1. Field of the Invention
The present invention generally relates to a management device of an image forming apparatus, and more specifically, to a management system of an image forming apparatus that uses an electro-photographic method, in which an electrostatic latent image is formed via projection of image light upon an electrically charged surface of a photoreceptor, which latent image is then developed and transferred to paper via an intermediate transfer body. The management system includes the management device which advises the user of various statuses/conditions regarding the need to change or replenish consumable supplies.
2. Description of the Related Art
Conventionally, there are multiple apparatuses that achieve service operation efficiency by predicting abnormal occurrences based upon status information of the image forming apparatus. According to the system of Japanese Laid-Open Patent Application No. 2003-215986, abnormal occurrences are predicted based upon the actual number of occurrences of anomalies. According to the apparatus and diagnostic method of Japanese Laid-Open Patent Application No. 5-164800, abnormal occurrence information of the copying unit and status information at the time of the abnormal occurrence are collected on a server and with statistical processing the common factor among specific anomalies is identified. According to the system and method of Japanese Laid-Open Patent Application No. 2001-175328, determination of the factor behind abnormal occurrences is determined by the integration of information from the mounted components such as the sensor or counter of the copying unit.
Japanese Laid-Open Patent Application No. 2003-215986 discloses that the types of abnormal occurrences that can be predicted are limited due to the information obtained being confined to the number of anomalies. Japanese Laid-Open Patent Application No. 5-164800 discloses that an increase in network work load occurs because the information being obtained from the copying unit is sent to a server via a network. Also, there is an increase in system configuration cost due to the need of a server capable of handling the work load of collection and processing of information from the multitude of copying units that are on the market. Japanese Laid-Open Patent Application No. 2001-175328 discloses that the execution of abnormal occurrence prediction within the copying unit achieves a small work load on the management system but the use of neural networks or Bayesian inference and such, with large calculation work loads, for abnormal occurrence determination give rise to the possible delay of the other operations of the copying unit such as the delay of image processing, mechanical control, and loss of speed.
Accordingly, embodiments of the present invention may provide a novel and useful management device of an image forming apparatus solving one or more of the problems discussed above.
More specifically, the embodiments of the present invention may provide a management device for an image forming apparatus that identifies the indicators that may lead to abnormal occurrence, has a small calculation work load for this task, and can increase the reliability of prediction.
One aspect of the present invention may be to provide a management device for an image forming apparatus comprising a status data collection unit that receives and collects multiple types of status data from the image forming apparatus and stores the data in a status database; a target data creation unit for multiple types of target data for abnormal occurrence prediction based upon the multiple types of status data; a first stage determination unit that identifies whether the target data value from the multiple types of target data is below or exceeds the reference value set for the corresponding type of target data; and a second stage determination unit that identifies abnormal occurrence prediction wherein a weight value set for each type of status data is attached to the determination results for the corresponding type of status data by the first stage determination unit and from the multiple types of status data as a whole determines abnormal occurrence prediction by majority logic.
In the above-mentioned management device for an image forming apparatus according to an embodiment of the present invention, the image forming apparatus may have a color printer.
In the above-mentioned management device for an image forming apparatus according to an embodiment of the present invention, the image forming apparatus may also have a color scanner.
In the above-mentioned management device for an image forming apparatus according to an embodiment of the present invention, the first stage determination unit may employ an determination apparatus with simple data processing such as a stamp determination apparatus and achieve sufficient precision while holding down calculation work load. Notification of abnormal occurrence prediction is executed and thus, according to the contents of the notification, early action can be taken to prevent abnormal occurrence.
In the above-mentioned management device for an image forming apparatus according to an embodiment of the present invention, the indication of possible image concentration anomaly (color concentration anomaly) due to cleaning insufficiency or cleaning insufficiency prediction indication is also identified. Data showing cleaning insufficiency prediction indication are outputted and the determination reference used by the first stage determination unit can be adjusted with the first stage update part and the weight value of the second stage determination unit can be adjusted with the second stage update part.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
A description is given below, with reference to
The management device 630 has a database that stores status data, as well as a program that executes a feature extraction method; an abnormal occurrence prediction determination system (
The management device 630 is connected to a computer PCa controlled by an operator. The operator uses the computer PCa to, based upon the status data of each copying machine 601-605 in the database of the management device 630, create anew or adjust the abnormal occurrence prediction determination component (
Shown in
The printer 100 has not only an exposure part which is the exposure apparatus 21 but a transfer part which is first stage transfer rollers 62 (K, Y, M, C) and a second stage transfer apparatus 22, a fixation apparatus 25, a paper ejection apparatus, and though not shown in figures, a toner feeding apparatus, a toner disposal apparatus and such. The paper feeder 200 has an automatic paper feeder section attached below the printer 100 and a manual feeding section attached to the side of the printer 100. The automatic paper feeder section has, within a paper bank 43, three paper feeder cassettes 44 built in a multilevel layout, a feeder roller 42 that feeds the recording medium or transfer paper from the paper feeder cassette 44, and a separation roller 45, and such, which separates the fed transfer paper and sends it to a paper feeding route 46. Also the automatic paper feeder section has a conveyance roller 47, and such, which transports transfer paper to a paper feeding route 48 of the printer 100. Whereas, the manual feeding section has a manual feeding tray 51, a separation roller 52, and such, which feed transfer paper on the manual feeding tray 51 page by page to a manual paper feeding route 53.
Located around the end of the paper feeding route 48 of the printer 100 is a paper-stop roller pair 49. After the transfer paper is received from the paper feeder cassette 44 or the manual feeding tray 51, a paper-stop roller pair 49 sends the transfer paper at a designated timing to the second stage transfer nip formed between the intermediate transfer body which is the intermediate transfer belt 10 and second stage transfer apparatus 22.
When making a copy of a color image with this copying machine 601, the document is set upon the document plate 30 of the ADF 400, or the ADF 400 is opened and after setting document upon the contact glass 32 of the scanner 300, the ADF 400 is closed to hold down the document. Then a start switch not shown in figure is pushed. When the document is set in the ADF 400, the scanner 300 is activated after the document is transferred to the contact glass 32. When the document is set upon the contact glass 32 the scanner 300 activates immediately. Then a first carriage 33 and a second carriage 34 run wherein the light from light source of the first carriage 33 is reflected by the document surface and is routed to the second carriage 34. The mirror of the second carriage 34 reflects the light and the light is passed through an imaging lens 35 to reach a reading sensor 36 and is read as image information.
When the image information is read, the printer 100, with a drive motor not shown in the figures, drives in a rotational motion one of the support rollers 14, 15, and 16 and the other two follow in rotational motion. Thus, the intermediate transfer body or intermediate transfer belt 10, stretched upon these rollers, is moved in a treadmill (endless) motion. The laser writing and a development process described later is executed. Next, the formation of single color images of black, yellow, magenta, and cyan is executed with the rotation of photoreceptor 40 (K, Y, M, C). At the first stage transfer nips of K, Y, M, C where photoreceptors 40 (K, Y, M, C) and the intermediate transfer belt 10 make contact, the four color images are superposed one onto another via electrostatic transfer thereby forming the toner image. The single color toner images are formed upon the corresponding photoreceptors 40 (K, Y, M, and C).
To feed the transfer paper that corresponds to the size of the image information paper feeder section 200, conveyance rollers 47 feed and convey the transfer paper to the paper feeding route 48 of the printer 100. The transfer paper, which is the paper that entered the paper feeding route 48 after being sandwiched by the paper-stop roller pair 49 and stopped, has its timing adjusted and is sent to the contact section of the intermediate transfer belt 10 and one of second stage transfer rollers 23 of a second stage transfer apparatus 22 (see
The transfer paper that has passed through the second stage transcriptional nip is sent to a fixation apparatus 25 via the treadmill rotation of a conveyance belt 24 of the second stage transcription apparatus 22. After the full color image is fixed by the applied pressure of a pressure roller 27 of the fixation apparatus 25 and heating by a heating belt, the transfer paper is ejected via ejection rollers 56 to a paper receiving tray 57 on the side of the printer 100.
Each of the process units 18 (K, Y, M, C) is a unit formed of the photoreceptor 40 (K, Y, M, C) and a number of other apparatuses supported by a common supportive frame and can be removed from the printer 100. The process unit 18(K) for the color black, for example, is comprised of not only the photoreceptor 40(K) but also a developing unit 61(K) which develops the electrostatic latent image formed upon the surface of the photoreceptor 40(K) into a black toner image, a photoreceptor cleaning apparatus 63(K) to clean residual transcription toner on the surface of the photoreceptor 40(K) after passing the first stage transfer nip, an electrostatic eliminating apparatus, not shown in the figures, to neutralize the surface of the photoreceptor 40(K) after cleaning, and an electrical charging apparatus, not shown in the figures, to uniformly charge the surface of the photoreceptor 40(K) after neutralization. The process units 18 (Y, M, C) of the other colors, other than handling different color toners, are of the same structure. The copying machine 601 has the four process units 18 (K, Y, M, C) arranged along the direction of movement of the intermediate transfer belt 10 in a so-called tandem structure.
Shown in
The development apparatus 61 develops latent images by using a developer of two components, a magnetic carrier and a non-magnetic toner. The development apparatus has a mixing section 66 that, while mixing, feeds the internalized two component developer to a developing sleeve 65 and a developing section 67 that transfers only the toner of the two component developer adhering to the developing sleeve 65 to the photoreceptor 40.
The mixing section 66 is located, at a lower position than the developing section 67 and has two screws 68 aligned parallel, with a partition 69 between these screws 68, and a toner concentration sensor 71 set at the bottom of developing case 70.
The developing section 67 has the developing sleeve 65 facing the photoreceptor 40 through the opening of a developing case 70 and within this a magnet roller 72 set to not rotate, and a doctor blade 73 with the point close to the developing sleeve 65. The distance between the doctor blade 73 and the developing sleeve 65, is approximately 500 μm. The developing sleeve 65 has a rotatable tubular form that is non-magnetic. To prevent the magnet roller 72 from rotating with developing sleeve 65, for example, five magnetic poles, N1, S1, N2, S2, and S3 from the doctor blade 73 are placed in the direction of rotation of the developing sleeve 65. These magnetic poles affect magnetic force against the two component developer on each sleeve at a designated position of the rotating direction, thus attracting and supporting the two component developer at the surface of the developing sleeve 65 and from mixing section 66 as well to form a magnetic brush along the magnetic lines on the sleeve 65 surface.
The magnetic brush accompanies the rotation of the developing sleeve 65 and is regulated to an appropriate layer thickness by passing the doctor blade 73 and is conveyed to a position facing the development area of the facing photoreceptor 40. The brush supports development by being transferred above the electrostatic latent image by the electric potential difference between the electrostatic latent image of the photoreceptor 40 and the developing bias applied to the developing sleeve 65. The brush then returns to within the developing section 67 accompanying the rotation of the developing sleeve 65 and after separating from the sleeve 65 surface by the effect of magnetic field repulsion between magnetic poles of the magnet roller 72 returns to the mixing section 66. Within the mixing section 66, based upon the detection results of the toner concentration sensor 71, an appropriate quantity of toner is supplied to the two component developer. Note that for the developing apparatus 61, in place of the two component developer a one component developer with no magnetic carrier may be used.
The photoreceptor cleaning apparatus 63 employs a method of pressing a polyurethane rubber cleaning blade 75 to the photoreceptor 40, though other methods can be used. To enhance cleaning, according to this example, a contact conductive fur brush 76 that contacts the outer surface of photoreceptor 40 employs a cleaning apparatus 63 that rotates freely according to the direction of the arrow shown in
The photoreceptor cleaning apparatus 63 in this structure removes residual toner on the photoreceptor 40 by rotating the fur brush 76 in a clockwise direction facing the photoreceptor 40. Bonded toner on the fur brush 76 is removed by the electric field roller 77 applied with a bias by contacting with the fur brush 76 rotating in a clockwise direction. Bonded toner on the electric field roller 77 is cleaned by the scraper 78. Toner retrieved by the photoreceptor cleaning apparatus 63 is gathered to one side of photoreceptor cleaning apparatus 63 by a retrieval screw 79, and is returned to the developing apparatus 61 by a toner recycle apparatus 80 and reused. The electrostatic eliminating apparatus 64 is comprised of an electrostatic eliminating lamp, and such, and removes surface electric potential of the photoreceptor 40 by irradiating light. After the surface of the photoreceptor 40 is neutralized, the electrical charging apparatus 60 electrically charges the surface uniformly and the light writing process is executed.
Shown in
The surface of the intermediate transfer belt 10 that has passed the second stage transfer nip then nears the position of the support roller 15. In this position the surface (upper side of the loop) of the intermediate transfer belt 10 is sandwiched between and contacts a belt cleaning apparatus 17 and the backside contacts the support roller 15. After the belt cleaning apparatus 17 removes bonded residual transfer toner from the surface, the transfer belt 10 proceeds to first stage transfer nips of K, Y, M, C sequentially and the superposing of the four colors is executed.
A belt cleaning apparatus 17 has two fur brushes 90 and 91. By contacting the intermediate transfer belt 10 and rotating, with multiple raised fur pieces implanted counter to the movement direction of the intermediate transfer belt 10, mechanical removal of residual transfer toner on the belt 10 is achieved. Also, by applying a cleaning bias with a power unit not shown in the figures by electrostatic means, attraction and retrieval of residual transfer toner is achieved.
In contact with the fur brushes 90 and 91 there are metal rollers 92 and 93, respectively which rotate along with or in the opposite direction. Of the two metal rollers 92 and 93, the metal roller 92 is positioned on the upstream side of the rotating direction of intermediate transfer belt 10 and has applied a negative polarity voltage by a power unit 94. The metal roller 93 is located on the downstream side and has applied a positive polarity voltage by a power unit 95. The metal rollers 92 and 93 contact the tips of blades 96 and 97, respectively. According to this structure, intermediate transfer belt 10 rotates, in the direction of the arrow shown in
The fur brush 90, in this way, removes toner on the intermediate transfer belt 10 although there are still lots of toner particles left. The leftover toner is given a negative polarity due to the negative polarity bias applied to the fur brush 90. This is thought to be due to charge injection or discharge. By cleaning with the fur brush 91 on the downstream side, this time with a positive polarity bias applied, the leftover toner is removed. Removed toner is transferred from the fur brush 91 to the metal roller 93 by an electric potential difference and is scraped off by the blade 97. Toner scraped off by the blades 96 and 97 is retrieved into a tank not shown in the figures.
After being cleaned by the fur brush 91, the surface of the intermediate transfer belt 10 is almost free of toner but a little bit of toner is left. Toner left on intermediate transfer belt 10 is, as mentioned above, given a positive polarity due to the positive polarity bias applied to the fur brush 91. Then the toner is transferred to photoreceptors 40 K, Y, M, C due to the transfer field applied at the first stage transfer position and is retrieved by the photoreceptor cleaning apparatuses 63.
The paper stop roller pair 49 is generally used grounded but a bias can be applied to remove paper fragments of the transfer papers that are sent to paper stop roller pair 49.
Below the second stage transfer apparatus 22 and the fixation apparatus 25 there is a transfer paper inversion apparatus 28 (refer to
Facing the intermediate transfer belt 10 are light sensors 81 and 82 around the support roller 14. As shown in
In the toner image concentration adjustment, to set the reflected light quantity from the intermediate transfer belt 10 as a reference value, a radiant intensity adjustment (Adjustment value R) is made which adjusts the conducting current value of the LEDs of the light sensors 81 and 82, the development potential versus the toner image concentration characteristic line is adjusted to the reference characteristic line by a developing bias adjustment (Adjustment value Q), and exposure adjustment (Adjustment value P) is executed. Development potential is the difference between the photoreceptor surface electric potential and the development roller electric potential. Radiant intensity adjustment is the adjustment of the received-light quantity of light sensors 81 and 82 to a target received-light quantity shown in
Toner concentration adjustment is comprised of the development bias adjustment (Adjustment value Q) and the exposure adjustment (Adjustment value P). A five-grade concentration test pattern (toner image: for example,
Shown in
A light source with a wavelength of around 840 nm of near-infrared or infrared is used for the LED light source of the light sensors 81 and 82 to minimize the influence of coloring agents which are contained in each color toner. Though as shown in
Scanner 300, which optically reads the document, forms the document image on a CCD 36 via scanning the document illumination light source onto the document. The document image or the reflection light of light irradiated onto the document is converted by the CCD 36 with photoelectric conversion forming the R, G, B image signals. CCD 36 is a three line color CCD which creates the R, G, B image signals EVENch (even pixel channel)/ODDch (odd pixel channel), and inputs to the analog ASIC (Application Specific IC) of the SBU (Sensor board unit). SBU 511 is equipped with an analog ASIC, CCD, and a circuit that generates activation timing of the analog ASIC. The output of the CCD 36 is sample held by the sample hold circuit within the analog ASIC, converted to A/D, then converted to R, G, B image data. Then shading adjustment is conducted and is delivered at the output I/F (interface) 520 via the image data bus to an image data processing unit IPP.
IPP is the programmable computing process part for image processing, which conducts separate creation (assessment whether image is a text domain or photo domain: image zone separation), real-time threshold/surface removal, scanner-gamma conversion, filter, color correction, variable power, image fabrication, printer-gamma conversion, and gradation processes. Image data that are transferred from the SBU 511 to the IPP, due to signal degradation (signal degradation of scanner systems) that accompanies quantization of optical and digital signals, are adjusted at IPP and written in the frame memory 521.
System controller 501 is equipped with a ROM to store control programs of the CPU and system controller board, a RAM for task memory used by the CPU, an internalized lithium battery, an NV-RAM for the backup of the RAM and an internalized clock, a system bus control for the system controller board, a frame memory control, an ASIC for the control of peripherals around the CPU such as FIFO control and interface circuits for such.
System controller 501 controls the entire system and has functions of multiple applications such as a scanner application, a facsimile application, a printer application, and a copy application. Operations board 500 deciphers the input and displays the system setup and status on the display section of the operations board 500. Many units are connected to the PCI bus and image data and control commands are time-divisionally transferred with the image data bus/control command bus.
Communication control apparatus interface board 504 is a communication interface board for the communication control apparatus and the controller 501. Communications with the controller 501 are done by full duplex asynchronous serial communication. A communication control apparatus 522 is connected in a multi-drop connection in accordance with RS-485 interface standards. Communications with remote management apparatus 630 are conducted via a communication controller apparatus interface board 504.
A LAN interface board 505 is a communication interface board connected to the in-house LAN 600 (
The HDD 503 is an application database for housing system application programs and apparatus bias information of the printer and image formation process apparatus, and is used as an image database to store read-image or write-image data or in other words image data, and document data. Both physical and electronic interfaces comply with ATA/ATAP1-4 interface and are connected to the controller 501.
The operations board 500 is equipped with a CPU, a ROM, a RAM, a LCD, and an ASIC (LCDC) for the control of key inputs. Within the ROM is written the control program which reads inputs and controls display output of the operations board 500. The RAM is a task memory used by the CPU. Communications with the system controller 501 enable the user, via operation of the panel, to input system settings, to display setup contents and status to the user, and control the display and input.
The write-signal of each color, black (Bk), yellow (Y), cyan (C), magenta (M), outputted by the working memory of system controller 501 is inputted to the write-circuit of the Bk, Y, M, C, respectively of the LDs (Laser Diode) of the LDB (Laser Diode control Board). At the LD write-circuit LD current control (modulation control) is conducted and outputted by each LD.
An engine control 510 is a process controller that mainly controls image fabrication of image formation and is equipped with a CPU, an IPP that conducts image processing, a ROM with a built-in program to control copying and printout, a RAM to control the ROM, and a NV-RAM. The NV-RAM is equipped with a SRAM and memory which stores in EEPROM by detecting power off. Also, the I/O ASIC with a serial interface which conducts send-receive of signals with the CPU to control other components is an ASIC which controls nearby I/O (counter, fan, solenoid, motor, and such) implemented with an engine control board. The I/O control board 513 and the engine control board 510 are connected with a synchronous serial interface.
The I/O control board 513 is equipped with a sub CPU 517, which reads the detection signal of the temperature sensor, the electric potential sensor, the concentration sensor on the photoreceptor (P sensor) which is the toner quantity sensor and light sensors 81 and 82 which are the toner concentration sensors, and other various sensors, and conducts analog control, paper jamming detection which consults the detection signal of the paper sensor, and I/O control of the image forming apparatus including the paper conveyance control. An interface circuit 515 is the interface circuit with the various sensors and actuators (motor, clutch, and solenoid). The light sensors 81 and 82 are included in the various sensors 516.
A power apparatus PSU 514 is a unit which supplies power to control the image forming apparatus. Main power is supplied when the main SW is on (closed). From the main power is supplied the main AC to the AC control circuit 540, and by using AC control output rectified and leveled by the AC control circuit 540, the power apparatus PSU 514 supplies DC voltage necessary to each control board. The CPU of each control section operates with the constant voltage created by the power apparatus PSU.
The copying machine 601 is equipped with a data acquisition part to acquire various information items related to the status and phenomenon occurring within the structure components. The data acquisition part is comprised of, as shown in
In the copying machine 601, the data acquisition part comprised of the engine control 510, the I/O control 513, various sensors 516, the operations board 500, and such, at a specific timing detect the various statuses and creates status evaluation data based upon the detection data, and the engine control 510 adjusts each operations control parameter of the copying machine 601, and identifies or detects failure. The detection data, evaluation data, and control parameter values are stored in the NV-RAM of the engine control 510 as status data. Status data, herein set forth are any of the following: control parameter values that effect image creation characteristics, detection data of the status sensor, and evaluation data created from detection data. More specifically, status data include detection data, evaluation data, and control parameter values.
—Acquired Data—
Various data elements acquired by the data acquisition part of the copying machine 601 are the above-mentioned status data, input data, image-read data, and such. Details are as follows.
(a) Detection Data
An overview of detection data is as follows.
(a-1) Drive-Train Data
The developer (toner and carrier) characteristic within the apparatus influences the core of electro-photographic processes. Therefore is an important factor for system operation and output. The acquisition of developer information is of vital importance. The following items are examples of developer characteristics.
To detect these data elements from within the copying machine 601 individually is usually difficult. Therefore detection as a comprehensive characteristic of the developer is desirable. The comprehensive characteristics of the developer can be measured, for example, as follows.
Like the developer characteristics, photoreceptor characteristics are closely related to the function of electro-photography. Data for photoreceptor characteristics are film thickness of the photoreceptor, surface characteristics (friction coefficient, concavo-convexity) surface potential (before and after each process), surface energy, diffuse light, temperature, color, surface position (deflection), linear speed, potential decay speed, electrical resistance, electrostatic capacitance, and surface water content. Among these, those that can be detected within the copying machine are as follows.
Toner image formation by the electro-photographic method is conducted in the order of uniform electrical charging of the photoreceptor, latent image formation (image exposure) by laser light and such, development by toner (coloring particles) with electrical charge, transfer (for color, superposition is executed onto the recording medium which is the intermediate transfer body or final transfer component, or is executed onto the photoreceptor at the time of development) of toner image to the transfer component, and fixation of the toner image to the recording medium. The various information items acquired at each stage highly influence the output of the image and other systems. Acquisition of such information is important for the evaluation of system stability. Examples of electro-photographic process status data and their acquisition are as follows.
Also, methods to acquire the various statuses of the toner image are as follows.
It is effective to directly use the input-output parameter of the control section due to the action of the copying machine being determined by the control section.
(b-1) Image Formation Parameter
The following are examples of outputted parameters from the computing process of the control section for image formation.
The following information is acquired from image information received as direct data from the host computer or image information obtained from a document read by the document image scanner and image processed.
In the following are shown specific acquisition methods of various types of data referred to by the copying machine.
(1) Temperature Data
The copying machine is equipped with a resistance variation element that is used as a temperature sensor to acquire temperature information which is structurally simple with a simple principle and is ultra compact.
(2) Humidity Data
A humidity sensor which is compact is effective. The basic principle is that when water vapor is absorbed by the moisture sensitive ceramic, there is a decline in electrical resistance of the ceramic due to the increase of ionic conduction by absorbed water.
Moisture sensitive ceramics used are porous materials usually of alumina, apatite, or Zr02-Mgo series.
(3) Vibration Sensor
Vibration sensors are basically the same as sensors which measure barometric pressure and pressure and when considering the implementation to the system, a sensor using silicon which can be ultra-miniaturized is especially effective. Data are measured by measuring volume change between the movement of the oscillator formed upon the diaphragm of thin silicon and an electrode fixed facing the oscillator. It also can be measured by using a piezo-resistance effect of the Si diaphragm.
(4) Toner Concentration (All 4 Colors) Data in Development
To acquire this data, use conventionally well known methods for toner concentration sensors and detect the toner concentration of each color and convert to data. For example, according to Japanese Laid-Open Patent Application No. H6-289717, toner concentration detection is done by a sensing system which measures the change of magnetic permeability of the developer in the developing apparatus.
(5) Uniform Electric Charge Potential Data (All 4 Colors) of the Photoreceptor
To acquire this data use well known surface potential sensors which detect the surface potential of objects and detect the uniform electric charge potential of the photoreceptor 40 (K, Y, M, C) of each color.
(6) Electric Potential Data (All 4 Colors) After Photoreceptor Exposure
To acquire this data detect the surface potential of photoreceptor 40 (K, Y, M, C) after light writing in the same way as in (5) above.
(7) Coloring Area Rate Data (All 4 Colors)
Measure the coloring area rate of each color by the ratio of the accumulation value of pixels to be colored and the accumulation value of the entire pixels from the input image information.
(8) Development Toner Quantity Data (All 4 Colors)
Measure based upon the received light quantity signal from the reflective type photo-sensors 81 and 82 the concentration of the toner image of each color developed on the photoreceptor 40 (K, Y, M, C).
(9) Tilt of the Front End Position of the Paper
Detect both ends of the front of the conveyed transfer paper by establishing a light sensor pair somewhere on the feeding route from the paper feeding roller 42 of the paper feeding section 200 to the second stage transfer nip which is perpendicular to the conveying direction and detect both ends of the transfer paper.
(10) Paper Ejection Timing Data
Detect with a light sensor the passage of transfer paper between ejection roller pair (56 of
(11) Total Electric Current Data of Photoreceptor (All 4 Colors)
Measure electric current by establishing a electric current measurement part between the photoreceptor plate and grounding terminal and detect electric current running from the photoreceptor 40 (K, Y, M, C) to ground.
(12) Photoreceptor Drive Power (All 4 Colors)
Measure the consumed drive power (electric current×voltage) by using an ammeter or voltmeter when the drive source (motor) of the photoreceptor is running.
—Acquisition Time of Various Data Elements—
The above-mentioned various data elements (1)˜(12) are read by the I/O control 513 according to the instruction of the engine control 510 (CPU, hereinafter the same) at their respective timings. The engine control 510 takes read various data and adds the print number integrated value and stores the data in the designated status information database (DB) of the NV-RAM within the engine control 510, and based upon the various data identifies the status of each section of the copying machine 601 and adjusts the control parameter as is required and identifies failure. Status evaluation data created from the status determination, the adjusted value of the control parameter and, if failure has occurred, the content of the failure is stored in the status information database (DB).
Shown in
Next, the concentration test pattern marks (toner pattern: 83C1 and other shown in
This example adjusts development bias and exposure light quantity though the same results can be acquired by adjusting the electric charge potential or transfer electric current, or the adjustment of other process control values which contribute to image concentration.
This process control is performed with the objective to adjust, within normal limits, the variation of temperature-humidity of charged toner quantity or the variation of sensitivity of the photoreceptor though there are cases, when a specific failure or a prediction of a failure occurs, where the measurement value or the parameter based upon the measurement value changes. For example, after transfer and at the retrieval of residual toner left upon the photoreceptor, with the objective to sustain normal electrical charge exposure, blade cleaning methods of a urethane blade rubbing the surface of the photoreceptor are often used, and due to this structure the passage of toner under the blade occurs. The toner passes the electric charge exposure section and is retrieved at a high rate at development. Though due to electric charge loss or a change of shape, due to friction with the blade, the toner cannot be retrieved at development, and non-statically adhere to the transfer body irrespective of image section or non-image section and is transferred. Thus a miniscule trace of toner particles can be seen adhering to the non-image section though this is not enough to impair image quality.
In the long term, removability of the blade declines by the contact point with the photoreceptor becoming worn and there is a drastic increase in the amount of toner passing. When a large amount of residual toner passes the blade, the charging ability of the charging apparatus declines due to the contamination by the toner, the exposure part function also declines due to the toner, and the development part are unable to retrieve this large amount of toner, and finally there occurs an abnormal image with vertical streaks, and a image failure needing repair.
Before such a condition occurs there is a uniform increase in toner adherence quantity to the entire image support body though due to having no image degradation users do not notice at this stage. This condition is called “mild surface contamination” and is thought to be a predictive status of cleaner abnormality (cleaning failure). The existence of such toner, as shown in
Generally there is little difference between the toner and the environmental temporal variation range of the photoreceptor, and this condition is extremely difficult to identify from γ and segment×0 of a single color or the adjustment parameters Q and P based upon this, so that building an accurate precursor alarm is difficult. Conventional apparatus identifiers remain in the realm of identifying failure that has deviated from normal activity or the sending out of an alarm of failure, and the predicting failure at an early stage is difficult.
Shown in
After a failure prediction determination is given from the inference engine and an alarm is sent to the operator, the operator informs the copying machine user to confirm status and arranges repair parts for the maintenance of the corresponding copying machine with the parts management system. The arrangement for a service engineer is done by contacting the call desk operator. The service engineer is dispatched to the location of the corresponding copying machine, and conducts the exchange of parts, repair, and such. Afterward an operations report is entered into the parts management system.
—Status Data Storage—
Shown in
—Abnormal Occurrence Prediction Determination—
Shown in
At “Abnormal occurrence prediction determination” PAD, according to the calculated feature quantity within the target data creation component 633 of the inference engine of failure prediction determination, the management device 630 extracts, in a most recent to old order, a total of 16 points of status data R, Q, P within the 31 types of status data of the corresponding copying machine (S31) and for each status data value (R, Q, P) calculates the feature quantity (S32). In this example, the temporal distribution (change pattern) of the 16 points of status values is converted to an index value expressing feature. This conversion process is specified for each data value (R, Q, and P). Within the feature quantity as shown in
Shown in
The calculated feature quantity of development bias adjustment values Q(Y), Q(M), Q(C), and Q(Bk) shown in
These feature quantities are target data for abnormal occurrence prediction determination. The feature quantity of not only the difference value but regression value of signal change or the standard deviation value of the multiple data groups of the most recent section, average value, and maximum value can be acquired with various calculation methods. Many feature extraction methods of such chronological signals are proposed, such as the ARIMA model, and may be used when appropriate.
Prediction of abnormal occurrence is thought to be possible by detecting peculiar unstable movement, in various forms, of signals which when normal are stable. One should select the appropriate feature quantity extraction method from this viewpoint. The indicator of time passage is not confined to the print number integrated value but also can be operation time integrated value or actual time passage value. The inclusion of a feature quantity with no time calculation or the status data themselves to target data of abnormal occurrence prediction determination does not detract merit from the embodiment of the invention. For example, the addition of the detected status value to the target data is possible. More specifically, target data of abnormal occurrence prediction determination are feature quantity created based upon status data and/or status data or both.
Referring again to
Shown in
Next the second stage determination method conducts a majority logic calculation with the weighted tendency determination results (S73). More specifically, the calculation adds the weight α, a negative (−) for tendency determination result “1” (YES abnormal occurrence tendency) and a positive (+) for tendency determination result “0” (NO abnormal occurrence tendency), addressed to each target data type of the prediction determination reference data table (
Shown in
Next the second stage determination method conducts a majority logic calculation with the weighted tendency determination results (S83). More specifically, the calculation adds the weight α (α1˜α10), a negative (−) for tendency determination result “1” (YES abnormal occurrence tendency) and a positive (+) for tendency determination result “0” (NO abnormal occurrence tendency), addressed to each target data type of the aforementioned prediction determination reference data table. Polarity data are represented as sgn. Addition value is represented as prediction indication value Fbc. Prediction indication value Fbc is stored in the prediction indication value table 1 addressed to abnormal occurrence prediction determination 1 (S84). An example of prediction indication value Fbc is shown at the bottom of
Referring again to
Referring again to
The engine control 510 of the copying machine 601, after there is an initialization input of completion of repair with the operations board 500, executes an exception process to avoid mis-determination of the abnormal occurrence prediction status due to excessive change of the target data after repair. According to this example, the exception process adds to the status data the repair complete element and writes to the status database (NV-RAM). The target data creation 633 of the management device 630, in step S31 where status data of 16 points are extracted, when revised data are found, does not execute tendency determination for each of the target data creation and prediction determination numbers 1˜n of step 32 related to corresponding status data, and designates a NO abnormal occurrence (“0”) to the tendency determination data of corresponding status data.
When the engine control 510 of the copying machine 601 recognizes abnormal occurrence in collected status data, the abnormal occurrence is displayed upon the display of the operations board 500 and at the same time the status data set of the time of occurrence, abnormality content (abnormality configuration), and the occurrence of abnormality is sent to the management device 630. The data collection and sending component 631 of the management device 630 stores the received information in the corresponding copying machine's status database and displays the information pertaining to abnormality on the display 640. There is a possibility this “abnormality” may be a non-target of the prediction detection of the abnormal occurrence prediction determination PAD and there may be an insufficient adjustment to the reference value or weight value. To compensate for this there is a prediction determination reference table update function (program) which enables the change of each reference value and each weight value of the constant data table within the management device 630 by an operator with administrator rights inputting, to computer PCa, revised adjustments.
The management device 630, by communication and cooperation with the operator with administrator rights, based upon status data collected from the multiple copying machines of the same type in the status database 632, to detect (identify) an abnormal occurrence prediction notification from a copying machine in which the management device 630 has not identified prediction of abnormality, creates (revise) the tendency determination (first stage determination) of the failure prediction determination (1˜n) which is the most accessible for prediction determination of corresponding abnormal occurrence and the reference value b and weight α of prediction determination (second stage determination), and then creates a prediction determination reference table including the foregoing and rewrites the corresponding prediction determination reference table of the constant database. In doing so the management device 630 conducts abnormal occurrence determination prediction for the copying machine which reports abnormality there after.
According to the above-mentioned “abnormal occurrence prediction determination” PAD, the 3 values which define the determination process are reference value b of the stamp determination of each target data, the weight sign (sgn) when it is larger than the reference value, and weight α. A majority determination with weight is a very small process with little work load due to being a calculation of Σs g n×α, where a large weight value α is given to highly influential target data.
In the following is an explanation of the creation of the prediction determination reference table (
Q(Y), Q(M), Q(C), and Q(K) shown in
Target data creation (including feature quantity calculation) was conducted with the steps (S32, S51). From the created 31 target data types, a chart wherein the few types of created target data types or all target data j for “abnormal occurrence prediction determination” (1 of 1˜n) is plotted with the horizontal axis being the print number integrated value. Then with visual observation abnormal occurrence prediction term estimation was conducted and a label −1 (abnormal occurrence prediction term) was applied to the terms that correspond to the abnormal occurrence prediction term and to the other parts a label 1 (normal term) was applied. Then conduct boosting for j times to learn and b1˜bj, sgn1˜sgnj, and α1˜αj was determined. Corresponding b1˜bj and α1˜αj are designated as the prediction determination reference table. Shown in
The hardware of the management system in example 2 is the same as example 1. In example 2, the management device 630 and the operator conduct cooperative operation via computer PCa and based upon part of or all of the 31 types of target data created in example 1, to detect prediction determination for an anomaly not identified until reported by the copying machine, from the status data collected from identical copying machines stored in the status database 632, a tendency determination (first stage determination) and a prediction determination (second stage determination) using reference value b and weight α and in an embodiment like the above prediction determination reference table is created. Then with the added prediction determination reference table and target data which use the corresponding added prediction determination reference tables for abnormal occurrence tendency determination (first stage determination), weight attached majority determination prediction determination (second stage determination), and display response of prediction determination results, additional abnormal occurrence prediction determination results are created and are built-in to the inference engine of the failure prediction determination. Afterward when the inference engine creates target data groups, abnormal occurrence prediction determination 1˜n of example 1 and additional abnormal occurrence prediction determination are executed serially. The other structures and functions of example 2 are identical to the example 1.
The hardware of the management system in example 3 is the same as the above-mentioned example 1. In example 3, the management device 630 creates an abnormal occurrence prediction determination which refers to not only the status data to create the 31 types of target data but other status data as well. More specifically, the management device 630 and the operator conduct cooperative operations via computer PCa and based upon status data of identical copying machines collected within status database 632, other than part of or all of the 31 types of target data mentioned in example 1, additional types of target data based upon status data other than that of the 31 types are calculated. To identify prediction of anomaly not identified until reported by the copying machine with a new target data group, reference value b, and weight α, a prediction determination reference table like the above embodiment was created. With this additional prediction determination reference table and target data which use the corresponding added prediction determination reference tables for abnormal occurrence tendency determination (first stage determination)and weight attached majority determination prediction determination (second stage determination) the response of prediction determination results is displayed and additional abnormal occurrence prediction determination types are created and are built-in to the inference engine of the failure prediction determination. Also at “target data creation” S32 of existing “Abnormal occurrence prediction determination” PAD target data related to added status data from the added abnormal occurrence prediction determination are calculated and rewritten.
After adding additional abnormal occurrence prediction determination in like manner, when calculating the target data groups (S32), the abnormal occurrence prediction determination 1˜n of example 1 and the added abnormal occurrence prediction determination are executed serially. The other structures and functions of example 3 are identical to example 1.
The hardware of the management system in example 4 is the same as example 1. The management device 630 in example 4 identifies system error of the management system which includes multiple copying machines and corresponding management device 630.
Shown in
In the above-mentioned examples, a pair of failure prediction determination inference engines (target data creation 633, target data memory 634, abnormal occurrence prediction determination component 635, and constant database 636) executes multiple abnormal occurrence prediction determination 1˜n serially. Concurrent (simultaneous/parallel) execution of n sets of failure prediction determination inference engines is possible with the placement of more n sets for abnormal occurrence prediction determination 1˜n or, if necessary, the placement of more multiple sets of failure prediction determination inference engines.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teachings herein set forth.
This patent application is based on Japanese Priority Patent Application No. 2007-203206 filed on Aug. 3, 2007, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-203206 | Aug 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7110917 | Matsuura et al. | Sep 2006 | B2 |
7184674 | Satoh et al. | Feb 2007 | B2 |
7203431 | Shoji et al. | Apr 2007 | B2 |
7327962 | Shoji et al. | Feb 2008 | B2 |
20040252324 | Ohta | Dec 2004 | A1 |
20050002054 | Shoji et al. | Jan 2005 | A1 |
20050063714 | Kinoshita et al. | Mar 2005 | A1 |
20050100374 | Satoh et al. | May 2005 | A1 |
20050154562 | Matsuura et al. | Jul 2005 | A1 |
20050157327 | Shoji et al. | Jul 2005 | A1 |
20050281596 | Nakagawa et al. | Dec 2005 | A1 |
20050286916 | Nakazato et al. | Dec 2005 | A1 |
20060182451 | Shoji et al. | Aug 2006 | A1 |
20060294252 | Shoji et al. | Dec 2006 | A1 |
20070127934 | Shoji et al. | Jun 2007 | A1 |
20070258723 | Nakazato et al. | Nov 2007 | A1 |
20080068639 | Satoh et al. | Mar 2008 | A1 |
20080075476 | Nakazato et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
05-100517 | Apr 1993 | JP |
05-164800 | Jun 1993 | JP |
05-281809 | Oct 1993 | JP |
05-323740 | Dec 1993 | JP |
06-289717 | Oct 1994 | JP |
07-036323 | Feb 1995 | JP |
07-104616 | Apr 1995 | JP |
07-104619 | Apr 1995 | JP |
08-137344 | May 1996 | JP |
2621879 | Apr 1997 | JP |
11-296027 | Oct 1999 | JP |
2000-089623 | Mar 2000 | JP |
2000-270141 | Sep 2000 | JP |
2001-175328 | Jun 2001 | JP |
2001-356655 | Dec 2001 | JP |
2003-215986 | Jul 2003 | JP |
2004-219617 | Aug 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090034990 A1 | Feb 2009 | US |