Within a given environment, many sensory factors may be adjusted to an individual's preference. Examples include temperature, volume level, music genre or playlist, lighting levels and even colors and fonts of a presentation. Difficulties can arise when different individuals have different preferences for the same sensory factor.
INTRODUCTION: Within a given environment, many sensory factors may be adjusted to an individual's preference. A sensory factor as used herein is a condition within an environment that can be perceived by an individual using one or more of the individual's senses. Examples include temperature, volume level, music genre or playlist, lighting levels, aromas, and even colors and fonts of a presentation. Difficulties can arise when different individuals have different preferences for the same sensory factor. Imagine, for example, a conference room having its own heating and cooling zone. Different individuals attending a meeting in that room can have different temperature preferences. Further, in hot summer months, the cooling may be turned off when the room is not in use. It can take time for a group to reach a consensus on a desired temperature and additional time for the room to reach that desired temperature once a decision has been made.
Embodiments described below operate to identify those individuals expected to be in an environment at a point in the future. For example, this can be accomplished by accessing a calendar event or a reservation list. Preference data for the each individual in the group specifies the individual's preference with respect to a sensory factor such as temperature that can be adjusted. The preference data for the identified group can be processed against a rule to identify a setting to achieve a desired state for the sensory factor.
The rule may include averaging such that the identified setting represents, at least in part, an average of the group's preferences. Such an average may be an average temperature, volume lever, or lighting level. As applied to music, the average may be a particular genre or playlist representative of the group preference. The identified setting is then applied to modify the sensory factor from a current state to a desired state represented by the setting. Such may be accomplished in an automated fashion by sending an instruction to a digital thermostat, lighting control, or audio/visual control system.
The following description is broken into sections. The first, labeled “Components,” describes examples of various physical and logical components for implementing various embodiments. The second section, labeled “Operation,” describes steps taken to implement various embodiments.
COMPONENTS:
Sensory factor control system 14 represents any device or combination of devices configured to control a sensory factor such as temperature, lighting, and audio visual characteristics such as music genre or playlist, presentation color and font, and volume. Examples include remotely accessible thermostats, lighting systems, and video and audio controllers. Client devices 16-20 represent generally any computing device with which a user may interact to communicate with other client devices and server device 22 via link 24. Server device 22 represents generally any computing device configured to serve an application and corresponding data for consumption by client devices 14-18 and for communicating instruction to control system 14.
Client device 16 is shown to include core device components 26 and preference and presence feature 28. Core device components 26 represent generally the hardware and programming for providing the computing functions for which device 16 is designed. Such hardware can include a processor and memory, touch display and any other user input features. The programming can include an operating system and applications. Preference and presence feature 28 represents an application or applications through which a user can actively or passively communicate her current location, an expected future location and her preferences with respect to a sensory factor. For example feature 28 may include a calendaring application though which the user can schedule meetings and other events at specified locations. Feature 28 may also include a location reporting application such as a GPS, Wi-Fi, Bluetooth or NFC enabled application and supporting hardware.
Sensory factor management system 12, discussed in more detail below, represents generally a combination of hardware and programming configured to identify those individuals expected to be in an environment at a point in the future and process preference data for those individuals against a rule to identify a setting specifying a desired state for a sensory factor. System 12 is configured to apply or otherwise communicate a setting for control system 14 to apply to cause the sensory factor to achieve a desired state at or before the time the individuals are expected to be in the environment. System 12 may be integrated within one or all of client devices 16-20. System 12 may be integrated in server device 22. System 12 may be distributed across server device 22 and client devices 16-20.
Presence engine 30 is configured to process presence data to identify a plurality of individuals scheduled to be present in the environment at a future time. In other words, engine 30 is responsible for, at a first time, identifying individuals expected to be in a shared location at a second, later time. Such may be accomplished by accessing and processing calendar data that specifies a meeting between a group of individuals at a designated location. The same may be accomplished by accessing and processing reservation or event ticket data to identify the individuals.
Preference engine 32 is configured to process, before the individuals are scheduled to be present in the environment, preference data for the plurality of individuals to identify a setting for the sensory factor. The identified setting satisfies a rule applied to the preference data and corresponds to a desired state for the sensory factor. Update engine 34 is configured to apply the setting to modify the sensory factor from a current state to the desired state before the individuals are schedule to be present.
To summarize, system 12 operates to predict when a group of individuals is expected to be in a shared environment, use preference data for those individuals to identify a setting for a sensory factor, and apply that setting such that the sensory factor is in a desired state when the individuals are expected to arrive. As noted, preference engine 32 processes the preference data against a rule. The rule can take a number of forms. In one example, the rule may indicate averaging. The preference data for each identified individual may identify or otherwise correspond to a preferred setting value for a setting. The collected preferred setting values the group of individuals can then be, at least in part, averaged to identify the setting. Where the sensory factor is temperature, preference engine 32 may average the preferred temperatures of the individuals to identify a setting that is expected to achieve that average. The same may be achieved to identify a setting for an average brightness or volume. For music selection, the preferred setting values may represent preferred genres, songs, and the like. Processing the preference data for a group of individuals can be an averaging that identifies a shared genre or a collection of preferred songs or song types to include in a playlist.
In another example, preference data for each individual can, in addition to a preferred value, include a priority indicator. A priority indicator is data that can be used to weight a given individual's preferred setting value. For example, an individual identified as a VIP such as a meeting organizer, presenter, or manager may have a priority indicator that will weight their preferred setting value. Another priority indicator may be reflective of how important a sensory factor is to a given individual. For example, one may or may not care about room temperature. The rule used by preference engine 32 may include weighted averaging such that the identified setting represents an average of the preferred setting values weighted according to the corresponding priory indicators. Priority indicators may be indicative of status within a hierarchy. Here, the rule may prioritize the preferred setting values of the plurality of individuals according to the priority indicators such that the identified setting is influenced more by the preferred setting value of a one individual with a higher status than that of another.
A priority indicator may be indicative of a physical limitation affected by the sensory factor. For example, a color blind individual may desire to avoid certain colors in a projected presentation. A visually impaired person may desire a large font size. A hearing impaired individual may desire a louder than normal volume. Here, the rule used by preference engine 32 can give weight to the preferred setting values of a given individual having a priority indicator signifying a physical limitation affected by the sensory factor. The preference data is processed such that the identified setting substantially matches the preferred setting value of one of that given individual. For example, the colors or font size used in a presentation may be adjusted.
As described, system 12 operates to place a sensory factor at a desired state based on preferences of individuals expected to be in a given environment at a future time. Reality may prove different when not all of the individuals arrive or when additional individuals arrive. In other words, a fist group of individuals may be expected to be present at a scheduled time, but a second, different group may show up. Thus the setting selected by preference engine 32 may not correspond to a desired state of the sensory factor for the second group.
Here, presence engine 30 is configured to process presence data to identify individuals identified as being present within the environment at the scheduled time. Presence data here identifies those currently present at a corresponding location. For example, the presence data may be indicative of current locations actively or passively reported by a mobile devices carried by the individuals. Mobile devices may actively report GPS data. Location may be assessed by Wi-Fi signal strengths. Current location may also be determined based individuals logging into or otherwise reporting as present via a presentation service.
Preference engine 32 is configured to process preference data for that second group of individuals to identify an updated setting for the sensory factor that satisfies the rule applied to the preference data for the second group. The updated setting corresponds to an updated desired state for the sensory factor. Update engine 34 is then configured to apply the updated setting to modify the sensory factor from the previous desired state to the updated desired state.
Data repository 36 is also shown to include expected presence data 48 and actual presence data 50. Expected presence data 48 represents data indicating which individuals are expected to be at a given location at a future time. As mentioned, such data can include calendar, reservation, or event ticketing data. Actual presence data 50 represents data indicating the current locations of the individuals. Thus, referring to
In foregoing discussion, engines 30-34 were described as combinations of hardware and programming. Engines 30-34 may be implemented in a number of fashions. Looking at
Memory resource 52 represents generally any number of memory components capable of storing instructions that can be executed by processing resource 54. Memory resource 52 is non-transitory in the sense that it does not encompass a transitory signal but instead is made up of more or more memory components configured to store the relevant instructions. Memory resource 52 may be implemented in a single device or distributed across devices. Likewise, processing resource 54 represents any number of processors capable of executing instructions stored by memory resource 54. Processing resource 54 may be integrated in a single device or distributed across devices. Further, memory resource 52 may be fully or partially integrated in the same device as processing resource 54, or it may be separate but accessible to that device and processing resource 54.
In one example, the program instructions can be part of an installation package that when installed can be executed by processing resource 54 to implement system 12. In this case, memory resource 52 may be a portable medium such as a CD, DVD, or flash drive or a memory maintained by a server from which the installation package can be downloaded and installed. In another example, the program instructions may be part of an application or applications already installed. Here, memory resource 52 can include integrated memory such as a hard drive, solid state drive, or the like.
In
OPERATION:
A plurality of individuals expected to be present in an environment at a future time are identified (step 62). Referring to
The setting identified in step 66 is, before the individuals are schedule to be present in the environment, applied to modify the sensory factor from a current state to a desired state (step 68). Referring to
As alluded earlier, the group of individuals identified in step 62 may not be the group of individuals who are present at the specified future time. In other words, not all of the identified individuals may be present as expected while additional unexpected individual may be present. Here, after the individuals identified in step 62 are expected to be present, a second group of individuals indicated as being actually present in the environment are identified. This second group differs from the group identified in step 62 in that includes at least one fewer or one additional individual. Preference data for that second group is then processed to identify an updated setting. The updated setting satisfies the rule applied to the preference data for the group of individual identified as actually present. The second setting is applied to modify the sensory factor from the desired state of step 68 to an updated state reflective of the preference data of the second group.
The preference data for each of the plurality of individuals can include a priority indicator. Step 66 can then include processing the preference data for the plurality of individuals to identify a setting that satisfies the rule such that the rule prioritizes the preferred setting values of the plurality of individuals according to the priority indicators. Thus, the setting identified in step 66 is influenced more by the preferred setting value of a first of the plurality of individual whose priority indicator is ranked higher than that of a second of the plurality of individuals.
The priority indicator for a first of the plurality of individuals is indicative of a physical limitation with respect to the sensory factor. Step 66 can include processing the preference data for the plurality of individuals to identify a setting that satisfies the rule such that the rule prioritizes the preferred setting value of the first individual. In other words, the identified in step 66 substantially matches the preferred setting value of the first of the plurality of individuals.
CONCLUSION:
Embodiments can be realized in any memory resource for use by or in connection with processing resource. A “processing resource” is an instruction execution system such as a computer/processor based system or an ASIC (Application Specific Integrated Circuit) or other system that can fetch or obtain instructions and data from computer-readable media and execute the instructions contained therein. A “memory resource” is any non-transitory storage media that can contain, store, or maintain programs and data for use by or in connection with the instruction execution system. The term “non-transitory is used only to clarify that the term media, as used herein, does not encompass a signal. Thus, the memory resource can comprise any one of many physical media such as, for example, electronic, magnetic, optical, electromagnetic, or semiconductor media. More specific examples of suitable computer-readable media include, but are not limited to, hard drives, solid state drives, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory, flash drives, and portable compact discs.
Although the flow diagram of
The present invention has been shown and described with reference to the foregoing exemplary embodiments. It is to be understood, however, that other forms, details and embodiments may be made without departing from the spirit and scope of the invention that is defined in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/58415 | 9/6/2013 | WO | 00 |