The present invention relates generally to networking of resource nodes and, more particularly, to the management of data flows for networked resources.
The Internet has evolved to include a “physical internet” including not only computers, but devices, other objects and environments with embedded data-, computation-, sensor-, location-, and communication-interaction capabilities. This potential evolution is often referred to using terminology such as “The Internet of Things”, “Machine to Machine Communications”, “Ubiquitous Computing”, “Pervasive Computing” or “Ambient Intelligence”. It has been estimated that every person is surrounded by somewhere between 1000 and 5000 intelligent objects and a global Internet of Things may in a few years consist of 50 to 100,000 billion objects whose location and status will have to be continuously monitored or updated. While the concept of such an Internet of Things may seem simple, its implementation will be far more difficult.
For example, many of today's products which link or connect networked devices are ad-hoc solutions that enable specific limited functionalities or services. Examples include file sharing and remote access software that run on a device or computer and enables remote control and/or makes data or service accessible within a Wide Area Network (WAN), Wireless (W) LAN and/or PAN. Examples of such products include Sailing Clicker, Simplify Media, Apple's Airtunes and iTunes Remote for the iPhone, etc. Another category of relevant products includes devices that collect and transmit data, such as products like the wireless pedometer “Nike+Apple” that measure parameters associated with a person's running, and Botanicalls, which is a sensor that communicates the level of humidity of the soil in a flowerpot to the web.
However, none of today's solutions for networked object interconnectivity provide holistic and unified interaction with a plurality of networked objects, environments, media and/or services based on the interrelations between them. Consequently there is no solution today that provides an intuitive way of understanding the contexts, relationships, ownership, compatibility, history, metadata, status, and dependencies of large numbers of objects that also may or may not be physically present. In addition there is no solution today that successfully supports the users' weak conceptual understanding of digital networks as such, i.e. the mental model of possible interactions and simultaneous interconnectivities within a digital network consisting of numerous devices and/or services.
Accordingly, it would be desirable to provide systems, methods, devices and software associated with the management and interconnectivity of networked resource nodes which overcomes the afore-described challenges by addressing, among other things, management of their associations, data flows, and responses to triggering events.
The following example embodiments provide a number of advantages and benefits relative to existing resource management software, devices, systems and methods including, for example, using logical clustering of networked resource nodes to facilitate management of data flows between users and the resource nodes, as well as between the resource nodes themselves. It will be appreciated by those skilled in the art, however, that the claims are not limited to those embodiments which produce any or all of these advantages or benefits and that other advantages and benefits may be realized depending upon the particular implementation.
An example embodiment is directed to a method by a resource management node for managing resource nodes connected to a network. The method includes establishing clusters of the resource nodes and associated data flows that are permitted between the resource nodes within each cluster and a user equipment node through the network, and associated rules that control the data flows. A first one of the rules is determined to have been satisfied for controlling a data flow for a first resource node in a first cluster. Information is communicated to the user equipment node that causes the user equipment node to prioritize handling of the data flow for the first resource node and other resource nodes in the first cluster in response to the first rule being satisfied.
In some further embodiments, complementary functionality provided by particular ones of the resource nodes is identified. The first cluster is established to contain the particular ones of the resource nodes having the identified complementary functionality. Identification of the complementary functionality can include determining spatial proximity of the particular ones of the resource nodes to the first resource node controlled by the first rules being satisfied, and establishing the first cluster to contain selected ones of the particular resource nodes having relative spatial proximity that satisfies one or more defined rules.
By establishing clusters of resource nodes having complementary functionality, example embodiments can provide more advanced and/or useful functionality to a user and can facilitate the user's understanding and management of the functionality. Moreover, resources nodes within a same cluster may be allowed to establish data flows therebetween without needing pre-authorization from a user, and/or may be allowed to push information or otherwise communicate through a data flow to a user equipment node in a manner not allowed by resource nodes outside that cluster.
Another example embodiment is directed to a resource management node that manages a plurality of resource nodes connected to a network. The resource management node includes an interaction flow database and an interaction execution engine. The interaction flow database contains information defining clusters of the resource nodes and associated data flows that are permitted between the resource nodes within each cluster and a user equipment node through the network, and defining associated rules that control the data flows. The interaction execution engine is configured to determine that a first one of the rules has been satisfied for controlling a data flow for a first resource node in a first cluster. The interaction execution engine is further configured to communicate information to the user equipment node that causes the user equipment node to prioritize handling of the data flow for the first resource node and other resource nodes in the first cluster in response to the first rule being satisfied.
Another example embodiment is directed to a user equipment node that controls a resource management node that manages a plurality of resources nodes connected to a network. The user equipment node includes a network interface configured to communicate with the resource management node through the network, and a controller circuit. The controller circuit receives information from the resource management node that identifies a resource node for which a defined rule has been satisfied, identifies other resources nodes that are in a same defined cluster as the resource node, and prioritizes handling of a data flow for the resource node and the identified other resource nodes in the same defined cluster.
Other methods, resource management nodes, and user equipment nodes according to embodiments of the invention will be or become apparent to one with skill in the art upon review of the following drawings and detailed description. It is intended that all such additional methods, resource management nodes, and user equipment nodes be included within this description, be within the scope of the present invention, and be protected by the accompanying claims. Moreover, it is intended that all embodiments disclosed herein can be implemented separately or combined in any way and/or combination.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
a)-7(c) show user interfaces associated with other example embodiments;
The following detailed description of the example embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
According to example embodiments, systems, methods, devices and software (computer programs) for management of, and interaction with, networked objects are based on social mapping principles. Such example embodiments provide for holistic management of a plurality of networked objects including, for example, electronic devices, sensors, computers, services and users. Moreover, example embodiments provide a presentation layer where each networked object is represented by a unique and identifiable profile that contains information about each object's system characteristics. By making the relationship between networked objects, as well as relationships between networked objects and users, analogous to, e.g., social mapping principles like “friendship” (i.e. a notion of trust or ownership relationship and access control), example embodiments make objects' relations intuitive to understand for the users. Example embodiments utilize a recognizable resemblance to a social network in order to enable users to form a holistic mental model of potentially large numbers of networked nodes with simultaneous interconnections and interrelations with each other.
Prior to discussing detailed signaling mechanisms which facilitate such networks of objects according to example embodiments, a high level architectural view of the system followed by several examples will be described with respect to
The system 12 which manages the networked objects 10 can, for example, be implemented, at least in part, as server-based software. Persons that are using the system 12, i.e., the users 16, are represented and identified as entities in the system 12 by unique user profiles in the system. The networked objects 10 can also be represented and identified in the system 12 by unique profiles. Networked objects 10 include, but are not limited to: consumer electronics, digitally tagged objects, computer devices, mobiles, sensors, buildings, vehicles or even companies, brands, services and physical locations. Both the profiles that represent users 16 and network objects 10 in the system 12 are jointly referred to herein as system entity profiles 20.
Data associated with the plurality of networked objects 10 and users 16 is received by the system 12. The system 12 creates system entity profiles 20 for each networked object 10 and user 16. The system entity profiles 20 may include, but are not limited to, information about name, technical specifications, manufacturer, capability, location, history and other metadata associated with the respective networked object 10 or user 16. According to example embodiments it is also possible to aggregate multiple networked objects under a common profile, i.e., not all objects necessarily have their own individually unique IDs or system entity profiles 20 in the system. For example, if a user connects 20 location sensors at home this group of location sensors may be identified in the system as one home location sensor. This aggregation can be performed, for example, at the GW to the system 12 or in the backend system.
The system 12 also includes a relation management function 22 which coordinates the interactions between the networked objects 10 by applying social management principles, e.g., using the afore-described friendship analog. The system 12 issues queries, described in more detail below, in order to establish relationships between system entities 10 and 16 by, for example, sending a system entity's profile 20 to a potentially relevant system entity based on the profile data and network access credentials of the receiving system entity. A relationship is established by the relation management function 22 based on the confirmation from the user(s) 16 or the system entity itself, i.e. multiple system entities can establish relationships with a single system entity. System entities can share temporal and permanent relationships with other system entities. Many separated and simultaneous network sites can exist, and the information and communication can be, according to example embodiments, limited to a specific group of system entities defined by their relationship to each other. There can also be temporal or permanent connections between system entities belonging to different network sites.
The semantics function 24 includes functionality that allows, e.g., device manufacturers, to establish devices with a brand-dependent semantic interaction language where applicable. For example, a Sony TV could communicate in ‘Sony language’ (e.g. ‘like’ other Sony devices or content, relate to Sony PS games or Sony brand etc.) Other semantic layers are also possible, see e.g., the toaster or solar panel examples in the user interface screen of
The system 12 may interface with its objects 10 and users 16 through a set of Application Programming Interfaces (APIs) 26 and 28 in order to establish relationships using social mapping principles and also to exercise those relationships in performance of various task requests. Different user interaction paradigms can be used in order to manage the query/confirmation procedure. A user 16 could for example confirm a relationship query transmitted to it by the relation management function 22 of the system 12 by pressing a button in a graphical user interface, or both the query and confirmation of a relationship between two system entities could be done in one operation by physically bringing together the objects, using Near Field Communication (NFC) or a similar mechanism.
To better understand the usefulness of networking objects and users using social mapping principles according to an example embodiments, consider the following usage scenario involving remote control of a television. Assuming that both the user 16 and a TV (one of the networked objects 10) have already been set up with the system 12 and are therefore represented by system entities with corresponding system entity profiles 20, the user 16 can for example send a task request, for example via user interface 18 and API 26 to the TV's system entity (operative within system 12) requesting the system 12 to record a certain TV program. The system entity in system 12 associated with the TV will accept and acknowledge this instruction, even if the TV is in fact not capable of recording anything itself if it has a predetermined type of relationship, e.g., is friends with, another networked object 10 which can perform the requested service.
For example, suppose that the system entity of the TV has a friendship relationship with the system entity of a video recorder. In this case, the system entity of the TV can take responsibility for the request from the user 16 and relay the command to the system entity of the video recorder, which could, for example, be a representation of a physical device, a software functionality in the system, or a service provided via the network. The networked object video recorder 10 will actually execute the job, i.e., which is essentially ‘subcontracted’ to it by the TV's system entity in system 12, and the user 16 will receive a confirmation from the TV's system entity (again via API 26 and user interface 18) that the requested task will be performed, and later on that it has been successfully completed.
As another example, consider an example embodiment wherein a user buys a network attached storage device (NAS) for his or her home media repository. When the NAS is connected to the user's home LAN, the NAS is discovered via a predetermined procedure (e.g., Universal Plug and Play (UPnP), Bonjour, Digital Living Room Network Alliance (DLNA) or a similar mechanism) and a notification about the new device is delivered to the system 12. The system 12 creates a system entity profile 20 for the new device and sends a request to the user's application interface 18, e.g., on his or her mobile phone, to accept (or reject) the connection of the system entity of the new device. Once the user confirms that the NAS is permitted to join the group of system entities present in his or her ‘Social Web of Things’, other devices (such as media players) that are already part of this friendship related group and have the capabilities to establish a service relationship with this device, can use the NAS as media source.
Yet another example is illustrated in
The GW 30 is also connected to an outside network, e.g., the Internet 44, which enables it to communicate with an application server (AS) 46. This AS 46 can, for example, perform other functions of the system 12 described above if those functions are not performed in the GW 30. Alternatively, or additionally, AS 46 can perform other functions that are available to the owner/user associated with the network 47. Various external applications can also interface with the system via GW 30. For example, a metering application can be running on a user's device 50 to monitor and display the aggregated energy consumption associated with the devices at his or her home 51. Alternatively, or additionally, the user 16 can manage the devices 34, 36 and 38 via an application running on his or her mobile phone 52. More details associated with an example gateway 30 and AS 46 which can be used to implement the example embodiment of
A more detailed, yet purely illustrative user interface 18 which can, for example, operate on a mobile phone or other end user terminal device and permit a user 16 to interact with the system 12 is shown in
As mentioned previously, the system 12 according to example embodiments can establish different hierarchical levels of relationship between the system entities which the system 12 manages using social mapping principles so as to be more user friendly and to make it easier for a user 16 to relate to the managed network objects 10. For example, a top level relation could be “the owner”; a relational description in the system when a person owns an object. A networked object 10 could have several owners. In some cases, a system entity associated with one networked object 10 or user 16 (i.e., a device or a persona) may need to have administrative rights, and be in control of access or use of, another networked object 10, even if the system entity is not the owner of that networked object. In this case, example embodiments provide a relation designation referred to herein as “best friend”, i.e., someone that is closer, has better access and more privileges than the level below; i.e., “friends”. Networked objects may also be present in a system which do not have any of these preferred relationships with the users or other networked objects and are herein referred to as “strangers”. Moreover, it will be appreciated that although three different levels of preferred relationships for networked objects are described above, that different implementations of these example embodiments may use more or fewer such levels to implement social mapping principles for networked object management. A summary of example relational descriptors and their associated functional characteristics is provided below in Table 1.
Relation management function 22 of system 12 establishes and manages these different levels of relationship between networked objects 10 and users 16. For example, networked objects 10 and users 16 (or networked objects 10 and other networked objects 10) which are designated as friends are interconnected and have reciprocal access to each other's information/data/functionality. Devices which are friends are set by the system 12 to help each other, execute requested tasks for each other and inform each other about their status, but according to example embodiments they cannot administer each other. A ‘friend’ relation can have a temporal quality (e.g., rental car, hotel room, etc.) or may be permanent. The social mapping paradigm described above can be further extended to include additional levels which are easily distinguished by users, for example, ‘friends of friends’ or peripheral ‘acquaintances’. Networked devices which have this latter relationship relative to other devices or users are not, according to some example embodiments, directly connected with those other devices or users, but could, for example, be present in the form of their functionality or service they provide. The value of such relations as they are used in systems and methods which manage networked objects using social mapping principles according to example embodiments is explained in more detail below.
Any system entity associated with system 12 can be aware of functionality provided by networked objects 10 with whom it has a predetermined relationship or level of friendship, e.g., the functionality of networked objects 10 which is managed by that system entity's best friends' friends. Consider the previously described example with the TV and the video recorder (e.g., VCR), in a scenario where the TV relays the task to the VCR, but the VCR for some reason was unavailable or incapable of executing the requested task (e.g., recording a TV program). In this case, the TV (or more precisely the system entity in system 12 which corresponds to the TV) may be aware of other options for performing the requested task, e.g., other networked nodes that have the needed capability but with which it may or may not have a direct friend relationship. If those other options are not directly available to the TV, it may be possible that such functionality could be made available to the TV utilizing the friendship relations of others to ask for a specific favor. For example, if the TV's owner/best friend (e.g., user/human 16 or networked object 10) has a friend that is connected to a system entity that can provide the functionality needed, the system 12 can send a message to that system entity requesting that, e.g., the requested program be recorded and stored.
To develop the latter example scenario further, suppose that the TV (networked object 10) and/or its corresponding system entity in system 12 is aware that a friend (i.e., a person, in another household) of its owner (and/or best friend) have the needed functionality in his or her network. Then, the TV could be set to ask its owner if it is permitted to contact the owner's friend to ask for the needed favor (e.g., recording and storing a specific TV program). If the TV's owner's friend agrees to this, perhaps even based on predetermined criteria like remaining/maximum storage space and time, a device that is able execute the requested functionality could make this functionality available to the TV. Moreover, even if the TV in network A is not a friend of the recording device in network B (e.g., these two networked objects may not even ‘see’ each other through the network, but instead only transmit/request signals associated with the favor that is requested/provided) it may still be able to relay the task of recording of the TV program to the recording device in network B, possibly upon authorization from a system entity having a sufficiently high friendship relation with that recording device.
In order to provide the underlying signaling, logic and lower level architecture needed to accomplish these various scenarios which use social mapping principles applied to managed networked objects, a personal networking (PN) architecture can be used as will now be described with respect to
Therein, the cluster layer 80 is the lowest layer, where services are not under control of the PN system according to this example embodiment. A PNE Cluster, e.g., cluster 82, includes a set of devices and a PNE Cluster Gateway (e.g., as shown in
Moving up in the hierarchy of layers shown in
Services from different PNs may form an overlay service network called a PN federation 88. A PN federation 88 facilitates sharing of devices and services among multiple PNs 86, while privacy and security can be maintained across the whole PN federation 88. Thus, the PN Federation Layer 89 provides a mechanism for grouping PN services and service requesters under a single federation policy. Each PN 86 taking part in a PN Federation 88 can have its own policies to control what devices and services in the PN are made available to the other PNs in the PN Federation. In other words the set of devices and services available in a PN Federation is not always equal to the set of all devices and services in the participating PNs.
Regarding the identities of the various entities described above with respect to
As seen in
More specifically, a context manager 110 is provided in the PN AS 46 (and counterpart context user agent 112 in the gateway 30). According to example embodiments, there are two approaches to process context information. One is to store the information in the original format provided by each device standard and to require that any context consumers understand this format. The alternative is to store the context information using a unified model. The latter has an advantage in that it enables the context manager 110 to generate comprehensive context information based on the elementary information from different types of devices such as DLNA devices 124, sensor/actuator devices 126, and CAN devices 128, while the former enables utilization of existing standards as much as possible. In either implementation, context management implies interacting with database-backed systems. Thus, according to one example embodiment, the context management system 110, 112 contains the following databases:
1. A device capability database (e.g., defining what type of media a PS3 can handle or which media formats and streaming protocols are supported by a iPhone 3.0). This database typically needs to be manually populated primarily because it is difficult to automatically derive this information, the database typically only needs to be created once, and typically can be created by the manufacturer (e.g., referenced by the device, in the same way as UAProf).
2. A service required capabilities database which describes what a service would require to be meaningfully consumed. This database typically is also created only once, by the service provider (or a proxy for the service provider, like the operator).
3. A database or list indicating which devices and user-provided services are available in particular user situations, also known as the “personal network” (this data structure can typically be populated automatically, e.g., via a discovery process, at least in the DLNA-case) and to which of the device types and situational parameters those services match. This data structure may be updated seldomly (e.g., when a device is “paired” or “discovered”) and can be created by the gateway 30.
4. A database or list indicating what the other parameters of the situation are, e.g., sensor readings which are semi-persistent, such as the location. This data structure can, for example, be updated several times of day and can be created by the gateway 30 or by the operator and attached to the database representation (in the case of location, for instance).
5. A database, list or other data structure indicating the current status of a particular device or personal network (e.g., if the PN has the same constraints throughout, and can be represented by the PNE Cluster GW). Current bandwidth and other situational parameters, such as ambient temperature, light level, physical orientation, etc. can be stored in this data structure which will get updated relatively often, e.g., by the gateway 30.
This data enables the gateway 30 and/or the PN AS 46 according to example embodiments to intelligently adapt service provision as described above in the example service request scenarios which involve “friend” devices or, more generally, task requests which involve networked objects having at least a predetermined relationship level in a given hierarchical implementation of relationship levels. Note that not all of this information is necessary to every application or service request. Thus, the application of service which needs the information can query the databases containing this information (which may or may not be present at the same location, e.g., in the same operator database). Alternatively, there can be a proxy provided for the information which is queried. The latter approach has several advantages, for instance the ability to integrate with existing systems (e.g. XDMS) very easily; and the user can determine a policy for what is delivered to whom. The query itself can take various forms, for instance, a SPARQL or XQUERY query; a web services document submitted to a URL (REST or SOAP-wise), an ISC request, etc.
In addition to context management in support of networked object management employing social mapping principles, various functions in support of service management are also shown in
Hence, the Service Management function in the PN architecture of the example embodiment of
Each PNE cluster 92 has a (and, according to some example embodiments, only one) PNE Cluster Gateway 30 which collects information from the devices 10 in the cluster, such as statuses, service information and event occurrences, and forwards this information to the Context Management function. The Service Management function receives requests for services provided by the devices in the cluster or the PNE cluster gateway itself, dispatches the requests and collects the results to be returned to the Service Requesters 122.
Using the architecture described above with respect to
Starting with
One of the programs that may be stored in the storage/memory 704 is a specific program 706. As previously described, the specific program 706 may be a client application which interacts with the system 12 to, for example, receive and authorize friend requests, send task requests and receive task results, or display information about networked objects 10 with which the user has a friend, best friend or owner relationship. The program 706 and associated features may be implemented in software and/or firmware operable by way of the processor 702. The program storage/memory 704 may also be used to store data 708, such as the various authentication rules, or other data associated with the present example embodiments. In one example embodiment, the programs 706 and data 708 are stored in non-volatile electrically-erasable, programmable ROM (EEPROM), flash ROM, etc. so that the information is not lost upon power down of the mobile terminal 700.
The processor 702 may also be coupled to user interface 710 elements associated with the mobile terminal. The user interface 710 of the mobile terminal may include, for example, a display 712 such as a liquid crystal display, a keypad 714, speaker 716, and a microphone 718. These and other user interface components are coupled to the processor 702 as is known in the art. The keypad 714 may include alpha-numeric keys for performing a variety of functions, including dialing numbers and executing operations assigned to one or more keys. Alternatively, other user interface mechanisms may be employed, such as voice commands, switches, touch pad/screen, graphical user interface using a pointing device, trackball, joystick, or any other user interface mechanism.
The mobile computing arrangement 700 may also include a digital signal processor (DSP) 720. The DSP 720 may perform a variety of functions, including analog-to-digital (A/D) conversion, digital-to-analog (D/A) conversion, speech coding/decoding, encryption/decryption, error detection and correction, bit stream translation, filtering, etc. The transceiver 722, generally coupled to an antenna 724, may transmit and receive the radio signals associated with a wireless device.
The mobile computing arrangement 700 of
An example of a representative computing system capable of carrying out operations in accordance with the servers or gateways of the example embodiments is illustrated in
The example computing arrangement 600 suitable for performing the activities described in the example embodiments may include server 601, which may correspond to any of servers or gateways described herein, e.g., PN AS 46 or gateway 30. Such a server 601 may include a central processor (CPU) 602 coupled to a random access memory (RAM) 604 and to a read-only memory (ROM) 606. The ROM 606 may also be other types of storage media to store programs, such as programmable ROM (PROM), erasable PROM (EPROM), etc. The processor 602 may communicate with other internal and external components through input/output (I/O) circuitry 608 and bussing 610, to provide control signals and the like. The processor 602 carries out a variety of functions as is known in the art, as dictated by software and/or firmware instructions. For example, when computing arrangement 600 is operating as a PN Cluster gateway 30, the I/O circuitry 608 and bussing 610 can provide at least two network connections, i.e., one for the PN Cluster network, and one for the wide-area network.
The server 601 may also include one or more data storage devices, including hard and floppy disk drives 612, CD-ROM drives 614, and other hardware capable of reading and/or storing information such as DVD, etc. In one embodiment, software for carrying out the above discussed steps, e.g., to establish friend relations between networked objects, may be stored and distributed on a CD-ROM 616, diskette 618 or other form of media capable of portably storing information. These storage media may be inserted into, and read by, devices such as the CD-ROM drive 614, the disk drive 612, etc. The server 601 may be coupled to a display 620, which may be any type of known display or presentation screen, such as LCD displays, plasma display, cathode ray tubes (CRT), etc. A user input interface 622 is provided, including one or more user interface mechanisms such as a mouse, keyboard, microphone, touch pad, touch screen, voice-recognition system, etc.
The server 601 may be coupled to other computing devices, such as the landline and/or wireless terminals and associated watcher applications, via a network. The server may be part of a larger network configuration as in a global area network (GAN) such as the Internet 628, which allows ultimate connection to the entities described above.
Although the features and elements of the present example embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein. The methods or flow charts provided in the present application may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor. For example,
According to another example embodiment, generalized systems and methods for networking objects using social mapping principles can operate as shown in the flowchart of
At step 1202, the system collects data from objects which are presently networked together and unique entity profiles for each device are created (based on, for example, the kind of device, its functionality, brand characteristics, location, etc.). The users connect their own system entity to system entities of networked objects, for example by creating a connection through the client application user interface or physically bringing together NFC/RFID enabled devices. The objects' system entities connect to each other's profiles, i.e., establish a level of friendship relation as described above, either automatically (based on the kind of device, its functionality, brand, location, etc.) or as managed by a user (authorized to do so and that has connected his/her user profile to the device) at step 1204.
Once System Entity A has established a friendship relation with System Entity B, other system entities that System Entity A already has a relation to can also establish a relation with System Entity B, and vice versa. For example, suppose that the system sends data about the new relation to already connected system entities associated with both A and B, optionally filtered by criteria such as device capabilities, brand, location etc. The new system entity (A or B in this example) can respond to such queries e.g. by auto-confirmation, thereby establishing a relation to the existing devices. Alternatively, all such connections can be manually managed in the user's client application, or the user could define a set of rules for auto-confirmation.
As mentioned above, such relations may have a temporal characteristic or parameter. For example, temporary relations to system entities such as those associated with borrowed or rented networked objects, or guest-users can be set up for a specific period of time, alternatively based on the proximity of another specific user, within a certain area, along a certain route or other criteria. The temporary connected entities will then only be available when fulfilling the pre-defined criteria mentioned above, and the system entity is otherwise inaccessible, although it may still be visible to the temporary connected system entities. A temporary connection can be approved- or initiated by the system or by the owner/provider/administrator of the system entity that will have a temporal connection.
Connected users and objects' system entities according to example embodiments may have reciprocal presence in each other's profiles. Information about status, logged activities, other connections, mutual connections etc. can be made available for connected users and system entities. The user, or a networked object's system entity, can for example send data or a notification that calls for a certain response, to the system or to a specific system entity or group of system entities.
Each system entity can be made aware of its connected system entities profiles, including but not limited to data about their functionality, dependencies, current status as well as previous and future planned (timer set) events, capabilities, mandate and responsibilities. This enables functionality and interaction such as that exemplified by the TV and the video recorder scenario described above. Moreover, the kind of subcontracting, functional outsourcing or ‘favors’ described in that TV and video recorder example could, in some cases, be executed automatically between the system entities of objects, without the interaction of a user. These activities are collectively referred to in
As yet another example of this type of architecture and functionality according to an example embodiment, consider a sensor cluster represented in the system as a plant's system entity sends data to the system about its status, for example that it the temperature is high and humidity very low. The system could interpret this status as not ideal for the plant, and the system could notify the system entity of the blinds in the window where the plant is located that it could potentially provide a solution to this reported problem by closing, creating shadow for the plant. After closing, the blinds will send a notification (as a threaded response to the plant's status) that states that it has attempted to solve the plant's problem. The user can monitor, participate or intervene with the interaction between the system entities via the user interface.
From the foregoing, it will be apparent that example embodiments provide intuitive, understandable and unified interaction with networked devices and services as well as between their users, owners, manufacturers, vendors or providers. Such embodiments support and enhance the users' conceptual understanding of a digital network, as well as provide easy access to each device and service via a user interface. Example embodiments greatly ease the configuration, monitoring, maintenance and management of networked products and services and can also help make home automation more intelligent and transparent, but at the same time understandable and non-intrusive for the users.
The ease of use, accessibility and understandable concept according to these example embodiments could lower the threshold for the users to buy or add services to the system. This could create a new platform for delivering digital as well as physical services of all kinds. The system also opens up new opportunities for branding as it provides a way for manufacturers of products and services to manage and customize the characteristics that define the system entities that represent each product they manufacture in the system. Manufacturers can submit data to the system that for example define what kind of expression and behavior system entities of a certain product should have, and also what kind of relationship it should have with other system entities that are related to or affiliated via the brand of their manufacturers.
Numerous embodiments have been explained above that apply social mapping principles to manage resource nodes which are connected to one or more networks. Resource nodes are also referred to herein as “networked objects.” Some further embodiments described below are directed to managing interaction flows between resource nodes, and can include generating recommendations for interaction flows between resource nodes that can be accepted or declined by users.
As will be explained in further detail below, the resource management node 1300 is configured to manage communication and control interactions between users and the resource nodes 1330, and between the resource nodes 1330 themselves. The communication and control interactions are carried-out through data flows (e.g., messages, streaming data, discrete signaling, etc.). In accordance with some embodiments, the resource management node 1300 establishes clusters of the resource nodes 1330, and selectively causes the user equipment node to prioritize handling of data flows for resource nodes in a particular one of the clusters.
Users may operate one or more user equipment nodes 1320 to provide instructions to, and receive information from, the resource management node 1300. The user equipment node 1320 may correspond to the above-described user interface 18 of
The resource management node 1300 can include a system resource database 1304, an interaction flow database 1306, and an interaction execution engine 1310. Although separate functional elements have been illustrated within the resource management node 1300 for ease of explanation, one or more of the functional elements may be combined or may be split into two or more functional elements. Moreover, some or all of the functionality that is described as residing within one or more elements of the resource management node 1300 may alternatively or additionally reside within one or more of the resource nodes 1330 and/or within other components of the system. Accordingly, functional components of the resource management node 1300 can be separate from, and communicatively connected to, the resource nodes 1330 and/or some of the function components may reside within one or more of the resource nodes 1330.
As used herein, the term database is used in a general sense to refer to a collection of digital data having known relational structures. Example databases include low complexity data lists and higher complexity object-oriented relational data structures.
Various operations and methods of the resource management node 1300 are explained below in the context of managing certain types of resource nodes in a home or other building environment as shown by the system of
Referring to
In accordance with some embodiments, the resource management node 1300 establishes clusters of the resource nodes 1330, and selectively causes the user equipment node to prioritize handling of data flows for resource nodes in a selected cluster. Example operation and methods 1500 performed by the resource management node 1300 are illustrated in
Various example operations and methods 1600, 1700, 1800, 1900, 2000 that may be performed by the resource management node 1300 to establish clusters of the resource nodes 1330 are illustrated in
This metadata may identify operational capabilities, data input/output characteristics, control capabilities/characteristics, and/or location (e.g., geographic location, building floor/room/other location) of particular ones of the resource nodes 1330, and/or may identify communication (e.g., network 1380) addresses for the resource nodes 1330. The complementary functionality that is identifiable can therefore include, but is not limited to, identifying information and/or control functions that can be generated by the resource management node 1300 and/or the user equipment node 1320 combining data from two or more resource nodes, identifying resource nodes that can receive and operate using and/or be controlled using data from one or more other resource nodes (e.g., resource nodes having compatible and functionally complementary data input/output interfaces), identifying resource nodes that are located sufficiently close to one another to be able to provide information that is relevant to events that are sensed by one of those resource nodes or rules satisfied by one of those resource nodes.
Information in the system resource database 1304 may be supplied by the resource nodes 1330 themselves, such as during an initialization process when a resource node is first connected to the resource management node 1300 via the network 1380. The information may alternatively or additionally be supplied by other entities 1322, such as application developers, device manufacturers, and/or device integrators.
As part of the process for establishing clusters, the resource management node 1300 can generate and store cluster information 1307 and associated rules 1308 in the interaction flow database 1306. The cluster information 1307 identifies clusters and which resource nodes 1330 are members of which clusters. The rules 1308 identify one or more responsive actions that are to be taken by one or more particular resource nodes 1330 when a triggering event occurs (e.g. a resource node senses a defined event, enters a defined operational state, and/or receives defined data from another resource node/user equipment node).
Further example operations and methods are explained with continuing reference to the example system of
Resource nodes may additionally or alternatively be clustered based on their proximity relative to each other, without regard to which, if any, resource node has detected/triggered a defined event. Referring to the operations and methods 1800 of
Further operations and methods 1900 for identifying complementary functionality provided by particular ones of the resource nodes are shown in
For example, the network security camera 1404a, the stove 1406, and the other kitchen appliances 1408 can be clustered together in a first designated cluster because of their proximity within the same Room 1 as the fire detector 1402a, and because the resource management node 1300 further determines that they have complementary functionality. The security camera 1404a can be used to observe Room 1 to determine the presence/absence of smoke/fire. The stove 1406 and other kitchen appliances 1408 can be a source of smoke/fire, and are capable of being controlled through the network 1380 to turn power off and/or change operation to reduce risk of smoke/fire.
In response to the fire detector 1402a detecting smoke/fire, an alert data flow (e.g. alert message) is established from the fire detector 1402 through the network 1382 to the resource management node 1300, which may forward the alert data flow to the user equipment node 1320 with information that causes the user equipment node 1320 to prioritize handling of the alert data flow.
Referring to the example operations and methods 2400 of
The resource management node 1300 responds to the alert data flow and one of the rules 1308, which defines one or more responsive actions to be taken, by initiating a video data flow from the network security camera 1404a to the user equipment node 1320 to allow the user to observe Room 1 to confirm the presence/absence of smoke/fire. The resource management node 1300 may send a video authorization message to the user equipment node 1320 requesting the user's authorization to initiate the video data flow, or may initiate the video data flow without seeking authorization beforehand. Because the security camera 1404a is in the same first cluster as the fire detector 1402, the resource management node 1300 controls the user equipment node 1320 to prioritize (e.g. one or more operations of
The resource management node 1300 determines from the system resource database 1304 that the stove 1406 and the various other kitchen appliances 1408 are controllable via the network 1380. In further response to the alert data flow and another one of the rules 1308, which defines one or more responsive actions to be taken, the resource management node 1300 can establish a control data flow between the user equipment node 1320 and the stove 1406 and various other kitchen appliances 1408. The resource management node 1300 may communicate information that separately identifies status of the stove 1406 and the various other kitchen appliances 1408 (e.g., powered-on, operational fault detected, temperature or other sensor readings, etc.) to the user equipment node 1320, and may further control the user equipment node 1320 to provide prioritized handling (e.g. one or more operations of
In some further embodiments, the resource management node 1300 may identify further complementary functionality of resource nodes in the first cluster, such as additional complementary functionality that can be provided by the two other fire detectors 1402b-c and the network security camera 1404b (which can also operate to detect/confirm the presence of smoke/fire) located in adjacent Rooms 2 and 3, the furnace/air conditioner 1418 (which can also be a source of smoke/fire) and the temperature controller 1416 (which can be used to turn-off/control the furnace) located in adjacent Room 4. Adding these resource nodes to the first cluster defined in the cluster information 1307, the resource management node 1300 and/or an interaction flow designer 1324 can then define further rules that are triggered to control data flows between various of the resource nodes and the user equipment node 1320 in response to defined rules being satisfied.
For example, in response to the alert data flow being triggered from the fire detector 1402a, the resource management node 1300 can initiate a video data flow from the network security camera 1404b and a status data flow from the fire detectors 1402b-c to the user equipment node 1320 so that a user can determine whether smoke/fire is detected or observed in the other Rooms 2 and 3. The resource management node 1300 can also control the user equipment node 1320 to prioritize its handling of those data flows, such as by one or more of the operations of
Handling of Data Flows with Resource Nodes in Same Cluster
The resource management node 1300 may be configured to cause the user equipment node 1320 to handle data flows from any resource nodes within a same group with the same or similar prioritized level of handling. For example, when the fire detector 1402a detects smoke and generates the alert data flow, the resource management node 1300 may respond by causing the user equipment node 1320 to prioritize display of information received through data flows associated with other resource nodes that are in the same first cluster for observation by a user. Thus, status data flows from each of the fire detectors 1402a-c and the security cameras 1404a-b may be displayed with: 1) unique color(s) relative to other information being concurrently displayed that is from other resource nodes that are not in the first cluster; 2) size(s) different from other information being concurrently displayed on the display device that is from other resource nodes that are not in the first cluster; 3) location in an ordered list that is more observable by a user relative to other information being concurrently displayed on the display device that is from other resource nodes that are not in the first cluster; and/or 4) change visible characteristics of one or more symbols that are displayed on the display device to represent the respective resource nodes in the first cluster.
The resource management node 1300 may be configured to perform context sensitive filtering of what data flows associated with resource nodes are provided to the user equipment node 1320, depending upon which, if any, cluster the respective resource nodes are members. More particularly, referring to the operations and methods 2100 of
In a similar manner, the resource management node 1300 may be configured according to the operations and methods 2200 of
According to some further operations and methods 2300 of
For example, in response to the fire detector 1402a sensing smoke, the resource management node 1300 can trigger the security cameras 1404a-b to begin streaming video to the user equipment node 1320. Prior to the fire detector 1402a sensing smoke, the security cameras 1404a-b function to only stream video in response to a defined request from the user equipment node 1320. The stove 1406, the other kitchen appliances 1408, the temperature controller 1416, and the furnace/air conditioner 1418 may be similarly controlled to push status, sensor measurements, and/or other information to the user equipment node in response to the fire detector 1402a sensing smoke or another defined event being detected by or occurring with any other resource node that is in the same cluster as defined by one or more of the rules 1308.
Resource nodes may be clustered based on friendship relationships that are established between the resource nodes. Referring to the operations and methods 2000 of
By making the relationship between resource nodes, as well as relationships between resource nodes and users, analogous to, e.g., social mapping principles like “friendship” (i.e. a notion of trust or ownership relationship and access control), example embodiments make interaction flows through resource node intuitive to understand and manage by users. Example embodiments utilize a recognizable resemblance to a social network in order to enable users to form a holistic mental model of potentially large numbers of networked resource nodes with simultaneous interconnections and interrelations with each other.
Further example operations and methods are explained with continuing reference to the example system of
The resource management node 1300 can identify that the water sensor 1412, the water valve 1414, the washer/dryer 1410, and the network security camera 1404b have complementary functionality and, responsive thereto, can establish a second cluster a second cluster including those resource nodes through information 1307 defined in the interaction flow database 1306. The resource management node 1300 can further define one or more rules 1308 that responds to the water sensor 1412 detecting water (e.g., on a floor of Room 2) by sending an alert message to the user equipment node 1320, initiating a video data flow from the network security camera 1404b to the user equipment node 1320 so that the user can observe Room 2 to confirm/diagnose the water leak, and/or initiating a status data flow from the washer/dryer 1410 to the user equipment node 1320 so that the user can determine whether the washer/dryer 1410 is presently operating and/or is reporting a faulty operation. The resource management node 1300 can further establish control data flows from the user equipment node 1320 to the washer/dryer 1410 and/or the water valve 1414 to allow the user to turn off and/or change and operational state of the washer/dryer 1410 and/or control the water valve 1414 to stop the flow of water.
The resource management node 1300 can further identify that the security system 1422, the door/window sensors 1420a-b, and the security cameras 1404a-b have complementary functionality and, responsive thereto, can establish the third cluster including those resource nodes through information 1307 defined in the interaction flow database 1306. The resource management node 1300 can further define one or more rules 1308 that responds to the door/window sensor 1420a/1420b detecting opening of a door/window by sending an alert message to the user equipment node 1320, and initiating a video data flow from the network security cameras 1404a-b to the user equipment node 1320 so that the user can observe Rooms 1 and 2 to confirm presence of a potential intruder. The resource management node 1300 can further establish control data flows from the user equipment node 1320 to the security camera 1404a-b to allow the user to control pan/tilt/zoom operations, and establish a control data flow to the security system 1422 to trigger an alarm and/or notification of authorities.
The controller circuit 2520 may include one or more data processing circuits, such as a general purpose and/or special purpose processor (e.g., microprocessor and/or digital signal processor). The controller circuit 2520 is configured to execute computer program instructions from the functional modules 2530 in the memory circuitry/devices 2540, described below as a computer readable medium, to perform some or all of the operations and methods that are described above for one or more of the embodiments, such as the embodiments of
In the above-description of various embodiments of the present invention, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense expressly so defined herein.
When a node is referred to as being “connected”, “coupled”, “responsive”, or variants thereof to another node, it can be directly connected, coupled, or responsive to the other node or intervening nodes may be present. In contrast, when an node is referred to as being “directly connected”, “directly coupled”, “directly responsive”, or variants thereof to another node, there are no intervening nodes present. Like numbers refer to like nodes throughout. Furthermore, “coupled”, “connected”, “responsive”, or variants thereof as used herein may include wirelessly coupled, connected, or responsive. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Well-known functions or constructions may not be described in detail for brevity and/or clarity. The term “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, nodes, steps, components or functions but does not preclude the presence or addition of one or more other features, integers, nodes, steps, components, functions or groups thereof. Furthermore, as used herein, the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item. The common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.
Example embodiments are described herein with reference to block diagrams and/or flowchart illustrations of computer-implemented methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions that are performed by one or more computer circuits. These computer program instructions may be provided to a processor of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and/or flowchart block or blocks, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and/or flowchart block(s).
These computer program instructions may also be stored in a tangible computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and/or flowchart block or blocks.
A tangible, non-transitory computer-readable medium may include an electronic, magnetic, optical, electromagnetic, or semiconductor data storage system, apparatus, or device. More specific examples of the computer-readable medium would include the following: a portable computer diskette, a random access memory (RAM) circuit, a read-only memory (ROM) circuit, an erasable programmable read-only memory (EPROM or Flash memory) circuit, a portable compact disc read-only memory (CD-ROM), and a portable digital video disc read-only memory (DVD/BlueRay).
The computer program instructions may also be loaded onto a computer and/or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer and/or other programmable apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the block diagrams and/or flowchart block or blocks. Accordingly, embodiments of the present invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as “circuitry,” “a module” or variants thereof.
It should also be noted that in some alternate implementations, the functions/acts noted in the blocks may occur out of the order noted in the flowcharts. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Moreover, the functionality of a given block of the flowcharts and/or block diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the flowcharts and/or block diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated. Moreover, although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
Many different embodiments have been disclosed herein, in connection with the above description and the drawings. It will be understood that it would be unduly repetitious and obfuscating to literally describe and illustrate every combination and subcombination of these embodiments. Accordingly, the present specification, including the drawings, shall be construed to constitute a complete written description of various example combinations and subcombinations of embodiments and of the manner and process of making and using them, and shall support claims to any such combination or subcombination.
The above-described example embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. All such variations and modifications are considered to be within the scope and spirit of the present invention as defined by the following claims. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Additionally, the term “user” is meant to be inclusive of an individual, a group and an organization.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/782,134, filed on May 18, 2010, which claims priority from U.S. Provisional Patent Application Ser. Nos. 61/290,387 filed on Dec. 28, 2009, and 61/292,967 filed on Jan. 7, 2010, both entitled “A Social Web of Objects”, the disclosures of all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61290387 | Dec 2009 | US | |
61292967 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12782134 | May 2010 | US |
Child | 13270572 | US |