Management of software bugs in a data processing system

Information

  • Patent Grant
  • 10924362
  • Patent Number
    10,924,362
  • Date Filed
    Thursday, March 29, 2018
    6 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
Methods, systems and computer programs are disclosed for managing data bugs in a data processing system comprising one or more data resources. The method may comprise receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs and determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing. Further operations may comprise presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable, and, responsive to receiving selection of a particular open issue, presenting contextual information for the one or more bugs within the group on the user interface.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of United Kingdom Application Number 1800595.9, filed Jan. 15, 2018, the content of which is incorporated by reference in its entirety into the present disclosure.


FIELD OF THE DISCLOSURE

The present disclosure relates to a method and systems for management of software bugs in a data processing system.


BACKGROUND

Cloud computing is a computing infrastructure for enabling ubiquitous access to shared pools of servers, storage, computer networks, applications and other data resources, which can be rapidly provisioned, often over the Internet.


A “data resource” as used herein may include any item of data or code (e.g., a data object) that can be used by one or more computer programs. In example embodiments, data resources are stored in one or more network databases and are capable of being accessed by applications hosted by servers that share common access to the network database. A data resource may for example be a data analysis application, a data transformation application, a report generating application, a machine learning process, a spreadsheet or a database.


Some companies provide cloud computing services for registered customers, for example manufacturing and technology companies, to create, store, manage and execute their own data resources. Sometimes, these data resources may interact with other data resources, for example those provided by the cloud platform provider. Certain data resources may be used to control external systems.


In the context of data, a “bug” is an error, failure or fault in a computer program or system that causes it to produce an incorrect or unexpected result. The process of remedying bugs is referred to as “debugging” or “fixing.”


The typical lifecycle for managing bugs is for a user, upon noticing an incorrect or unexpected result, to ping an internal or external support team. A member of the support team, at a subsequent time, will attempt to fix the bug. If the manner of fixing is not immediately evident, or if the support team member cannot resolve it, a support ticket is requested for a more experienced developer to look into the bug issue at a further subsequent time. The developer will usually require contextual information from either or both the support team member and the original user, in order to understand, for example, what may have caused the bug or what else was happening when the bug became evident. It will be appreciated from the above that much back-and-forth email and/or telephone communication is involved, which is time-consuming and uses communications resources. Consequently, for even a modestly-sized organisation, debugging may involve significant delay, usually a matter of days, and therefore resource downtime, during which time related or similar bugs may be ongoing and hence producing incorrect output.


SUMMARY

A first aspect provides a method of managing software bugs in a data processing system comprising one or more data resources, the method being performed using one or more processors and comprising: receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs; determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce an aggregated list of open issues requiring fixing; presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; and responsive to receiving selection of a particular open issue, presenting contextual information for the one or more bugs within the group on the user interface.


The bug type may comprise a human-readable description of the bug or its effect.


Responsive to receiving selection of a particular open issue, the presented contextual information may comprise an expanded list of individual bugs, grouped or ordered based on type of the contextual information.


Responsive to receiving selection of a particular open issue, the presented contextual information may comprise one or more version numbers of the data resource to which the bug is related.


The contextual information may further comprise one or more of a deployment identifier indicative of where the affected one or more data resources are running, a date and/or time indicative of when the bug occurred, and a user identifier indicative of one or more users operating the data resource at said date and/or time.


The method may further comprise generating a first unique identifier for each indicated bug, which unique identifier is decodable upon selection of a particular bug from an expanded list of individual bugs, to provide to the user interface contextual information for the particular bug.


The method may further comprise receiving a close bug instruction indicative that a particular bug within an open issue has been fixed, and responsive thereto, removing the particular bug from the open issue.


The method may further comprise receiving a close issue command indicative that all bugs within an open issue have been fixed, and responsive thereto, closing the open issue such that it becomes a closed issue and no longer appears on the list of open issues.


The method may further comprise re-opening a closed bug or a closed issue, responsive to a further bug being received relating to the same bug type.


The method may further comprise re-opening a closed bug or a closed issue, responsive to a further bug being received relating to the same bug type.


The re-opened bug or re-opened issue may comprise contextual data for the re-opened bug or re-opened issue, including an indication of one or more fixes previously applied, and contextual data for the further bug.


The indication of the one or more fixes previously applied may comprise a link or option to deploy the same fix to the identified data resource, the method further comprising deploying said same fix responsive to user selection thereof.


In the event that a particular bug or open issue relating to a particular data resource version is closed, the method may further comprise automatically closing earlier open versions of bugs or issues relating to the same bug type.


In the event that a particular bug or open issue relating to a particular data resource version is closed, the method may further comprise automatically closing earlier open versions of bugs or issues relating to the same bug type.


A further aspect provides a computer program, optionally stored on a non-transitory computer readable medium program which, when executed by one or more processors of a data processing apparatus, causes the data processing apparatus to carry out a method comprising: receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs; determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing; presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; and responsive to receiving selection of a particular open issue, presenting contextual information for the one or more bugs within the group on the user interface.


A further aspect provides a system for managing software bugs in a data processing system, the system comprising: one or more physical processors; a memory storing instructions that, when executed by the one or more physical processors, cause the system to: receive an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs; determine, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing; present the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; and present, responsive to receiving selection of a particular open issue, contextual information for the one or more bugs within the group on the user interface.


A further aspect provides a method of managing software bugs in a data processing system comprising one or more data resources, the method being performed using one or more processors and comprising: receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs; determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing; presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; responsive to receiving selection of a particular open issue, presenting contextual information for the one or more bugs within the group on the user interface; wherein one or more bugs or open issues may be closed upon receiving input indicative that the bugs or open issues have been fixed and said one or more closed bugs or closed issues are automatically re-opened upon receiving a subsequent identification of one or more further bugs of the same bug type.


The re-opened bug or re-opened issue may comprise contextual data for the re-opened bug or re-opened issue, including an indication of one or more fixes previously applied, and contextual data for the further bug.


The indication of the one or more fixes previously applied may comprise a link or option to deploy the same fix to the identified data resource, the method further comprising deploying said same fix responsive to user selection thereof.


The bug type may comprise a human-readable description of the bug or its effect.


Responsive to receiving selection of a particular open issue, the presented contextual information may comprise an expanded list of individual bugs, grouped or ordered based on type of the contextual information.


The contextual information for the one or more bugs may comprise at least a version number of the data resource to which the bug is related, and wherein, responsive to receiving selection of a particular open issue, the expanded list comprises a list of the bugs grouped and/or ordered by version number.


Responsive to receiving selection of a particular open issue, the contextual information for the one or more bugs may further comprise one or more of a deployment identifier indicative of where the data resource is running, a date and/or time indicative of when the bug occurred, and a user identifier indicative of one or more users operating the data resource at said date and/or time.


The method may further comprise generating a first unique identifier for each indicated bug, which unique identifier is decodable upon selection of a particular bug from an expanded list of individual bugs, to provide to the user interface contextual information for the particular bug.


In the event that a particular bug or open issue relating to a particular data resource version is closed, the method may further comprise automatically closing earlier open versions of bugs or issues relating to the same bug type.


A further aspect provides computer program, optionally stored on a non-transitory computer readable medium program which, when executed by one or more processors of a data processing apparatus, causes the data processing apparatus to carry out a method according to any preceding definition.


A further aspect provides a system for managing software bugs in a data processing system, the system comprising: one or more physical processors; a memory storing instructions that, when executed by the one or more physical processors, cause the system to: receive an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs; determine, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing; present the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; present, responsive to receiving selection of a particular open issue, contextual information for the one or more bugs within the group on the user interface; wherein one or more bugs or open issues may be closed upon receiving input indicative that the bugs or open issues have been fixed and said one or more closed bugs or closed issues are automatically re-opened upon receiving a subsequent identification of one or more further bugs of the same bug type.


A further aspect provides a system for managing software bugs in a data processing system, the system comprising: one or more physical processors; a memory storing instructions that, when executed by the one or more physical processors, cause the system to perform the method of any preceding definition.





BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will now be described by way of non-limiting example with reference to the accompanying drawings, in which:



FIG. 1 is a block diagram illustrating a network system comprising a group of application servers of a data processing platform according to embodiments of this specification;



FIG. 2 is a block diagram of a computer system according to embodiments of this specification;



FIG. 3 is a schematic diagram of a bug management application or tool, according to embodiments of this specification;



FIG. 4 is a flow diagram showing processing operations performed by the bug management application according to embodiments;



FIG. 5 is a flow diagram showing other processing operations performed by the bug management application according to embodiments;



FIG. 6 is a flow diagram showing other processing operations performed by the bug management application according to embodiments;



FIG. 7 is an example user interface of the bug management application according to embodiments;



FIG. 8A is another example user interface of the bug management application according to embodiments;



FIG. 8B is another example user interface of the bug management application according to embodiments;



FIG. 8C is another example user interface of the bug management application according to embodiments; and



FIG. 9 is another example user interface of the bug management application according to embodiments.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Embodiments herein relate to management of software bugs. In the context of software, a “bug” is an error, failure or fault in a computer program or system that causes it to produce an incorrect or unexpected result. The process of remedying bugs is referred to as “debugging” or “fixing.” Fixing may be by means of producing a file for remedying the bug, commonly known as a “patch.” A patch is usually an executable file distributed to affected users, groups of users or systems, whether directly or indirectly, but a patch can take other forms. When received, the patch is executed which updates the affected software. There are other means of fixing software bugs, as will be appreciated.


As noted previously, in large-scale computer processing environments or platforms, possibly handling large numbers of requests by large numbers of users, and possibly distributed across many organisations and territories, debugging can be a time-consuming and processing-intensive task. Debugging from a technical and administrative point of view may only be performed by a limited number of experts with knowledge of the particular data resource and its underlying operation, which also helps avoid or minimise further bugs which may result from fixes. This tends to create a bottleneck as users await their expertise, feedback and eventually the fix. This wait tends to involve much back-and-forth communication to evaluate the context of the bug and how it might affect others. In the meantime, the bug may leave data resources inaccessible and possibly vulnerable to attack.


Embodiments herein provide improvements in software bug management in such a way that the amount of data required to be shown to the user, e.g. a developer, on a physical display can be reduced, saving power and display real estate. Embodiments also permit patterns or trends to be identified in terms of what bugs are occurring on which products, versions and/or deployments. In some embodiments, closure and re-opening of bug issues may occur automatically to permit display of contextual information technically useful to the developer. The technically useful data may indicate a reported bug that was previously fixed for a different version of the data resource and/or on a different system or deployment.


Such management may be handled via an intuitive user interface which, in terms of displaying management data relating to bugs and context, represents a current technical state of one or more systems. Where the data resource is linked to a physical system, such as a hardware system, machinery or an industrial process, the state of said physical system is therefore represented.


In some embodiments, the user interface may prompt a user to deploy a particular fix based on historical data, such as a fix previously applied to the same bug type, which may be further based on context. This deployment may be through guided human interaction with the user interface.


In the context of the following, the following definitions apply.


A “data resource” as used herein may include any item of data or code (e.g., a data object) that can be used by one or more computer programs. In example embodiments, data resources are stored in one or more network databases and are capable of being accessed by applications hosted by servers that share common access to the network database. A data resource may for example be a data analysis application, a data transformation application, a report generating application, a machine learning process, a spreadsheet or a database.


Certain data resources may be data sets, which may be raw data or processed data. In this case, the data sets may be represented in any suitable form, for example as database tables comprising one or more rows and columns. The data sets may represent technical data, e.g. data representing sensed or measured data from physical sensors in an industrial setting. The data sets may represent inventory data. The data sets may represent pixels of an image. The data sets may represent financial data. Many other examples of what the data sets represent are envisaged.


A data processing platform is any computing platform on which executable code, or software, may be executed, providing particular functionality and restrictions, in that low-level functionality is provided which the executable code needs to conform to.


A data repository is any form of data storage entity into which data is specifically partitioned or isolated.


An execution environment is any representation of an execution platform, such as an operating system or a database management system.


A dataset, sometimes used interchangeably with data; a dataset holds data on the data processing platform, and usually has an accompanying schema for the dataset in order to make sense, or interpret, the data within the dataset.


A bug is an error, failure or fault in a computer program or system that causes it to produce an incorrect or unexpected result.


A fix is any way of removing or alleviating the bug, for example through producing a patch, whether in the form of code or a file, through guided instructions or through changing a configuration setting or parameter.


The data processing platform may be an enterprise software platform associated with an enterprise platform provider. An enterprise software platform enables use by multiple users, internal and external to the enterprise platform provider. The users may be users of different respective organisations, such as different commercial companies.


For example, an engine manufacturer may create and store a database relating to spare parts for the different models of engines it produces and services. The database may, for example, be a multi-dimensional relational database. Certain analyses may be performed on the database using another application, for example an executable application resource for analysing and/or transforming the data in order to identify trends which may be useful for predicting when certain parts will fail and/or need.


For this purpose, the software platform may comprise enterprise applications for machine-analysis of data resources. For example, an organisation may store on the software platform history data for a machine and use an enterprise application for the processing of history data for the machine in order to determine the probability, or a risk score, of the machine, or a component sub-system of the machine, experiencing a fault during a future interval. The enterprise application may use the fault probabilities or risk scores determined for a machine to select a preventative maintenance task which can reduce the probability and/or severity of the machine experiencing a fault. History data for a machine may include sensor logs, a sensor log being multiple measurements of physical parameters captured by a sensor and relating to different points in time (a time series). History data for a machine may also include computer readable logs such as maintenance logs, fault logs and message logs corresponding to a machine. The maintenance log corresponding to the machine may record information such as dates and locations of prior maintenance tasks, details of replacement parts, free text notes made by an engineer or mechanic performing a maintenance task and so forth. The fault log corresponding to the machine may record information such as dates and locations of faults, the types of faults, the period of time required to rectify each fault and so forth. The message log corresponding to a machine, such as a ship or construction machinery, may records messages generated by controllers, processors or similar devices which are integrated into the component sub-systems of the machine. The messages may include a date and time, an identifier of a component sub-system, and message content such as, for example, warning information of information identifying a fault.


The data processing platform on which the data resources are stored and executed may be a proprietary or open source platform, which offers advantages in terms of time-to-deploy on the platform provider's hardware, as well as offering partitioning of data and rolling upgrades. This may be particularly suited for automated deployment, scaling and management of applications. Such software platforms may employ containerised data resources.



FIG. 1 is a network diagram depicting a network system 100 comprising a data processing platform 102 in communication with a network-based permissioning system 104 (hereafter “permissioning system”) configured for registering and evaluating access permissions for data resources to which a group of application servers 106-108 share common access, according to an example embodiment. Consistent with some embodiments, the network system 100 may employ a client-server architecture, though the present subject matter is, of course, not limited to such an architecture, and could equally well find application in an event-driven, distributed, or peer-to-peer architecture system, for example. Moreover, it shall be appreciated that although the various functional components of the network system 100 are discussed in the singular sense, multiple instances of one or more of the various functional components may be employed.


The data processing platform 102 includes a group of application servers, specifically, servers 106-108, which host network applications 109-111, respectively. The network applications 109-111 hosted by the data processing platform 102 may collectively compose an application suite that provides users of the network system 100 with a set of related, although independent, functionalities that are accessible by a common interface. For example, the network applications 109-111 may compose a suite of software application tools that can be used to analyse data to develop various insights about the data, and visualize various metrics associated with the data. To further this example, the network application 109 may be used to analyse data to develop particular metrics with respect to information included therein, while the network application 110 may be used to render graphical representations of such metrics. It shall be appreciated that although FIG. 1 illustrates the data processing platform 102 as including a particular number of servers, the subject matter disclosed herein is not limited to any particular number of servers and in other embodiments, fewer or additional servers and applications may be included.


The applications 109-111 may be associated with a first organisation. One or more other applications (not shown) may be associated with a second, different organisation. These other applications may be provided on one or more of the application servers 106, 107, 108 which need not be specific to a particular organisation. Where two or more applications are provided on a common server 106-108 (or host), they may be containerised which as mentioned above enables them to share common functions. Each of the servers 106-108 may in communication with the network-based permissioning system 104 over a network 112 (e.g. the Internet or an intranet). Each of the servers 106-108 are further shown to be in communication with a database server 114 that facilitates access to a resource database 116 over the network 112, though in other embodiments, the servers 106-108 may access the resource database 116 directly, without the need for a separate database server 114. The resource database 116 may stores other data resources that may be used by any one of the applications 109-111 hosted by the data processing platform 102.


In other embodiments, one or more of the database server 114 and the network-based permissioning system 104 may be local to the data processing platform 102; that is, they may be stored in the same location or even on the same server or host as the network applications 109, 110, 111.


As shown, the network system 100 also includes a client device 118 in communication with the data processing platform 102 and the network-based permissioning system 104 over the network 112. The client device 118 communicates and exchanges data with the data processing platform 102. The client device 118 may be any of a variety of types of devices that include at least a display, a processor, and communication capabilities that provide access to the network 112 (e.g., a smart phone, a tablet computer, a personal digital assistant (PDA), a personal navigation device (PND), a handheld computer, a desktop computer, a laptop or netbook, or a wearable computing device), and may be operated by a user (e.g., a person) to exchange data with other components of the network system 100 that pertains to various functions and aspects associated with the network system 100 and its users. The data exchanged between the client device 118 and the data processing platform 102 involve user-selected functions available through one or more user interfaces (UIs). The UIs may be specifically associated with a web client (e.g., a browser) or an application 109-111 executing on the client device 118 that is in communication with the data processing platform 102. For example, the network-based permissioning system 104 provides user interfaces to a user of the client device 118 (e.g., by communicating a set of computer-readable instructions to the client device 118 that cause the client device 118 to display the user interfaces) that allow the user to register policies associated with data resources stored in the resource database 116.


Referring to FIG. 2, a block diagram of an example computer system 137, which may comprise the data processing platform 102, one or more of the servers 106-108, the database server 114 and/or the network-based permissioning system 104, consistent with examples of the present specification is shown.


Computer system 137 includes a bus 138 or other communication mechanism for communicating information, and a hardware processor 139 coupled with bus 138 for processing information. Hardware processor 139 can be, for example, a general purpose microprocessor. Hardware processor 139 comprises electrical circuitry.


Computer system 137 includes a main memory 140, such as a random access memory (RAM) or other dynamic storage device, which is coupled to the bus 138 for storing information and instructions to be executed by processor 139. The main memory 140 can also be used for storing temporary variables or other intermediate information during execution of instructions by the processor 139. Such instructions, when stored in non-transitory storage media accessible to the processor 139, render the computer system 137 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 137 further includes a read only memory (ROM) 141 or other static storage device coupled to the bus 138 for storing static information and instructions for the processor 139. A storage device 142, such as a magnetic disk or optical disk, is provided and coupled to the bus 138 for storing information and instructions.


Computer system 137 can be coupled via the bus 138 to a display 143, such as a cathode ray tube (CRT), liquid crystal display, or touch screen, for displaying information to a user. An input device 144, including alphanumeric and other keys, is coupled to the bus 138 for communicating information and command selections to the processor 139. Another type of user input device is cursor control 145, for example using a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to the processor 139 and for controlling cursor movement on the display 143. The input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane.


Computer system 137 can implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 137 to be a special-purpose machine. According to some embodiments, the operations, functionalities, and techniques disclosed herein are performed by computer system 137 in response to the processor 139 executing one or more sequences of one or more instructions contained in the main memory 140. Such instructions can be read into the main memory 40 from another storage medium, such as storage device 142. Execution of the sequences of instructions contained in main memory 140 causes the processor 139 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.


The term “storage media” as used herein refers to any non-transitory media that stores data and/or instructions that cause a machine to operate in a specific fashion. Such storage media can comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 142. Volatile media includes dynamic memory, such as main memory 140. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.


Storage media is distinct from, but can be used in conjunction with, transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fibre optics, including the wires that comprise bus 138. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 139 for execution. For example, the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line or other transmission medium using a modem. A modem local to computer system 137 can receive the data on the telephone line or other transmission medium and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 138. Bus 138 carries the data to the main memory 140, from which the processor 139 retrieves and executes the instructions. The instructions received by the main memory 140 can optionally be stored on the storage device 142 either before or after execution by the processor 139.


Computer system 137 also includes a communication interface 146 coupled to the bus 138. The communication interface 146 provides a two-way data communication coupling to a network link 147 that is connected to a local network 148. For example, the communication interface 146 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, the communication interface 146 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented. In any such implementation, the communication interface 146 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


The network link 147 typically provides data communication through one or more networks to other data devices. For example, the network link 147 can provide a connection through the local network 148 to a host computer 149 or to data equipment operated by an Internet Service Provider (ISP) 150. The ISP 150 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 151. The local network 148 and internet 151 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link 147 and through the communication interface 146, which carry the digital data to and from the computer system 137, are example forms of transmission media.


The computer system 137 can send messages and receive data, including program code, through the network(s), network link 147 and communication interface 146. For example, a first application server 106 may transmit data through the local network 148 to a different application server 107, 108.


The data processing platform 102 may be a containerised data processing platform.


In this regard, a containerised data platform comprises “containers” which hold one or more applications, and associated data libraries, that are guaranteed to be co-located on the same host machine and which can share resources. Such software platforms may also provide a set of primitives which collectively provide mechanisms for deploying, maintaining and scaling applications. A basic scheduling unit may be called a pod. A pod may consist of one or more containers.


Software Bug Management

Embodiments will now be described in relation to methods, systems and computer-implemented processes for management of software bugs.


Embodiments particularly relate to providing a bug management module, which may be an application provided on one or more of the servers 106, 107, 108, or another server, which application enables one or more users, for example a developer or manager, to view in an intuitive way a list of bugs that require attention. In some embodiments, this is by means of a user interface (UI) presented in a display of a computer system, which user interface may display in one state an aggregated list of bugs of the same or a closely similar type, typically identifiable by means of a descriptor.


In accordance with an example embodiment, one or more of the application servers 106, 107, 108 in the data processing platform 102 shown in FIG. 1 may comprise a comprises a bug management tool 300 (refer to FIG. 3.) The bug management tool 300 may be viewed and operated by one or more users, typically developers, to ascertain a current set of bugs for particular data resource in an aggregated manner, in that the bugs are grouped by bug type, and possibly also by product or data resource type, to create a list of open issues; by showing only a single reference to each open issue, the amount of display real estate needed to provide a snapshot of the current and possibly historical context of bugs is enabled.


Each open issue can be drilled-down to understand contextual information for each open issue, such as, but not limited to, one or more versions affected, one or more deployments affected, and potentially when the bugs occurred (time and/or date), who was using the affected data resource at the time the bug occurred, and so on. Some of this information may be derived by running one or more stack traces on selected data resources.


The bug management tool 300 may receive an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs. The received indication may be generated and transmitted automatically to the bug management tool 300 by the affected resource. The received indication may be transmitted manually, in another embodiment.


Using this, the bug management tool 300 may determine one or more bug types, and groups the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing.


The aggregated list of the one or more open issues may be presented on a user interface for selection (the one or more open issues may be selectable.)


Responsive to receiving selection of a particular open issue, the bug management tool 300 may present contextual information for the one or more bugs within the corresponding group on the user interface.


The bug type may comprise a human-readable description of the bug or its effect.


Responsive to receiving selection of a particular open issue, the presented contextual information may comprises an expanded list of individual bugs, grouped or ordered based on type of the contextual information. The contextual information may comprise at least a version number of the data resource to which the bug is related. Responsive to receiving selection of a particular open issue, the expanded list may comprise a list of the bugs grouped and/or ordered by version number.


The contextual information for the one or more bugs may further comprise one or more of a deployment identifier indicative of where the data resource is running, a date and/or time indicative of when the bug occurred, and a user identifier indicative of one or more users operating the data resource at said date and/or time.


The bug management tool 300 may generating a first unique identifier for each indicated bug, which unique identifier is decodable upon selection of a particular bug from the expanded list to provide to the user interface contextual information for the particular bug.


The bug management tool 300 may be responsive to receiving a close bug instruction indicative that a particular bug within an open issue has been fixed, to close the particular bug so that it no longer appears on the expanded list for the open issue.


The bug management tool 300 may receive a close issue instruction indicative that the one or more bugs within an open issue have been fixed, and responsive thereto, may closing the open issue such that it becomes a closed issue and no longer appears on the list of open issues.


The bug management tool 300 may re-open a closed bug or a closed issue, responsive to a further bug being received relating to the same bug type. In this way, contextual information relating to the bug type is immediately and automatically made available to the user.


The re-opened bug or the re-opened issue may comprise contextual data for the re-opened bug or re-opened issue, including an indication of one or more fixes previously applied, and contextual data for the further bug. The indication of the one or more fixes previously applied may comprise a link or option to deploy the same fix to the identified data resource.


In the event that a particular bug or open issue relating to a particular data resource version is closed, the bug management tool 300 may further automatically close earlier open versions of bugs or issues relating to the same bug type. This again helps save display real estate.



FIG. 3 is a block diagram illustrating various components of the bug management tool 300 which is assumed, by way of example, to be stored and operating on the server 106 shown in FIG. 1. It can however be stored on any server or other device connected to the network 112.


To avoid obscuring the inventive subject matter with unnecessary detail, various functional components (e.g., modules and engines) that are not germane to conveying an understanding of the subject matter have been omitted from FIG. 3. However, a skilled artisan will readily recognize that various additional functional components may be supported by bug management tool 300 to facilitate additional functionality that is not specifically described herein.


As is understood by skilled artisans in the relevant computer arts, each functional component (e.g., module) illustrated in FIG. 3 may be implemented using hardware (e.g., a processor of a machine) or a combination of logic (e.g., executable software instructions) and hardware (e.g., memory and processor of a machine) for executing the logic. Furthermore, the various functional components depicted in FIG. 8 may reside on a single computer (e.g., a laptop), or may be distributed across several computers in various arrangements such as cloud-based architectures. Moreover, it shall be appreciated that while the functional components (e.g., modules) of FIG. 3 are discussed in the singular sense, in other embodiments, multiple instances of one or more of the modules may be employed.


The bug management tool 300 is shown as including an interface module 302, a bug database 304, and a bug manager module 308 which includes an aggregator 310, a user interface 312, and a user management module 314, all configured to communicate with each other (e.g., via a bus, shared memory, a switch, or application programming interfaces (APIs)). The bug database 304 may reside on a machine-readable storage medium of the bug management tool 300, or on separate hardware such as on a different server or on a cloud-based device.


The interface module 302 receives information reporting bugs. The bug reports may be received in any format, and may be received directly or indirectly from data resources affected. The bug report may be generated automatically at the data resource or by one or more other data resources which monitor for bugs on associated or linked data resources. The bug reports may be received responsive to a user manually forwarding the bug report. The bug report may identify the bug type, which may typically comprise a description of the bug and/or its effect on the data resource. The bug report may for example be generated by a stack trace operation and may comprise all or part of the output. The bug type may be restricted to a predefined maximum number of alphanumeric characters. The bug report may be accompanied by an identifier of the data resource or product on which the bug occurred.


The interface module 302 may be in the form of application programming interface (API) that interprets received bug reports. The application programming interface (API) may similarly generate messages for the data resource that reported the bug, for example to acknowledge receipt of the bug report and/or to provide updates or to deploy fixes.


The interface module 801 is in signal communication with the bug database 304 and the bug manager 308. The interface module 801 may also generate a unique identifier or signature, typically a long string of hexadecimal characters, for association with each bug and from which individual bugs can be referred to, and fetched, by means of said unique identifier or signature.


The bug database 304 is a repository storing in a data structure form a list of all reported bugs, and associated contextual information, which may be accessed by the bug manager 308 via the unique identifier or signature. The bug database 304 may store this data structure in any suitable format, for example a tabular format, and may receive requests to fetch the data for one or more operations thereon. For example, the bug manager 308 may require a subset of the data structure, or may require transformation of a subset of the data structure or a filtered version thereof. Each bug in the bug database 304 is marked as either open or closed. An open bug is one awaiting a fix. A closed bug is one that has been fixed.


The bug manager 308 comprises the three above-mentioned components, which specifically are the aggregator 310, the user interface 312 and the user management module 314.


The aggregator 310 is configured to aggregate all bugs, stored in the bug database 304, into groups based on bug type. In embodiments herein, aggregation is by means of bug type and data resource identifier (or product) which is affected. Each group relates to an “issue” and any issue having an open bug is defined as an “open issue.” Any issue with all closed bugs is referred to as a “closed issue.” Each issue is assigned a unique identifier, referred to herein as a “hash ID” meaning that individual issues can be referred to and fetched as appropriate by means of the hash ID. The issues are also stored in the bug database 304 so that, for each issue, the constituent bugs can be identified.


The user interface 312 provides an intuitive display means to a display screen of the developer's user terminal, wherever that may be. Embodiments below provide example user interfaces, but in general, the user interface 312 may comprise a window that displays a list of issues, which can be predefined or filtered to show only open issues. In this way, a developer can immediately see in compact form which bugs require attention. The user interface 312 may present each issue in selectable form, for example as a link that opens a summary of other contextual information, within which individual items may be linked also. The user interface 312 therefore provides a means of drilling-down to understand the context of the bug, including for example one or more of which versions and deployments are affected, as well as historical data relating to fixes. This may be provided in a separate window, for example. Bugs on individual versions and deployments may be viewed, for example. Individual bugs may be reviewed. The user or users accessing the data resource at the time the bug occurred may be viewed.


Furthermore, in some embodiments, the context information may indicate one or more other data resources and/or users that the affected data resource was in communication with at the time the bug occurred.


The user interface 312 may also provide a means of deploying fixes, for example if an open bug or issue was previously fixed for the same bug type. The fix may be deployed through a guided set of interactions.


The user management module 314 is the processing entity that handles functionality to be described below, with reference to FIGS. 4 to 6, in cooperation with the other modules described herein.



FIG. 4 is a flowchart illustrating a method 400 for management of bugs. The method 400 is embodied in computer-readable instructions for execution by one or more processors such that the operations of the method are performed in part or in whole by the bug management tool 300 or another processing entity; accordingly, the method 400 is described below by way of example with reference thereto. However, it shall be appreciated that at least some of the operations of the method 400 may be deployed on various other hardware configurations, and the method is not intended to be limited to the bug management tool 300.


At operation 401, an indication of one or more bugs relating to one or more data resources is received, and contextual information for the one or more bugs.


At operation 402, it is determined, from the received indication, one or more bug types and the bugs are grouped by bug type for the same data resource to produce a aggregated list of open issues requiring fixing.


At operation 403, the aggregated list of one or more open issues is presented on a user interface for selection. The open issues may be selectable via the user interface.


At operation 404, responsive to receiving selection of a particular open issue, contextual information for the one or more bugs within the group is presented on the user interface.


A further operation 405, which is optional, comprises receiving user selection of an open issue and presenting contextual information for the one or more bugs within the issue group.



FIG. 5 is a flowchart illustrating another method 500 for management of bugs, which may be performed by the bug management tool 300 in addition to the FIG. 4 operations. The method 500 is embodied in computer-readable instructions for execution by one or more processors such that the operations of the method are performed in part or in whole by the bug management tool 300 or another processing entity; accordingly, the method 500 is described below by way of example with reference thereto. However, it shall be appreciated that at least some of the operations of the method 500 may be deployed on various other hardware configurations, and the method is not intended to be limited to the bug management tool 300.


At operation 501, a close instruction is received for closing an open bug or closing an open issue.


At operation 502, the relevant bug or issue is removed from the displayed list of open bugs or issues.


At operation 503, it is determined if a further bug of the same bug type (and possibly data resource identifier or product) is received.


At operation 504, if the previous question is affirmative, the closed bug or closed issue is re-opened.


At operation 505, context information for the re-opened bug or bug issue is provided, as well as for the further bug.


At operation 506, which is optional, an indication is provided of a fix already applied to the re-opened bug.


At operation 507, which is also optional, a prompt may be displayed for prompting deployment of a fix that was applied to the re-opened bug, i.e. to fix the further bug.


In some embodiments, the prompt may lead the user through a guided set of interactions via the user interface to initiate deployment of said fix. In some embodiments, no prompt may be presented, and rather the fix is deployed automatically.



FIG. 6 is a flowchart illustrating another method 600 for management of bugs, which may be performed by the bug management tool 300 in addition to the FIG. 4 and FIG. 5 operations. The method 600 is embodied in computer-readable instructions for execution by one or more processors such that the operations of the method are performed in part or in whole by the bug management tool 300 or another processing entity; accordingly, the method 600 is described below by way of example with reference thereto. However, it shall be appreciated that at least some of the operations of the method 600 may be deployed on various other hardware configurations, and the method is not intended to be limited to the bug management tool 300.


At operation 601, a close instruction is received for closing an open bug or open issue.


At operation 602, the bug or issue is removed from the list of open issues.


At operation 603, it is determined if there is the same open bug or issue for one or more older versions of the data resource?


At operation 604, if the previous question is affirmative, the open bugs or issues of the one or more older versions are automatically closed.


In this way, display real estate is used efficiently and the developer does not waste time chasing or investigating closed issues.



FIG. 7 shows an example user interface 700 when presented by the bug management tool 300. The user interface 700 may be a home screen and may permit a developer to see all open issues initially when they first open the bug management tool 300; the open issues may be ordered by the most recent or the least recent issue. A first filtering menu 702 permits the developer to select other filter options, for example to show all closed issues, or all issues (both open and closed.) The open issues 706 are provided in list form, and each issue in the list is selectable by means of any form of selection means such as a mouse pointer 708 or through a touch screen interface. Three open issues are shown in the list 706.



FIG. 8A shows a subsequent user interface window 800 responsive to selection of an issue in the FIG. 7 example.


For example, the subsequent user interface window 800 may display contextual information relating to the selected issue. For example, the issue here relates to “caught exception while fetching module” which is indicated by reference numeral 802A and the issue relates also to a “product B” which is indicated by reference numeral 802B. This combined information is an example of a bug type by which bugs are aggregated.


The information presented in the user interface window 800 comprises the aggregated contextual information for the constituent bugs. For example, a first portion 804 shows all versions of the data resource that was affected. These may be software versions. A second portion 806 shows all deployments affected. A third portion 808 shows a unique hash ID for the issue, which enables the issue to be uniquely identified for reference in the bug database 304 and also linked to other issues. A fourth portion 810 shows one or more items of historical data, such as a date, time and description of any patches, fixes, updates etc. that were made by the developer or others.


A button or link 812 is also provided for launching a more detailed version of the FIG. 8A information, an example of which is shown in FIG. 8B.



FIG. 8B shows in a further user interface window 830 more detailed information on the particular, selected issue. For example, for each deployment, a description of the relevant service, stack, type and log count may be presented. Further each deployment may comprise an associated link 832 for viewing the individual stack traces associated with each deployment for a further understanding of the causes.



FIG. 8C shows in a further user interface window 840 a list of each individual bug 842, grouped under the selected issue. Each member of the list 842 is user selectable to provide contextual information for each individual bug. A unique identifier 843 is shown associated with each bug.



FIG. 9 shows in a further user interface window 850 an example prompt 902 that may appear responsive to the bug management tool 300 identifying that a fix for the same problem was previously deployed. The prompt 902 forms the, or a first, interactive panel for guiding the developer to deploy the fix to one or more of the data resources affected. For example, responsive to selection of an “Install” button 904, another panel may ask the developer to choose between “Install for All” or “Install for Selected Users” or similar.


Modules, Components and Logic

Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware modules. A hardware module is a tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client, or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.


In various embodiments, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired) or temporarily configured (e.g., programmed) to operate in a certain manner and/or to perform certain operations described herein. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.


Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses that connect the hardware modules). In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.


Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment, or a server farm), while in other embodiments the processors may be distributed across a number of locations.


The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., APIs).


Electronic Apparatus and System

Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, or software, or in combinations of them. Example embodiments may be implemented using a computer program product, for example, a computer program tangibly embodied in an information carrier, for example, in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, for example, a programmable processor, a computer, or multiple computers.


A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site, or distributed across multiple sites and interconnected by a communication network.


In example embodiments, operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry (e.g., an FPGA or an ASIC).


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In embodiments deploying a programmable computing system, it will be appreciated that both hardware and software architectures merit consideration. Specifically, it will be appreciated that the choice of whether to implement certain functionality in permanently configured hardware (e.g., an ASIC), in temporarily configured hardware (e.g., a combination of software and a programmable processor), or in a combination of permanently and temporarily configured hardware may be a design choice. Below are set out hardware (e.g., machine) and software architectures that may be deployed, in various example embodiments.


Language

Although the embodiments of the present invention have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader scope of the inventive subject matter. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof show, by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent, to those of skill in the art, upon reviewing the above description.


All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated references should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended; that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim.

Claims
  • 1. A method of managing software bugs in a data processing system comprising one or more data resources, the method being performed using one or more processors and comprising: receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs;determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce an aggregated list of open issues requiring fixing;presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable, each open issue comprising one or more bugs of a common bug type;responsive to receiving selection of a particular open issue, presenting particular contextual information of the particular open issue, the particular contextual information comprising: a description of any of patches, fixes, or updates associated with the particular open issue; anda hash identifier referring to the one or more bugs of the particular open issue, that uniquely identifies the particular open issue and links the particular open issue to other issues on the user interface; andproviding an option to deploy a same fix to all data resources to which the bugs of the particular open issue are related, and wherein the presenting contextual information further comprises: displaying a list of version numbers of the data resource affected by the particular open issue directly above a list of deployments affected by the particular open issue;displaying the list of deployments affected by the particular open issue directly above the hash identifier of the particular open issue;displaying the hash identifier of the particular open issue directly above a date or a time, or the description of any of patches, fixes, or updates associated with the particular open issue, and further comprising:responsive to clicking a button or link on the user interface, presenting a description of a service, stack, type, log count, and a link to individual stack traces for each of the deployments.
  • 2. The method of claim 1, wherein, responsive to receiving selection of the particular open issue, the presented contextual information comprises an expanded list of individual bugs, grouped or ordered based on type of the contextual information.
  • 3. The method of claim 1, wherein, responsive to receiving selection of the particular open issue, the presented contextual information comprises one or more version numbers of the data resource to which the bug is related.
  • 4. The method of claim 3, wherein the contextual information further comprises one or more of a deployment identifier indicative of where the affected one or more data resources are running, a date and/or time indicative of when the bug occurred, and a user identifier indicative of one or more users operating the data resource at said date and/or time.
  • 5. The method of claim 1, further comprising generating a first unique identifier for each indicated bug, which unique identifier is decodable upon selection of a particular bug from an expanded list of individual bugs, to provide to the user interface contextual information for the particular bug.
  • 6. The method of claim 1, further comprising receiving a close bug instruction indicative that a particular bug within an open issue has been fixed, and responsive thereto, removing the particular bug from the open issue.
  • 7. The method of claim 1, further comprising receiving a close issue command indicative that all bugs within an open issue have been fixed, and responsive thereto, closing the open issue such that it becomes a closed issue and no longer appears on the list of open issues.
  • 8. The method of claim 6, further comprising re-opening a closed bug or a closed issue, responsive to a further bug being received relating to the same bug type.
  • 9. The method of claim 7, further comprising re-opening a closed bug or a closed issue, responsive to a further bug being received relating to the same bug type.
  • 10. The method of claim 8, wherein the re-opened bug or re-opened issue comprises contextual data for the re-opened bug or re-opened issue, including an indication of one or more fixes previously applied, and contextual data for the further bug.
  • 11. The method of claim 10, wherein the indication of the one or more fixes previously applied comprises a link or option to deploy the same fix to the identified data resource, the method further comprising deploying said same fix responsive to user selection thereof.
  • 12. The method of claim 6, wherein in the event that a particular bug or open issue relating to a particular data resource version is closed, the method further comprises automatically closing earlier open versions of bugs or issues relating to the same bug type.
  • 13. The method of claim 7, wherein in the event that a particular bug or open issue relating to a particular data resource version is closed, the method further comprises automatically closing earlier open versions of bugs or issues relating to the same bug type.
  • 14. A non-transitory computer-readable storage medium including instructions that, when executed by at least one processor of a computing system, cause the computing system to perform a method comprising: receiving an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs;determining, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing, each open issue comprising one or more bugs of a common bug type;presenting the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable; andresponsive to receiving selection of a particular open issue, presenting particular contextual information of the particular open issue, the particular contextual information comprising: a description of any of patches, fixes, or updates associated with the particular open issue;a hash identifier referring to the one or more bugs of the particular open issue, that uniquely identifies the particular open issue and links the particular open issue to other issues on the user interface; andproviding an option to deploy a same fix to all the data resources to which the bugs of the particular open issue are related, and wherein the presenting contextual information further comprises:displaying a list of version numbers of the data resource affected by the particular open issue directly above a list of deployments affected by the particular open issue;displaying the list of deployments affected by the particular open issue directly above the hash identifier of the particular open issue;displaying the hash identifier of the particular open issue directly above a date or a time, or the description of any of patches, fixes, or updates associated with the particular open issue; andresponsive to clicking a button or link on the user interface, presenting a description of a service, stack, type, log count, and a link to individual stack traces for each of the deployments.
  • 15. The non-transitory computer-readable storage medium of claim 14, wherein, responsive to receiving selection of the particular open issue, the presented contextual information comprises an expanded list of individual bugs, grouped or ordered based on type of the contextual information.
  • 16. A system for managing software bugs in a data processing system, the system comprising: one or more physical processors;a memory storing instructions that, when executed by the one or more physical processors, cause the system to: receive an indication of one or more bugs relating to one or more data resources, and contextual information for the one or more bugs;determine, from the received indication, one or more bug types and grouping the bugs by bug type for the same data resource to produce a aggregated list of open issues requiring fixing, each open issue comprising one or more bugs of a common bug type;present the aggregated list of one or more open issues on a user interface for selection, the one or more open issues being selectable;present, responsive to receiving selection of a particular open issue, particular contextual information of the particular open issue, the particular contextual information comprising: a description of any of patches, fixes, or updates associated with the particular open issue;a hash identifier referring to the one or more bugs of the particular open issue, that uniquely identifies the particular open issue and links the particular open issue to other issues on the user interface; andproviding an option to deploy a same fix to all the data resources to which the one or more bugs of the particular open issue are related, and wherein the presenting contextual information further comprises:displaying a list of version numbers of the data resource affected by the particular open issue directly above a list of deployments affected by the particular open issue;displaying the list of deployments affected by the particular open issue directly above the hash identifier of the particular open issue;displaying the hash identifier of the particular open issue directly above a date or a time, or the description of any of patches, fixes, or updates associated with the particular open issue; andresponsive to clicking a button or link on the user interface, presenting a description of a service, stack, type, log count, and a link to individual stack traces for each of the deployments.
  • 17. The method of claim 1, wherein the bug type comprises a human-readable description of the bug or its effect.
  • 18. The system of claim 16, wherein, responsive to receiving selection of the particular open issue, the presented contextual information comprises an expanded list of individual bugs, grouped or ordered based on type of the contextual information.
  • 19. The system of claim 16, further comprising a unique identifier for each of the one or more bugs, the unique identifier being decodable to provide information comprising: a version number of a data resource to which the bug is related;deployment identifiers indicating where the data resources are running;dates and times indicative of when the one or more bugs occurred; anduser identifiers indicative of one or more users operating the data resources at the dates and the times.
  • 20. The method of claim 1, further comprising: arranging the one or more bugs of the particular open issue in an order according to one or more version numbers of the data resources to which the bugs of the particular open issue are related.
US Referenced Citations (376)
Number Name Date Kind
4881179 Vincent Nov 1989 A
5241625 Epard et al. Aug 1993 A
5418950 Li et al. May 1995 A
5428737 Li et al. Jun 1995 A
5428776 Rothfield Jun 1995 A
5542089 Lindsay et al. Jul 1996 A
5608899 Li et al. Mar 1997 A
5613105 Xbikowski et al. Mar 1997 A
5701456 Jacopi et al. Dec 1997 A
5724575 Hoover et al. Mar 1998 A
5794228 French et al. Aug 1998 A
5794229 French et al. Aug 1998 A
5845300 Comer Dec 1998 A
5857329 Bingham Jan 1999 A
5911138 Li et al. Jun 1999 A
5918225 White et al. Jun 1999 A
5999911 Berg et al. Dec 1999 A
6065026 Cornelia et al. May 2000 A
6101479 Shaw Aug 2000 A
6208985 Krehel Mar 2001 B1
6232971 Haynes May 2001 B1
6236994 Swartz et al. May 2001 B1
6237138 Hameluck et al. May 2001 B1
6243706 Moreau et al. Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6289334 Reiner et al. Sep 2001 B1
6311181 Lee et al. Oct 2001 B1
6321274 Shakib et al. Nov 2001 B1
6370538 Lamping et al. Apr 2002 B1
6430305 Decker Aug 2002 B1
6513155 Alexander, III Jan 2003 B1
6523019 Borthwick Feb 2003 B1
6642945 Sharpe Nov 2003 B1
6643613 McGee et al. Nov 2003 B2
6665683 Meltzer Dec 2003 B1
6745382 Zothner Jun 2004 B1
6850317 Mullins et al. Feb 2005 B2
6851108 Syme et al. Feb 2005 B1
6857120 Arnold et al. Feb 2005 B1
6877137 Rivette et al. Apr 2005 B1
6944777 Belani et al. Sep 2005 B1
6944821 Bates et al. Sep 2005 B1
6967589 Peters Nov 2005 B1
6976024 Chavez et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
7028223 Kolawa et al. Apr 2006 B1
7085890 Kashyap Aug 2006 B2
7086028 Davis et al. Aug 2006 B1
7155728 Prabhu et al. Dec 2006 B1
7174377 Bernard et al. Feb 2007 B2
7194680 Roy et al. Mar 2007 B1
7213030 Jenkins May 2007 B1
7216133 Wu et al. May 2007 B2
7392254 Jenkins Jun 2008 B1
7406592 Polyudov Jul 2008 B1
7441182 Beilinson et al. Oct 2008 B2
7441219 Perry et al. Oct 2008 B2
7519589 Charnock et al. Apr 2009 B2
7546353 Hesselink et al. Jun 2009 B2
7610290 Kruy et al. Oct 2009 B2
7627489 Schaeffer et al. Dec 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7716140 Nielsen et al. May 2010 B1
7765489 Shah Jul 2010 B1
7770100 Chamberlain et al. Aug 2010 B2
7783679 Bley Aug 2010 B2
7853573 Warner et al. Dec 2010 B2
7877421 Berger et al. Jan 2011 B2
7880921 Dattilo et al. Feb 2011 B2
7908521 Sridharan et al. Mar 2011 B2
7941336 Robin-Jan May 2011 B1
7958147 Turner et al. Jun 2011 B1
7962848 Bertram Jun 2011 B2
7966199 Frasher Jun 2011 B1
7979424 Dettinger et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010507 Poston et al. Aug 2011 B2
8073857 Sreekanth Dec 2011 B2
8103962 Embley et al. Jan 2012 B2
8191005 Baier et al. May 2012 B2
8225201 Michael Jul 2012 B2
8290838 Thakur et al. Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8392556 Goulet et al. Mar 2013 B2
8417715 Bruckhaus et al. Apr 2013 B1
8429194 Aymeloglu et al. Apr 2013 B2
8433702 Carrino et al. Apr 2013 B1
8499287 Shafi et al. Jul 2013 B2
8527949 Pleis et al. Sep 2013 B1
8560494 Downing Oct 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639552 Chen et al. Jan 2014 B1
8682696 Shanmugam Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8732574 Burr et al. May 2014 B2
8799313 Satlow Aug 2014 B2
8799867 Peri-Glass et al. Aug 2014 B1
8807948 Luo et al. Aug 2014 B2
8909597 Aymeloglu et al. Dec 2014 B2
8924429 Fisher et al. Dec 2014 B1
8930874 Duff et al. Jan 2015 B2
8935201 Fisher et al. Jan 2015 B1
8938686 Erenrich et al. Jan 2015 B1
8984390 Aymeloglu et al. Mar 2015 B2
9031981 Potter et al. May 2015 B1
9058315 Burr et al. Jun 2015 B2
9105000 White et al. Aug 2015 B1
9165100 Begur et al. Oct 2015 B2
9286373 Elliot et al. Mar 2016 B2
9292388 Fisher et al. Mar 2016 B2
9330120 Colgrove et al. May 2016 B2
9348677 Marinelli, III et al. May 2016 B2
9348880 Kramer et al. May 2016 B1
9378526 Sampson Jun 2016 B2
20010021936 Bertram Sep 2001 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020095360 Joao Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020184111 Swanson Dec 2002 A1
20020196229 Chen et al. Dec 2002 A1
20030004770 Miller et al. Jan 2003 A1
20030023620 Trotta Jan 2003 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030036927 Bowen Feb 2003 A1
20030061132 Mason et al. Mar 2003 A1
20030093755 O'Carroll May 2003 A1
20030105833 Daniels Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030212670 Yalamanchi et al. Nov 2003 A1
20040034570 Davis Feb 2004 A1
20040044648 Anfindsen et al. Mar 2004 A1
20040078451 Dietz et al. Apr 2004 A1
20040088177 Travis et al. May 2004 A1
20040098731 Demsey et al. May 2004 A1
20040103088 Cragun et al. May 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040139212 Mukherjee et al. Jul 2004 A1
20040153837 Preston et al. Aug 2004 A1
20040193608 Gollapudi et al. Sep 2004 A1
20040205492 Newsome Oct 2004 A1
20040236688 Bozeman Nov 2004 A1
20040236711 Nixon et al. Nov 2004 A1
20040254658 Sherriff et al. Dec 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20050004911 Goldberg et al. Jan 2005 A1
20050010472 Quatse et al. Jan 2005 A1
20050021397 Cui et al. Jan 2005 A1
20050028094 Allyn Feb 2005 A1
20050039116 Slack-Smith Feb 2005 A1
20050091186 Elish Apr 2005 A1
20050120080 Weinreb et al. Jun 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050226473 Ramesh Oct 2005 A1
20050278286 Djugash et al. Dec 2005 A1
20060004740 Dettinger et al. Jan 2006 A1
20060026561 Bauman et al. Feb 2006 A1
20060031779 Theurer et al. Feb 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060053097 King et al. Mar 2006 A1
20060053170 Hill et al. Mar 2006 A1
20060059423 Lehmann et al. Mar 2006 A1
20060070046 Balakrishnan et al. Mar 2006 A1
20060074866 Chamberlain et al. Apr 2006 A1
20060074967 Shaburov Apr 2006 A1
20060080139 Mainzer Apr 2006 A1
20060080616 Vogel et al. Apr 2006 A1
20060116991 Calderwood Jun 2006 A1
20060129746 Porter Jun 2006 A1
20060129992 Oberholtzer et al. Jun 2006 A1
20060136513 Ngo et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060155654 Plessis et al. Jul 2006 A1
20060178915 Chao Aug 2006 A1
20060209085 Wong et al. Sep 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060271838 Carro Nov 2006 A1
20060271884 Hurst Nov 2006 A1
20060277460 Forstall et al. Dec 2006 A1
20060288046 Gupta et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070005582 Navratil et al. Jan 2007 A1
20070018986 Hauser Jan 2007 A1
20070027851 Kruy et al. Feb 2007 A1
20070043686 Teng et al. Feb 2007 A1
20070061752 Cory Mar 2007 A1
20070094248 McVeigh et al. Apr 2007 A1
20070113164 Hansen et al. May 2007 A1
20070136095 Weinstein Jun 2007 A1
20070150805 Misovski Jun 2007 A1
20070168336 Ransil et al. Jul 2007 A1
20070168871 Jenkins Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070178501 Rabinowitz et al. Aug 2007 A1
20070185850 Walters et al. Aug 2007 A1
20070192281 Cradick et al. Aug 2007 A1
20070245339 Bauman et al. Oct 2007 A1
20070260582 Liang Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070299697 Friedlander et al. Dec 2007 A1
20080016155 Khalatian Jan 2008 A1
20080091693 Murthy Apr 2008 A1
20080109714 Kumar et al. May 2008 A1
20080126344 Hoffman et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080172607 Baer Jul 2008 A1
20080177782 Poston et al. Jul 2008 A1
20080186904 Koyama et al. Aug 2008 A1
20080196016 Todd Aug 2008 A1
20080201313 Dettinger et al. Aug 2008 A1
20080215543 Huang et al. Sep 2008 A1
20080249820 Pathria Oct 2008 A1
20080267386 Cooper Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080288475 Kim et al. Nov 2008 A1
20080313132 Hao et al. Dec 2008 A1
20080313243 Poston et al. Dec 2008 A1
20090006150 Prigge et al. Jan 2009 A1
20090007056 Prigge et al. Jan 2009 A1
20090024962 Gotz Jan 2009 A1
20090031401 Cudich et al. Jan 2009 A1
20090043762 Shiverick et al. Feb 2009 A1
20090043801 LeClair Feb 2009 A1
20090055487 Moraes et al. Feb 2009 A1
20090083275 Jacob et al. Mar 2009 A1
20090089651 Herberger et al. Apr 2009 A1
20090094217 Dettinger et al. Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090112678 Luzardo Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090144747 Baker Jun 2009 A1
20090150868 Chakra et al. Jun 2009 A1
20090161147 Klave Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090172674 Bobak et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187556 Ross et al. Jul 2009 A1
20090193012 Williams Jul 2009 A1
20090199047 Vaitheeswaran et al. Aug 2009 A1
20090199106 Jonsson et al. Aug 2009 A1
20090216562 Faulkner et al. Aug 2009 A1
20090248721 Burton et al. Oct 2009 A1
20090248757 Havewala et al. Oct 2009 A1
20090249178 Ambrosino et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090282068 Shockro et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090299830 West et al. Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20100004857 Pereira et al. Jan 2010 A1
20100011282 Dollard et al. Jan 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100070464 Aymeloglu et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070844 Aymeloglu et al. Mar 2010 A1
20100073315 Lee et al. Mar 2010 A1
20100076813 Ghosh et al. Mar 2010 A1
20100082671 Li et al. Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100145902 Boyan et al. Jun 2010 A1
20100161646 Ceballos et al. Jun 2010 A1
20100169376 Chu Jul 2010 A1
20100169405 Zhang Jul 2010 A1
20100199167 Uematsu et al. Aug 2010 A1
20100223260 Wu Sep 2010 A1
20100238174 Haub et al. Sep 2010 A1
20100262901 DiSalvo Oct 2010 A1
20100280851 Merkin Nov 2010 A1
20100306722 LeHoty et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100313239 Chakra et al. Dec 2010 A1
20110035396 Merz et al. Feb 2011 A1
20110041084 Karam Feb 2011 A1
20110047540 Williams et al. Feb 2011 A1
20110066497 Gopinath et al. Mar 2011 A1
20110074788 Regan et al. Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110093490 Schindlauer et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110107196 Foster May 2011 A1
20110131547 Elaasar Jun 2011 A1
20110145401 Westlake Jun 2011 A1
20110161409 Nair Jun 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110179048 Satlow Jul 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110219360 Srinivasa Sep 2011 A1
20110225482 Chan et al. Sep 2011 A1
20110252282 Meek et al. Oct 2011 A1
20110258216 Supakkul et al. Oct 2011 A1
20110270871 He et al. Nov 2011 A1
20110321008 Jhoney et al. Dec 2011 A1
20120004894 Butler Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120059853 Jagota Mar 2012 A1
20120065987 Farooq et al. Mar 2012 A1
20120078595 Balandin et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084184 Raleigh Apr 2012 A1
20120102022 Miranker et al. Apr 2012 A1
20120123989 Yu et al. May 2012 A1
20120159449 Arnold et al. Jun 2012 A1
20120173381 Smith Jul 2012 A1
20120174057 Narendra et al. Jul 2012 A1
20120188252 Law Jul 2012 A1
20120197657 Prodanovic Aug 2012 A1
20120197660 Prodanovic Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120226590 Love et al. Sep 2012 A1
20120266245 McDougal et al. Oct 2012 A1
20120284670 Kashik et al. Nov 2012 A1
20120284719 Phan et al. Nov 2012 A1
20120304244 Xie et al. Nov 2012 A1
20120323829 Stokes et al. Dec 2012 A1
20130016106 Yip et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130024731 Shochat et al. Jan 2013 A1
20130054551 Lange Feb 2013 A1
20130055264 Burr et al. Feb 2013 A1
20130086482 Parsons Apr 2013 A1
20130096968 Van Pelt et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130124567 Balinsky et al. May 2013 A1
20130151305 Akinola et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130152047 Moorthi Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130198624 Aymeloglu et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226944 Baid et al. Aug 2013 A1
20130232220 Sampson Sep 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130262528 Foit Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130288719 Alonzo Oct 2013 A1
20140012886 Downing et al. Jan 2014 A1
20140074888 Potter et al. Mar 2014 A1
20140089339 Siddiqui et al. Mar 2014 A1
20140108074 Miller et al. Apr 2014 A1
20140115589 Marinelli, III et al. Apr 2014 A1
20140115610 Marinelli, III et al. Apr 2014 A1
20140129936 Richards et al. May 2014 A1
20140208281 Ming Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140244284 Smith Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140358829 Hurwitz Dec 2014 A1
20150026622 Roaldson et al. Jan 2015 A1
20150073954 Braff Mar 2015 A1
20150089353 Folkening Mar 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150112641 Faraj Apr 2015 A1
20150186483 Tappan et al. Jul 2015 A1
20150212663 Papale et al. Jul 2015 A1
20150254220 Burr et al. Sep 2015 A1
20150269030 Fisher et al. Sep 2015 A1
20160026923 Erenrich et al. Jan 2016 A1
20160062555 Ward et al. Mar 2016 A1
20160098176 Cervelli et al. Apr 2016 A1
20160110369 Cervelli et al. Apr 2016 A1
20160162519 Stowe et al. Jun 2016 A1
Foreign Referenced Citations (29)
Number Date Country
2013251186 Nov 2015 AU
102054015 May 2014 CN
102014103482 Sep 2014 DE
1647908 Apr 2006 EP
1672527 Jun 2006 EP
2 634 745 Sep 2013 EP
2743839 Jun 2014 EP
2778986 Sep 2014 EP
2921975 Sep 2015 EP
2993595 Mar 2016 EP
3002691 Apr 2016 EP
3009943 Apr 2016 EP
3032441 Jun 2016 EP
2366498 Mar 2002 GB
2508503 Jan 2015 GB
2508293 Apr 2015 GB
1194178 Sep 2015 HK
622485 Mar 2015 NZ
616212 May 2015 NZ
616299 Jul 2015 NZ
WO 2000034895 Jun 2000 WO
WO 01025906 Apr 2001 WO
WO 2001088750 Nov 2001 WO
WO 2007133206 Nov 2007 WO
WO 2010030913 Mar 2010 WO
WO 2010030914 Mar 2010 WO
WO 2010030917 Mar 2010 WO
WO 2012119008 Sep 2012 WO
WO 2013030595 Mar 2013 WO
Non-Patent Literature Citations (63)
Entry
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2.
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages.
“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>, Aug. 11, 2008, pp. 3.
“Remove a Published Document or Blog Post,” Sharing and Collaborating on Blog Post.
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
“Java Remote Method Invocation: 7—Remote Object Activation,” Dec. 31, 2010, retrieved from the internet Mar. 15, 2016 https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmi-activation2.html.
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2.
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006.
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137.
Anonymous, “Frequently Asked Questions about Office Binder 97,” http://web.archive.org/web/20100210112922/http://support.microsoft.com/kb/843147 printed Dec. 18, 2006 in 5 pages.
Bae et al., “Partitioning Algorithms for the Computation of Average Iceberg Queries,” DaWaK 2000, LNCS 1874, pp. 276_286.
Ballesteros et al., “Batching: A Design Pattern for Efficient and Flexible Client/Server Interaction,” Transactions on Pattern Languages of Programming, Springer Berlin Heildeberg, 2009, pp. 48-66.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Bogle et al., “Reducing Cross-Domain Call Overhead Using Batched Futures,” SIGPLAN No. 29, 10 (Oct. 1994) pp. 341-354.
Bogle, Phillip Lee, “Reducing Cross-Domain Call Overhead Using Batched Futures,” May 1994, Massachusetts Institute of Technology, pp. 96.
Bouajjani et al., “Analysis of Recursively Parallel Programs,” PLDI09: Proceedings of the 2009 ACM Sigplan Conference on Programming Language Design and Implementation, Jun. 15-20, 2009, Dublin, Ireland, pp. 203-214.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chazelle et al., “The Bloomier Filter: An Efficient Data Structure for Static Support Lookup Tables,” SODA '04 Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 30-39.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page.
Donjerkovic et al., “Probabilistic Optimization of Top N Queries,” Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999, pp. 411-422.
Fang et al., “Computing Iceberg Queries Efficiently,” Proceedings of the 24th VLDB Conference New York, 1998, pp. 299-310.
Ferreira et al., “A Scheme for Analyzing Electronic Payment Systems,” Basil 1997.
Frantisek et al., “An Architectural View of Distributed Objects and Components in CORBA, Java RMI and COM/DCOM,” Software—Concepts & Tools, vol. 19, No. 1, Jun. 1, 1998, pp. 14-28.
Galliford, Miles, “SnagIt Versus Free Screen Capture Software: Critical Tools for Website Owners,” <http://www.subhub.com/articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11.
Goldstein et al., “Stacks Lazy Threads: Implementing a Fast Parallel Call,” Journal of Parallel and Distributed Computing, Jan. 1, 1996, pp. 5-20.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Han et al., “Efficient Computation of Iceberg Cubes with Complex Measures,” ACM Sigmod, May 21-24, 2001, pp. 1-12.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
Ivanova et al., “An Architecture for Recycling Intermediates in a Column-Store,” Proceedings of the 35th Sigmod International Conference on Management of Data, Sigmod '09, Jun. 29, 2009, p. 309.
Jacques, M., “An extensible math expression parser with plug-ins,” Code Project, Mar. 13, 2008. Retrieved on Jan. 30, 2015 from the internet: <http://www.codeproject.com/Articles/7335/An-extensible-math-expression-parser-with-plug-ins>.
Jenks et al., “Nomadic Threads: A Migrating Multithreaded Approach to Remote Memory Accesses in Multiprocessors,” Parallel Architectures and Compilation Techniques, 1996, Oct. 20, 1996, pp. 2-11.
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” <http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, Aug. 7, 2013, pp. 1.
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.
Karp et al., “A Simple Algorithm for Finding Frequent Elements in Streams and Bags,” ACM Transactions on Database Systems, vol. 28, No. 1, Mar. 2003, pp. 51Ð55.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Kwout, <http://web.archive.org/web/20080905132448/http://www.kwout.com/> Sep. 5, 2008, pp. 2.
Leela et al., “On Incorporating Iceberg Queries in Query Processors,” Technical Report, TR-2002-01, Database Systems for Advanced Applications Lecture Notes in Computer Science, 2004, vol. 2973.
Liu et al., “Methods for Mining Frequent Items in Data Streams: An Overview,” Knowledge and Information Systems, vol. 26, No. 1, Jan. 2011, pp. 1-30.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Mendes et al., “TcruziKB: Enabling Complex Queries for Genomic Data Exploration,” IEEE International Conference on Semantic Computing, Aug. 2008, pp. 432-439.
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6.
Microsoft, “Registering an Application to a URI Scheme,” <http://msdn.microsoft.com/en-us/library/aa767914.aspx>, printed Apr. 4, 2009 in 4 pages.
Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-us/library/ms649016.aspx>, printed Jun. 8, 2009 in 20 pages.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
Nitro, “Trick: How to Capture a Screenshot As PDF, Annotate, Then Share It,” <http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, Mar. 4, 2008, pp. 2.
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” <http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5.
O'Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html published Jan. 1, 2006 in 10 pages.
Russell et al., “NITELIGHT: A Graphical Tool for Semantic Query Construction,” 2008, pp. 10.
Schroder, Stan, “15 Ways to Create Website Screenshots,” <http://mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
Smart et al., “A Visual Approach to Semantic Query Design Using a Web-Based Graphical Query Designer,” 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2008),ÊAcitrezza, Catania, Italy, Sep. 29-Oct. 3, 2008, pp. 16.
SnagIt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3.
SnagIt, “SnagIt 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6.
SnagIt, “SnagIt Online Help Guide,” <http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284.
Stamos et al., “Remote Evaluation,” Journal ACM Transactions on Programming Languages and Systems (TOPLAS) vol. 12, Issue 4, Oct. 1990, pp. 537-564.
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, May 5, 2008, pp. 11.
Wikipedia, “Machine Code”, p. 1-5, printed Aug. 11, 2014.
Wollrath et al., “A Distributed Object Model for the Java System,” Proceedings of the 2nd Conference on USENEX, Conference on Object-Oriented Technologies (COOTS), Jun. 17, 1996, pp. 219-231.
Related Publications (1)
Number Date Country
20190222490 A1 Jul 2019 US