpson G R, Mittnacht S, Schulz T F: Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J Virol 1999, 73(12):9789-9795.

  • 67. Koffa M D, Graham S V, Takagaki Y, Manley J L, Clements J B: The human papillomavirus type 16 negative regulatory RNA element interacts with three proteins that act at different posttranscriptional levels. Proc Natl Acad Sci USA 2000, 97(9):4677-4682.

  • 68. Hirose Y, Manley J L: Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J Biol Chem 1997, 272(47):29636-29642.

  • 69. Hansen J, Etchison D, Hershey J W, Ehrenfeld E: Association of cap-binding protein with eucaryotic initiation factor 3 in initiation factor preparations from uninfected and poliovirus-infected HeLa cells. J Virol 1982, 42(1):200-207.

  • 70. Kieft J S, Zhou K, Jubin R, Murray M G, Lau J Y, Doudna J A: The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 1999, 292(3):513-529.

  • 71. Briggs C J, Ott D E, Coren L V, Oroszlan S, Tozser J: Comparison of the effect of FK506 and cyclosporin A on virus production in H9 cells chronically and newly infected by HIV-1. Arch Virol 1999, 144(11):2151-2160.

  • 72. Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G: Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 1998, 393(6681):185-187.

  • 73. Tan S L, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs B L, Mayer B J, Katze M G: NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci USA 1999, 96(10):5533-5538.

  • 74. Korkaya H, Jameel S, Gupta D, Tyagi S, Kumar R, Zafrullah M, Mazumdar M, Lal S K, Xiaofang L, Sehgal D et al: The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. J Biol Chem 2001, 276(45):42389-42400.

  • 75. Scaplehorn N, Holmstrom A, Moreau V, Frischknecht F, Reckmann I, Way M: Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol 2002, 12(9):740-745.

  • 76. Finkelstein L D, Ney P A, Liu Q P, Paulson R F, Correll P H: Sf-Stk kinase activity and the Grb2 binding site are required for Epo-independent growth of primary erythroblasts infected with Friend virus. Oncogene 2002, 21(22):3562-3570.

  • 77. Huh J R, Park J M, Kim M, Carlson B A, Hatfield D L, Lee B J: Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro. Biochem Biophys Res Commun 1999, 256(1):45-51.

  • 78. Zhou M, Kashanchi F, Jiang H, Ge H, Brady J N: Phosphorylation of the RAP74 subunit of TFIIF correlates with Tat-activated transcription of the HIV-1 long terminal repeat. Virology 2000, 268(2):452-460.

  • 79. Kim H, Lee Y H, Won J, Yun Y: Through induction of juxtaposition and tyrosine kinase activity of Jak1, X-gene product of hepatitis B virus stimulates Ras and the transcriptional activation through AP-1, NF-kappaB, and SRE enhancers. Biochem Biophys Res Commun 2001, 286(5):886-894.

  • 80. Breslin J J, Mork I, Smith M K, Vogel L K, Hemmila E M, Bonavia A, Talbot P J, Sjostrom H, Noren O, Holmes K V: Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C. J Virol 2003, 77(7):4435-4438.

  • 81. Li Y, Kang J, Horwitz M S: Interaction of an adenovirus 14.7-kilodalton protein inhibitor of tumor necrosis factor alpha cytolysis with a new member of the GTPase superfamily of signal transducers. J Virol 1997, 71(2):1576-1582.

  • 82. Hugle T, Fehrmann F, Bieck E, Kohara M, Krausslich H G, Rice C M, Blum H E, Moradpour D: The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 2001, 284(1):70-81.

  • 83. Bonatti S, Migliaccio G, Blobel G, Walter P: Role of signal recognition particle in the membrane assembly of Sindbis viral glycoproteins. Eur J Biochem 1984, 140(3):499-502.

  • 84. Melancon P, Garoff H: Reinitiation of translocation in the Semliki Forest virus structural polyprotein: identification of the signal for the E1 glycoprotein. Embo J 1986, 5(7):1551-1560.

  • 85. Emans N, Gorvel J P, Walter C, Gerke V, Kellner R, Griffiths G, Gruenberg J: Annexin II is a major component of fasogenic endosomal vesicles. J Cell Biol 1993, 120(6):1357-1369.

  • 86. Fiedler K, Kellner R, Simons K: Mapping the protein composition of trans-Golgi network (TGN)-derived carrier vesicles from polarized MDCK cells. Electrophoresis 1997, 18(14):2613-2619.

  • 87. Nezu J, Motojima K, Tamura H, Ohkuma S: Molecular cloning of a rat liver cDNA encoding the 16 kDa subunit of vacuolar H(+)-ATPases: organellar and tissue distribution of 16 kDa proteolipids. J Biochem (Tokyo) 1992, 112(2):212-219.

  • 88. Orci L, Perrelet A, Rothman J E: Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 1998, 95(5):2279-2283.

  • 89. Nakamura N, Lowe M, Levine T P, Rabouille C, Warren G: The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 1997, 89(3):445-455.

  • 90. Okutsu T, Kuroiwa Y, Kagitani F, Kai M, Aisaka K, Tsutsumi O, Kaneko Y, Yokomori K, Surani M A, Kohda T et al: Expression and imprinting status of human PEG8/IGF2AS, a paternally expressed antisense transcript from the IGF2 locus, in Wilms' tumors. J Biochem (Tokyo) 2000, 127(3):475-483.

  • 91. Kumar R, Yang J, Larsen R D, Stanley P: Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci USA 1990, 87(24):9948-9952.

  • 92. Nilsson T, Rabouille C, Hui N, Watson R, Warren G: The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 1996, 109(Pt 7):1975-1989.

  • 93. Nilsson T, Slusarewicz P, Hoe M H, Warren G: Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 1993, 330(1):1-4.

  • 94. Yang W, Pepperkok R, Bender P, Kreis T E, Storrie B: Modification of the cytoplasmic domain affects the subcellular localization of Golgi glycosyl-transferases. Eur J Cell Biol 1996, 71(1):53-61.

  • 95. Hirst J, Futter C E, Hopkins C R: The kinetics of mannose 6-phosphate receptor trafficking in the endocytic pathway in HEp-2 cells: the receptor enters and rapidly leaves multivesicular endosomes without accumulating in a prelysosomal compartment. Mol Biol Cell 1998, 9(4):809-816.

  • 96. Sheng Q, Denis D, Ratnofsky M, Roberts T M, DeCaprio J A, Schaffhausen B: The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J Virol 1997, 71(12):9410-9416.


Claims
  • 1. A method of identifying an antiviral agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1; and b) detecting the level and/or activity of the gene product produced by the cellular gene, a decrease or elimination of the gene product and/or gene product activity indicating a compound with antiviral activity.
  • 2. A method of identifying an antiviral agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1; b) contacting the cell with a virus; c) detecting the level of viral infection; and d) associating the level of viral infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of viral infection associated with a decrease or elimination of gene expression and/or activity indicating that the agent is an antiviral agent.
  • 3. A method of identifying an antiviral agent comprising: a) administering the agent to a cell containing a cellular gene listed in Table 1; b) contacting the cell with a virus; c) detecting the level of viral infection; and d) associating the level of viral infection with the level of expression of the gene from Table 1 or the activity of the protein encoded by the gene from Table 1, a decrease or elimination of viral infection associated with a decrease or elimination of gene expression and/or activity indicating that the agent is an antiviral agent.
  • 4. A non-human transgenic mammal comprising a functional deletion of one or more genes listed in Table 1, wherein the mammal has decreased susceptibility to infection by a pathogen.
  • 5. The transgenic mammal of claim 4, wherein the pathogen is a virus.
  • 6. The transgenic mammal of claim 4, wherein the pathogen is a bacteria.
  • 7. The transgenic mammal of claim 4, wherein the pathogen is a fungi.
  • 8. A cell including an altered or disrupted gene listed in Table 1 that has decreased susceptibility to infection by a pathogen.
  • 9. The cell of claim 8, wherein the pathogen is a virus.
  • 10. The cell of claim 8, wherein the pathogen is a bacteria.
  • 11. The cell of claim 8, wherein the pathogen is a fungi.
  • 12. The cell of claim 8, wherein the cell is a hematopoietic cell.
  • 13. A population of cells including an altered or disrupted gene listed in Table 1 that has decreased susceptibility to infection by a pathogen.
  • 14. A method of inhibiting infection in a cell comprising inhibiting expression or activity of a gene or a gene product listed in Table 1.
  • 15. The method of claim 14, wherein the infection is a viral infection.
  • 16. The method of claim 14, wherein the infection is a bacterial infection.
  • 17. The method of claim 14, wherein the infection is a fungal infection.
  • 18. A method of reducing or inhibiting a viral infection in a subject comprising administering to the subject an amount of a composition that inhibits expression or activity of a gene or a gene product in Table 1.
  • 19. The method of claim 18, wherein the infection is a viral infection.
  • 20. The method of claim 18, wherein the infection is a bacterial infection.
  • 21. The method of claim 18, wherein the infection is a fungal infection.
  • 22. A population of non-human animals possessing a variant form of one or more genes listed in Table 1, wherein the population is less susceptible to infection.
  • 23. The population of claim 22, wherein the non-human animals are from an avian species.
  • 24. The population of claim 23, wherein population is a flock of chickens.
  • 25. The population of claim 23, wherein the flock of chickens is less susceptible to avian flu.
  • 26. The antiviral agent identified by the method of claim 1.
  • 27. The antiviral agent identified by the method of claim 1.
  • 28. The method of claim 14, wherein expression or activity of a gene or a gene product listed in Table 1 is inhibited by contacting the cell with a chemical, a small molecule, a drug, a protein, a cDNA, an antibody, a morpholino, a triple helix molecule, an siRNA, an shRNAs, an antisense RNA or a ribozyme.
  • 29. The method of claim 18, wherein the composition is a chemical, a small molecule, a drug, a protein, a cDNA, an antibody, a morpholino, a triple helix molecule, an siRNA, an shRNAs, an antisense RNA or a ribozyme.
Parent Case Info

This application claims priority to U.S. provisional application Ser. No. 60/622,486, filed Oct. 27, 2004, which is herein incorporated by this reference in its entirety.

ACKNOWLEDGEMENTS

This invention was made with government support under Public Health Service Grant R01CA68283. The government has certain rights in this invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US05/38740 10/27/2005 WO 6/22/2007
Provisional Applications (1)
Number Date Country
60622486 Oct 2004 US