In communications infrastructure installations, a variety of communications devices can be used for switching, cross-connecting, and interconnecting communications signal transmission paths in a communications network. Some such communications devices are installed in one or more equipment racks to permit organized, high-density installations to be achieved in limited space available for equipment.
Communications devices can be organized into communications networks, which typically include numerous logical communication links between various items of equipment. Often a single logical communication link is implemented using several pieces of physical communication media. For example, a logical communication link between a computer and an inter-networking device such as a hub or router can be implemented as follows. A first cable connects the computer to a jack mounted in a wall. A second cable connects the wall-mounted jack to a port of a patch panel, and a third cable connects the inter-networking device to another port of a patch panel. A “patch cord” cross connects the two together. In other words, a single logical communication link is often implemented using several segments of physical communication media.
Network management systems (NMS) are typically aware of logical communication links that exist in a communications network, but typically do not have information about the specific physical layer media (e.g., the communications devices, cables, couplers, etc.) that are used to implement the logical communication links. Indeed, NMS systems typically do not have the ability to display or otherwise provide information about how logical communication links are implemented at the physical layer level.
The present disclosure relates to communications connector assemblies and connector arrangements that provide physical layer management capabilities. In accordance with certain aspects, the disclosure relates to fiber optic connector assemblies and connector arrangements.
In accordance with some aspects of the disclosure, an adapter block assembly includes at least a first adapter block; a circuit board; a first contact set; and a second contact set. The first adapter block defines at least a first aperture providing access between a first passage and an exterior of the first adapter block. The circuit board extends across the first aperture. The contact sets are disposed at the first aperture. The second contact set has a second orientation that is rotated 180° from the first orientation.
In certain examples, the second contact set has an identical configuration to the first contact set. In certain examples, the widest point of the first contact set is laterally aligned with the narrowest point of the second contact set.
In certain examples, the adapter block defines a slotted region at each end of the aperture to inhibit lateral deflection between contact members of the contact sets. In certain examples, the slotted regions extend over less than a full width of the aperture. In an example, the slotted regions extend over less than half the width of the aperture.
In certain examples, the first side of the first adapter block defines multiple apertures; and the circuit board extends across the apertures. First and second contact sets are disposed in the apertures and have different orientations. In an example, the second contact set is rotated 180° from the first contact set.
In certain examples, the adapter block assembly also includes a second adapter block that is substantially identical to the first adapter block. In an example, the second adapter block is coupled to the same circuit board as the first adapter block.
In accordance with other aspects of the disclosure, the adapter block includes a body defining multiple passages. A first side of the body defines apertures aligned with the passageways. Each aperture extends along a majority of a width of the respective passageway. First latching arrangements are disposed at the first side of the body. Each first latching arrangement aligns with a respective one of the passageways. Second latching arrangements are disposed at the second side of the body. Each second latching arrangement is disposed within a respective one of the passageways. The first and second latching arrangements of each passage are configured to retain a separately manufactured alignment arrangement against movement along the axis of the respective passage.
In certain examples, each first latching arrangement includes a first latch arm and a second latch arm located at opposite ends of the respective aperture. In an example, the first and second latch arms of each first latching arrangement are configured to flex laterally along the aperture. In another example, the first and second latch arms of each first latching arrangement are configured to flex outwardly from the respective aperture away from the respective passage.
In certain examples, the body has a staggered configuration so that adjacent ports are offset from each other along the axes of the passageways. In certain examples, the apertures are disposed in a staggered configuration so that adjacent apertures are offset from each other along the axes of the passageways. In an example, the body is monolithically formed.
In certain examples, guide rails are disposed within each passageway. In an example, each guide rail has a tapered end.
In accordance with other aspects of the disclosure, a plug connector includes an outer housing; and an inner housing. The outer housing defines a passage therethrough and has a first side defining a storage mounting region towards the front of the outer housing. The first side has an increased thickness at the storage mounting region so that an inner surface of the first side extends into the passage at the storage mounting region. The outer housing defines a recessed surface having an open top at the storage mounting region. The inner housing is configured to slide along the passage of the outer housing. The inner housing defines a channel that accommodates the increased thickness of the first side of the outer housing at the storage mounting region.
In certain examples, a key is disposed on a second side of the outer housing opposite the first side. In certain examples, the inner surface of the first side of the outer housing extends into the passage at an angle.
In certain examples, the channel of the inner housing extends from an intermediate point along a first side of the inner housing to a first end of the inner housing.
In certain examples, a storage device is disposed at the recessed surface and is accessible through the open top of the recessed surface. In an example, a top surface of the storage device is no higher than an external surface of the first side. In certain examples, the storage device includes a circuit board having electrical contact pads accessible through the open top of the recessed surface. In certain examples, the storage device also includes electronic memory disposed on the circuit board. In certain examples, the recessed surface defines a second recessed surface that accommodates the electronic memory. In an example, the inner surface of the first side fully extends between the storage device and the inner housing.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate several aspects of the present disclosure. A brief description of the drawings is as follows:
Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In accordance with aspects of the disclosure, the connection system 10 is coupled to or incorporates a data management system that provides physical layer information (PLI) functionality as well as physical layer management (PLM) functionality. As the term is used herein, “PLI functionality” refers to the ability of a physical component or system to identify or otherwise associate physical layer information with some or all of the physical components used to implement the physical layer of the communications network. As the term is used herein, “PLM functionality” refers to the ability of a component or system to manipulate or to enable others to manipulate the physical components used to implement the physical layer of the communications network (e.g., to track what is connected to each component, to trace connections that are made using the components, or to provide visual indications to a user at a selected component).
As the term is used herein, “physical layer information” refers to information about the identity, attributes, and/or status of the physical components used to implement the physical layer of the communications network. Physical layer information of the communications network can include media information, device information, and location information. Media information refers to physical layer information pertaining to cables, plugs, connectors, and other such physical media. Non-limiting examples of media information include a part number, a serial number, a plug type, a conductor type, a cable length, cable polarity, a cable pass-through capacity, a date of manufacture, a manufacturing lot number, the color or shape of the plug connector, an insertion count, and testing or performance information. Device information refers to physical layer information pertaining to the communications panels, inter-networking devices, media converters, computers, servers, wall outlets, and other physical communications devices to which the media segments attach. Location information refers to physical layer information pertaining to a physical layout of a building or buildings in which the network is deployed.
In accordance with some aspects, one or more of the components (e.g., media segments, equipment, etc.) of the communications network are configured to store physical layer information pertaining to the component as will be disclosed in more detail herein. Some components include media reading interfaces that are configured to read stored physical layer information from the components. The physical layer information obtained by the media reading interface may be communicated over the network for processing and/or storage.
For example, the adapter block assembly 11 of
In accordance with some aspects, at least a first media reading interface 16 is disposed at the adapter 11 (e.g., mounted to a circuit board 15 coupled to the adapter 11). In certain implementations, at least a second media interface 18 also is disposed at the adapter 11 (e.g., mounted to a circuit board 15). When one of the connector arrangements 20, 30 is received at the adapter 11, the respective media reading interface 16, 18 is configured to enable reading (e.g., by an electronic processor) of the information stored in the respective storage device 25, 35. The information read from the connector arrangement 20, 30 can be transferred through the circuit board 15 to a physical layer data management network (e.g., see data line 19 of
In some such implementations, the storage devices 25, 35 and the media reading interfaces 16, 18 each include at least three (3) leads—a power lead, a ground lead, and a data lead. The three leads of the storage devices 25, 35 come into electrical contact with three (3) corresponding leads of the media reading interfaces 16, 18 when the corresponding media segment is inserted in the corresponding port. In other example implementations, a two-line interface is used with a simple charge pump. In still other implementations, additional leads can be provided (e.g., for potential future applications). Accordingly, the storage devices 25, 35 and the media reading interfaces 16, 18 may each include four (4) leads, five (5) leads, six (6) leads, etc.
Examples of data management networks and examples of storage devices can be found in U.S. Provisional Application No. 61/760,816, filed Feb. 5, 2013, and titled “Systems and Methods for Associating Location Information with a Communication Sub-Assembly Housed within a Communication Assembly,” the disclosure of which is hereby incorporated herein by reference.
In the example shown in
Additional information regarding the joining member and cover arrangement can be found in U.S. Provisional Application No. 61/843,718, filed Jul. 8, 2013, and titled “Optical Assemblies with Managed Connectivity,” the disclosure of which is hereby incorporated herein by reference.
The apertures 120 are defined at the first side 114 of the body 111. Each aperture 120 has a first end 121 located closer to the front 112 of the body 111 and a rear end 122 located closer to the rear 113 of the body 111 relative to each other. In certain implementations, retention arms 138 extend upwardly from the first side 114 to engage portions 170 of the cover arrangement. In the example shown, the retention arms 138 extend upwardly from opposite ends 121, 122 of each aperture 120. In certain implementations, keyways 135 are defined at the second side 115 of the body 111.
In some implementations, the adapter block body 111 is configured to receive one or more alignment arrangements 140 (
In certain implementations, each first latching arrangement 125 includes one or more flexible latching arms 126 opposing shoulders 127. In the example shown, each first latching arrangement 125 includes two latching arms 126 disposed at opposite sides of the respective aperture 120. The latching arms 126 extend from the first end 121 of the respective aperture 120 towards the second end 122. The shoulders 127 are disposed at an intermediate location along the aperture 120 and face the first end 121. In some examples, the latching arms 126 are configured to deflect/flex laterally along the aperture 120 (e.g., see
In certain implementations, each second latching arrangement 130 includes a ramp member 131 and a stop member 132. In certain examples, each second latching arrangement 130 includes two stop members 132. In the example shown in
An alignment arrangement 140 includes a sleeve holder section 141 and a retention flange 145 (e.g., see
As shown in
In some implementations, a periphery of the adapter block 110 defined by the front 112, rear 113, and ends 116, 117 has a staggered configuration. Portions of the adapter block 110 extend forwardly of other portions of the adapter block 110 (e.g., see
In certain implementations, apertures 120 of adjacent passages 118 are staggered relative to each other. For example, as shown in
The first side 114 of the adapter body 111 is configured to receive one or more contact sets 160 at the apertures 120. Referring to
The first contact region is fixed to a contact pad on the circuit board 150. The second contact region engages a connector 200 when the connector 200 is received at a port 119 of the respective passage 118. The third contact region is deflected against a second contact pad on the circuit board 150 when the second contact region engages the connector 200. The third contact region is spaced from the second contact pad when the connector 200 is not received at the port 119. Additional information about example contact sets 160 can be found in U.S. Provisional Application No. 61/843,733, filed Jul. 8, 2013, and titled “Optical Assemblies with Managed Connectivity,” the disclosure of which is hereby incorporated herein by reference.
The contact members 161 of each contact set 160 extend along a length of the contact set 160. The contact members 161 are shaped and arranged so that the contact set 160 has a first width W3 at a first point P1 along the length of the contact set 160 and a second width W4 at a second point P2 along the length of the contact set 160 with the second width W4 being less than the first width W3. In an example, the first width W3 is a maximum width of the contact set 160 and the second width W4 is a minimum width of the contact set 160. In an example, the first and second widths W3 and W4 are less than a width W1 of the aperture 120.
In some implementations, two contact sets 160A, 160B are disposed at each aperture 120. In certain examples, the two contact sets 160A, 160B have different orientations. In an example, a first contact set 160A has a first orientation and a second contact set 160B has a second orientation that is rotated 180° relative to the first orientation. In certain examples, the contact sets 160 are disposed so that the first point P1 of the first contact set 160A laterally aligns with the second point P2 of the second contact set 160B (e.g., see
In some implementations, the ends 121, 122 of the apertures 120 define slotted regions 123 at which the second ends of the contact members 161 are disposed (see
In certain examples, the slotted regions 123 or slots 123′ extend across no more than half the width of the end 121, 122. In certain examples, the slotted regions 123 or slots 123′ extend across less than half the width of the end 121, 122. In some implementations, the slotted regions 123 or slots 123′ have widths W2 (
The outer housing 210 includes a body 211 defining a passage 212 in which the inner housing body 231 can slide (see
In some implementations, a storage device 250 can be coupled to the connector 200. The storage device 250 includes electronic memory 256 or another type of memory that stores information pertaining to the connector 200 and/or the optical fiber terminated thereby. In certain implementations, the electronic memory 256 of the storage device 250 is mounted to a circuit board 252. Contact pads 254 that provide electrical access to the memory 256 also can be disposed on the circuit board 252. In certain implementations, the contact pads 254 are disposed at one major surface of the circuit board 252 and the electronic memory 256 is disposed at an opposite major surface of the circuit board 252.
The outer housing body 211 defines a storage mounting region 220 at which the storage device 250 can be disposed. As shown in
In some implementations, the body 211 defines the storage mounting region 220 at the first side 214 and towards a front of the body 211. In some implementations, the storage mounting region 220 is laterally offset from a central, longitudinal axis of the outer housing body 211 (see
In some implementations, the outer housing body 211 has an area of increased thickness 226 at the storage mounting region 220. An inner surface 219 of the body 211 extends into the passage 212 at the area of increased thickness 226. For example, a portion of the inner surface 219 of the first side 214 may angle downwardly into the passage 212. In another example, a portion of the inner surface 219 may step inwardly to protrude into the passage 212. The increased thickness 226 provides sufficient material for the outer housing body 211 to accommodate the further recess 225. For example, the further recess 225 may have a depth that is greater than a thickness of the outer housing body 211 at the first side 214 outside the area of increased thickness 226. In certain implementations, the increased thickness 226 also aids in accommodating the recessed surface 221. For example, the recessed surface 221 may have a depth that is greater than a thickness of the outer housing body 211 at the first side 214 outside the area of increased thickness 226.
The inner housing 230 is shaped and configured to accommodate the storage mounting region 220 of the outer housing 210. For example, the inner housing body 231 defines a channel 235 that accommodates the increased thickness 226 of the outer housing body 211. The contour of the inner surface 219 at the storage mounting region 220 generally matches the contour of the channel 235. Accordingly, the region of increased thickness and the storage device 250 slide along the channel 235 as the inner housing body 231 slides within the outer housing body 211.
The channel 235 extends rearwardly from a front end of the inner housing body 231. In certain examples, the channel 235 extends over less than half a length of the inner housing body 231. The channel 235 defines a recessed surface 236 and a transition surface 237 that extends from the recessed surface 236 to an exterior surface of the inner housing body 231. In certain examples, the recessed surface 236 extends to one side of the inner housing body 231 so that a corner of the inner housing body 231 is eliminated. An end surface 238 terminates a rear end of the channel 235.
In certain implementations, the circuit board 252 of the storage device seats on the recessed surface 221 (e.g., see
In certain implementations, storage mounting region 220 is only accessible through the open top 222. In certain examples, the inner surface 219 of the first side 214 extends fully between the electronic memory 256 and the inner housing body 231. In certain examples, the inner surface 219 of the first side 214 extends fully between the storage device 250 and the inner housing body 231.
Additional information about how physical layer information can be read from the plug connectors by the contact assemblies at the adapters can be found in U.S. Publication No. 2011-0262077, the disclosure of which is hereby incorporated herein by reference.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
The present application claims the benefit of U.S. Provisional Application No. 61/937,374, filed Feb. 7, 2014, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4953194 | Hansen et al. | Aug 1990 | A |
4968929 | Hauck et al. | Nov 1990 | A |
5052940 | Bengal | Oct 1991 | A |
5161988 | Krupka | Nov 1992 | A |
5222164 | Bass, Sr. et al. | Jun 1993 | A |
5305405 | Emmons et al. | Apr 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5393249 | Morgenstern et al. | Feb 1995 | A |
5394503 | Dietz, Jr. et al. | Feb 1995 | A |
5413494 | Dewey et al. | May 1995 | A |
5419717 | Abendschein et al. | May 1995 | A |
5467062 | Burroughs et al. | Nov 1995 | A |
5483467 | Krupka et al. | Jan 1996 | A |
5579425 | Lampert et al. | Nov 1996 | A |
5685741 | Dewey et al. | Nov 1997 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5910776 | Black | Jun 1999 | A |
6002331 | Laor | Dec 1999 | A |
6116961 | Henneberger et al. | Sep 2000 | A |
6222908 | Bartolutti et al. | Apr 2001 | B1 |
6234830 | Ensz et al. | May 2001 | B1 |
6285293 | German et al. | Sep 2001 | B1 |
6300877 | Schannach et al. | Oct 2001 | B1 |
6330307 | Bloch et al. | Dec 2001 | B1 |
6350148 | Bartolutti et al. | Feb 2002 | B1 |
6409392 | Lampert et al. | Jun 2002 | B1 |
6424710 | Bartolutti et al. | Jul 2002 | B1 |
6437894 | Gilbert et al. | Aug 2002 | B1 |
6456768 | Boncek et al. | Sep 2002 | B1 |
6499861 | German et al. | Dec 2002 | B1 |
6511231 | Lampert et al. | Jan 2003 | B2 |
6522737 | Bartolutti et al. | Feb 2003 | B1 |
6574586 | David et al. | Jun 2003 | B1 |
6636152 | Schannach et al. | Oct 2003 | B2 |
6725177 | David et al. | Apr 2004 | B2 |
6743044 | Musolf et al. | Jun 2004 | B2 |
6802735 | Pepe et al. | Oct 2004 | B2 |
6808116 | Eslambolchi et al. | Oct 2004 | B1 |
6898368 | Colombo et al. | May 2005 | B2 |
6905363 | Musolf et al. | Jun 2005 | B2 |
6932517 | Swayze et al. | Aug 2005 | B2 |
6971895 | Sago et al. | Dec 2005 | B2 |
7081808 | Colombo et al. | Jul 2006 | B2 |
7088880 | Gershman | Aug 2006 | B1 |
7123810 | Parrish | Oct 2006 | B2 |
7153142 | Shifris et al. | Dec 2006 | B2 |
7165728 | Durrant et al. | Jan 2007 | B2 |
7193422 | Velleca et al. | Mar 2007 | B2 |
7210858 | Sago et al | May 2007 | B2 |
7226217 | Benton et al. | Jun 2007 | B1 |
7234944 | Nordin et al. | Jun 2007 | B2 |
7297018 | Caveney et al. | Nov 2007 | B2 |
7315224 | Gurovich et al. | Jan 2008 | B2 |
7352289 | Harris | Apr 2008 | B1 |
7356208 | Becker | Apr 2008 | B2 |
7458517 | Durrant et al. | Dec 2008 | B2 |
7519000 | Caveney et al. | Apr 2009 | B2 |
7552872 | Tokita et al. | Jun 2009 | B2 |
7869426 | Hough et al. | Jan 2011 | B2 |
7872738 | Abbott | Jan 2011 | B2 |
7934022 | Velleca et al. | Apr 2011 | B2 |
8757895 | Petersen | Jun 2014 | B2 |
9244229 | Petersen | Jan 2016 | B2 |
20020081076 | Lampert et al. | Jun 2002 | A1 |
20040052471 | Colombo et al. | Mar 2004 | A1 |
20040054761 | Colombo et al. | Mar 2004 | A1 |
20040117515 | Sago et al. | Jun 2004 | A1 |
20040120657 | Sago et al. | Jun 2004 | A1 |
20040240807 | Frohlich et al. | Dec 2004 | A1 |
20050249477 | Parrish | Nov 2005 | A1 |
20060160395 | Macauley et al. | Jul 2006 | A1 |
20060193591 | Rapp et al. | Aug 2006 | A1 |
20060228086 | Holmberg et al. | Oct 2006 | A1 |
20070116411 | Benton et al. | May 2007 | A1 |
20070237470 | Aronson et al. | Oct 2007 | A1 |
20080100456 | Downie et al. | May 2008 | A1 |
20080100467 | Downie et al. | May 2008 | A1 |
20080131055 | Parkman et al. | Jun 2008 | A1 |
20080175550 | Coburn et al. | Jul 2008 | A1 |
20080310795 | Parkman, III et al. | Dec 2008 | A1 |
20090034911 | Murano | Feb 2009 | A1 |
20090123117 | Wang et al. | May 2009 | A1 |
20100211664 | Raza et al. | Aug 2010 | A1 |
20100211665 | Raza et al. | Aug 2010 | A1 |
20100211697 | Raza et al. | Aug 2010 | A1 |
20100215049 | Raza et al. | Aug 2010 | A1 |
20110222819 | Anderson et al. | Sep 2011 | A1 |
20110262077 | Anderson et al. | Oct 2011 | A1 |
20120294572 | Petersen | Nov 2012 | A1 |
20140023326 | Anderson et al. | Jan 2014 | A1 |
20140241692 | Petersen | Aug 2014 | A1 |
20160139347 | Petersen | May 2016 | A1 |
Number | Date | Country |
---|---|---|
101968558 | Feb 2011 | CN |
41 14 921 | Nov 1992 | DE |
102 44 304 | Mar 2004 | DE |
10 2004 033 940 | Feb 2006 | DE |
1 199 586 | Apr 2002 | EP |
1 467 232 | Oct 2004 | EP |
1 662 287 | May 2006 | EP |
2004-151670 | May 2004 | JP |
WO 2007061490 | May 2007 | WO |
WO 2010001400 | Jan 2010 | WO |
WO 2010121639 | Oct 2010 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US015/014431 mailed May 21, 2015. |
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 9, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030509 on Jan. 7, 2009. |
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 20, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030520 on Jan. 7, 2009. |
European Search Report for Application No. 12771750.2 mailed Sep. 1, 2014. |
Intelligent patching systems carving out a ‘large’ niche, Cabling Installation & Maintenance, vol. 12, Issue 7, Jul. 2004 (5 pages). |
intelliMAC: The intelligent way to make Moves, Adds or Changes! NORDX/CDT © 2003 (6 pages). |
International Search Report and Written Opinion for PCT/US2012/033578 mailed Nov. 28, 2012. |
Meredith, L., “Managers missing point of intelligent patching,” Daa Center News, Jun. 21, 2005, obtained Dec. 2, 2008 from http://searchdatacenter.techtarget.com/news/article/0,289142,sid80—gci1099991,00.html. |
Ohtsuki, F. et al., “Design of Optical Connectors with ID Modules,” Electronics and Communications in Japan, Part 1, vol. 77, No. 2, pp. 94-105 (Feb. 1994). |
SYSTIMAX® iPatch System Wins Platinum Network of the Year Award, Press Release, Jan. 30, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030130a on Jan. 7, 2009. |
Number | Date | Country | |
---|---|---|---|
20150226926 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61937374 | Feb 2014 | US |