The present invention generally relates to the field of electromagnetic technologies, and more particularly, to a man-made composite material and a man-made composite material antenna.
In conventional optics, a lens can be used to refract a plane wave into a spherical wave which appears to be radiated from a point light source located at a virtual focus of the lens. Currently, the diverging effect of the lens is achieved by virtue of the refractive property of the spherical form of the lens. The inventor has found in the process of making this invention that, the lens antenna has at least the following technical problems: the lens is bulky and heavy, which is unfavorable for miniaturization; performances of the lens rely heavily on the shape thereof, and directional propagation from the antenna can be achieved only when the lens has a precise shape; and serious interferences and losses are caused to the electromagnetic waves, which reduces the electromagnetic energy. Moreover, for most lens antennae, abrupt transitions of the refractive indices follow a simple line that is perpendicular to a lens surface. Consequently, electromagnetic waves propagating through the lenses suffer from considerable refraction, diffraction and reflection, which have a serious effect on the performances of the lenses.
In view of the aforesaid problems that the prior art antennae suffer from considerable refraction, diffraction and reflection and have poor lens performances, an objective of the present invention is to provide a man-made composite material and a man-made composite material antenna that have superior performances.
To achieve the aforesaid objective, the present invention provides a man-made composite material, which is disposed in a propagation direction of a plane electromagnetic wave. The plane electromagnetic wave is incident on a first surface of the man-made composite material and exits in the form of a spherical wave from a second surface of the man-made composite material opposite to the first surface. Reverse extensions of the exiting electromagnetic wave intersect with each other at a virtual focus of the man-made composite material. A line connecting the virtual focus to a point on the second surface of the man-made composite material and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the man-made composite material. A set formed by points having the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the man-made composite material increase gradually as the angle θ increases.
Preferably, a refractive index distribution of the curved surface satisfies:
where, S(θ) is an arc length of a generatrix of the curved surface, F is a distance from the virtual focus to the man-made composite material; d is a thickness of the man-made composite material; and nmin is a minimum refractive index of the man-made composite material.
Preferably, the generatrix of the curved surface is a parabolic arc or an elliptical arc.
Preferably, the arc length S(θ) of the parabolic arc satisfies:
where δ is a preset decimal.
Preferably, when a line passing through a center of the second surface of the man-made composite material and perpendicular to the man-made composite material is taken as an abscissa axis and a line passing through the center of the second surface of the man-made composite material and parallel to the second surface is taken as an ordinate axis, an equation of a parabola where the parabolic arc is located is represented as:
Preferably, the angle θ and each point (x, y) of the parabolic arc satisfy the following relational expression:
Preferably, when a line passing through a center of the second surface of the man-made composite material and perpendicular to the man-made composite material is taken as an abscissa axis and a line passing through the center of the second surface of the man-made composite material and parallel to the second surface is taken as an ordinate axis, an equation of an ellipse where the elliptical arc is located is represented as:
where a, b and c satisfy the following relationships:
Preferably, a center of the ellipse where the elliptical arc is located is located on the first surface and has coordinates (d, c).
Preferably, a point on the second surface corresponding to the angle θ has a refraction angle θ′, and a refractive index n(θ) of the point satisfies:
Preferably, the man-made composite material comprises at least one man-made composite material sheet layer, each of which comprises a sheet-like substrate and a plurality of man-made microstructures attached on the substrate.
To achieve the aforesaid objective, the present invention further provides a man-made composite material antenna, which comprises a radiation source and a man-made composite material disposed in a propagation direction of a plane electromagnetic wave. The plane electromagnetic wave is incident on a first surface of the man-made composite material and exits in the form of a spherical wave from a second surface of the man-made composite material opposite to the first surface. Reverse extensions of the exiting electromagnetic wave intersect with each other at a virtual focus of the man-made composite material. A line connecting the virtual focus to a point on the second surface of the man-made composite material and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the man-made composite material. A set formed by points having the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the man-made composite material increase gradually as the angle θ increases.
Preferably, a refractive index distribution of the curved surface satisfies:
where, S(θ) is an arc length of a generatrix of the curved surface, F is a distance from the virtual focus to the man-made composite material; d is a thickness of the man-made composite material; and nmin is a minimum refractive index of the man-made composite material.
Preferably, the generatrix of the curved surface is a parabolic arc or an elliptical arc.
Preferably, the arc length S(θ) of the parabolic arc satisfies:
where δ is a preset decimal.
Preferably, when a line passing through a center of the second surface of the man-made composite material and perpendicular to the man-made composite material is taken as an abscissa axis and a line passing through the center of the second surface of the man-made composite material and parallel to the second surface is taken as an ordinate axis, an equation of a parabola where the parabolic arc is located is represented as:
Preferably, the angle θ and each point (x, y) of the parabolic arc satisfy the following relational expression:
Preferably, when a line passing through a center of the second surface of the man-made composite material and perpendicular to the man-made composite material is taken as an abscissa axis and a line passing through the center of the second surface of the man-made composite material and parallel to the second surface is taken as an ordinate axis, an equation of an ellipse where the elliptical arc is located is represented as:
where a, b and c satisfy the following relationships:
Preferably, a center of the ellipse where the elliptical arc is located is located on the first surface and has coordinates (d, c).
Preferably, a point on the second surface corresponding to the angle θ has a refraction angle ‘θ’, and a refractive index n(θ) of the point satisfies:
Preferably, the man-made composite material comprises at least one man-made composite material sheet layer, each of which comprises a sheet-like substrate and a plurality of man-made microstructures attached on the substrate.
The technical solutions of the present invention have the following benefits: by designing abrupt transitions of the refractive indices of the man-made composite material to follow a curved surface, the refraction, diffraction and reflection at the abrupt transition points can be significantly reduced. As a result, the problems caused by interferences are eased, which further improves performances of the man-made composite material and the man-made composite material antenna.
To describe the technical solutions of embodiments of the present invention more clearly, the attached drawings necessary for description of the embodiments will be introduced briefly hereinbelow. Obviously, these attached drawings only illustrate some of the embodiments of the present invention, and those of ordinary skill in the art can further obtain other attached drawings according to these attached drawings without making inventive efforts. In the attached drawings:
As can be known as a common sense, the refractive index of the electromagnetic wave is proportional to √{square root over (ε×μ)}. When an electromagnetic wave propagates from a medium to another medium, the electromagnetic wave will be refracted; and if the refractive index distribution in the material is non-uniform, then the electromagnetic wave will be deflected towards a site having a larger refractive index. By designing electromagnetic parameters of the man-made composite material at each point, the refractive index distribution of the man-made composite material can be adjusted so as to achieve the purpose of changing the propagating path of the electromagnetic wave.
As shown in
A refractive index distribution of the virtual curved surface satisfies:
As shown in
Hereinbelow, a case in which the are m is a parabolic arc and a case in which the arc m is an elliptical arc will be respectively illustrated as an example.
Supposing that the arc m is a parabolic arc, then the arc length S(θ) of the parabolic arc m satisfies the following equation:
where δ is a preset decimal (e.g., 0.0001), and can ensure that the ratio
converges when the angle θ approaches to 0. The angle θ ranges between
As shown in
Suppose that an equation of a parabola where the parabolic arc m shown by a solid line is located is: y(x)=ax2+bx+c. The parabola passes through a point (0, (F+d) tan θ): y(0)=c=(F+d)tan θ. In order to make the electromagnetic wave propagate in a direction of the designed parabola, a tangent line of the parabolic arc must be parallel with the X axis when the electromagnetic wave propagates through the first surface A of the man-made composite material; i.e., it must be ensured that y′(d)=0. Because y′(x)=2ax+b, y′(d)=2ad+b=0. In addition, it must also be ensured that the electromagnetic wave propagates in a tangent direction corresponding to the angle θ when reaching the second surface B of the man-made composite material, so y′ (0)=tan θ. An exit direction of the electromagnetic wave at any point O′ on the surface B is a direction of a radius JO′ in a sphere E with the virtual focus J as a circle center, i.e., a direction perpendicular to a surface of the sphere E. It can be derived from the aforesaid conditions that the equation of the parabola is
Thereby, a relational expression between the angle θ and each point (x, y) on the parabolic arc m can be obtained as
The angle θ uniquely corresponds to a curved surface in the man-made composite material, which is obtained through rotation of the generatrix m about the line L (the X axis); and each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index.
Suppose that the arc m is an elliptical arc. As shown in
A center of the ellipse is located on the first surface A, and has coordinates (d, c). The ellipse passes through a point (0, (F+d) tan θ); i.e., y(0)=(F+d)tan θ. Through the equation of the ellipse, it can be obtained that
When a plane wave is incident on the man-made composite material, a tangent line of the electromagnetic wave on the elliptical arc of the first surface A of the man-made composite material must be parallel with the X axis; i.e., it must be ensured that y′(d)=0. A tangential equation at any point (x, y) on the ellipse is
so it can be obtained that y′(d)=0. An exit direction of the electromagnetic wave at any point O′ on the surface B is a direction of a radius JO′ in a sphere E with the virtual focus J as a circle center. i.e., a direction perpendicular to a surface of the sphere E.
The point O′ on the second surface B corresponding to the angle θ has a refraction angle θ′ and a refractive index n(θ); and it can be known from the Snell's law that
The electromagnetic wave propagates in a tangent direction corresponding to the refraction angle θ′ when reaching the second surface B of the man-made composite material 10 from the external (as shown in
The angle θ uniquely corresponds to a curved surface in the man-made composite material, which is obtained through rotation of the generatrix m about the line L (the X axis); and each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index.
It shall be appreciated that, when a=b in the ellipse, the ellipse becomes a true circle; and in this case, the corresponding elliptical arc becomes a circular arc, and the curved surface is formed through rotation of the circular arc about the line L (the X axis).
The man-made composite material can be used to convert a plane wave emitted from the radiation source into a spherical wave. Refractive indices of the man-made composite material increase from nmin to nmax as the angle θ increases, as shown in
In practical structure designs, the man-made composite material may be designed to be formed by a plurality of man-made composite material sheet layers, each of which comprises a sheet-like substrate and a plurality of man-made microstructures or man-made pore structures attached on the substrate. The overall refractive index distribution of the plurality of man-made composite material sheet layers combined together must satisfy or approximately satisfy the aforesaid equations so that refractive indices on a same curved surface are identical to each other, and the generatrix of the curved surface is designed as a parabolic arc. Of course, in practical designs, it may be relatively difficult to design the generatrix of the curved surface as an accurate parabolic arc or an accurate elliptical arc, so the generatrix of the curved surface may be designed as an approximate parabolic arc, an approximate elliptical arc or a stepped form as needed and degrees of accuracy may be chosen as needed. With continuous advancement of the technologies, the designing manners are also updated continuously, and there may be a better designing process for the man-made composite material to achieve the refractive index distribution provided by the present invention.
Each of the man-made microstructures is a two-dimensional (2D) or three-dimensional (3D) structure comprising a metal wire and having a geometric pattern, and may be of, for example but is not limited to, a cross shape, a 2D snowflake shape or a 3D snowflake shape. The metal wire may be a copper wire or a silver wire, and may be attached on the substrate through etching, electroplating, drilling, photolithography, electron etching or ion etching. The plurality of man-made microstructures in the man-made composite material make the refractive indices of the man-made composite material increase with the angle θ increases. Given that an incident electromagnetic wave is known, by appropriately designing topology patterns of the man-made microstructures and designing arrangement of the man-made microstructures of different dimensions within an electromagnetic wave converging component, the refractive index distribution of the man-made composite material can be adjusted to convert the plane electromagnetic wave into an electromagnetic wave diverging in the form of a spherical wave.
In order to more intuitively represent the refractive index distribution of each of the man-made composite material sheet layers in a YX plane, the units that have the same refractive index are connected to form a line, and the magnitude of the refractive index is represented by the density of the lines. A higher density of the lines represents a larger refractive index. The refractive index distribution of the man-made composite material satisfying all of the above relational expressions is as shown in
The present invention has been elucidated in detail by taking the parabolic arc and the elliptical arc as examples. As a non-limiting example, the present invention may further apply to other kinds of curves such as irregular curves. The cases satisfying the refractive index distribution principle of the present invention shall all fall within the scope of the present invention.
The present invention further provides a man-made composite material antenna. A part from the man-made composite material 10 as shown in
The aforesaid man-made composite material may be in the form shown in
In practical applications, in order to achieve better performances of the man-made composite material and reduce the reflection, an impedance matching layer may be disposed at each of two sides of the man-made composite material. Details of the impedance matching layer can be found in the prior art documents, and thus will not be further described herein.
By designing abrupt transitions of the refractive indices of the man-made composite material to follow a curved surface according to the present invention, the refraction, diffraction and reflection at the abrupt transition points can be significantly reduced. As a result, the problems caused by interferences are eased, which further improves performances of the man-made composite material.
The embodiments of the present invention have been described above with reference to the attached drawings; however, the present invention is not limited to the aforesaid embodiments, and these embodiments are only illustrative but are not intended to limit the present invention. Those of ordinary skill in the art may further devise many other implementations according to the teachings of the present invention without departing from the spirits and the scope claimed in the claims of the present invention, and all of the implementations shall fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0183437 | Jul 2011 | CN | national |
2011 1 0183471 | Jul 2011 | CN | national |
2011 1 0183474 | Jul 2011 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/082290 | 11/16/2011 | WO | 00 | 7/19/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/004063 | 1/10/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5661499 | Epshtein et al. | Aug 1997 | A |
6151168 | Goering et al. | Nov 2000 | A |
20110199281 | Morton et al. | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130002499 A1 | Jan 2013 | US |