Managing copies of data

Information

  • Patent Grant
  • 8229954
  • Patent Number
    8,229,954
  • Date Filed
    Wednesday, January 4, 2012
    13 years ago
  • Date Issued
    Tuesday, July 24, 2012
    12 years ago
Abstract
A method in a computer system for retrieving data from one of multiple copies of the data is provided, referred to as the data management system. The data management system receives a request identifying a data object to be accessed. Then, the data management system queries a metabase to locate data copies that contain the identified data object, wherein the data copies are created from similar source data, and wherein for each data copy the metabase contains an indication of the availability of the copy relative to other copies. Next, the data management system determines one of the located data copies to use to access the identified data object, wherein the determination is made based on the indicated availability contained in the metabase for each of the located data copies. Then, the data management system accesses the identified data object using the determined one of the located data copies.
Description
BACKGROUND

Computer systems contain large amounts of data. This data includes personal data, such as financial data, customer/client/patient contact data, audio/visual data, and much more. This data also includes information related to the correct operation of the computer system, such as operating system files, application files, user settings, and so on. With the increased reliance on computer systems to store critical information, the importance of protecting data has grown. Traditional data protection systems, such as backup systems, receive an identification of a file location to protect, then create one or more secondary copies containing the contents of the protected up location. These secondary copies can then later be used to restore the original data should anything happen to the original data.


In corporate environments, protecting data is generally part of a routine process that is performed for many computer systems within an organization. For example, a company might back up critical computing systems related to e-commerce such as databases, file servers, web servers, and so on. The company may also back up computing systems used by each of its employees, such as those used by an accounting department, marketing department, engineering, and so forth.


Because of the amount of data in an organization, secondary copies of data for an organization's computing systems are often very large and can require the purchase of expensive storage devices and storage media. The restoration of data in the event of data loss is also slowed by the large size of the secondary copy. As the amount of protected data increases, locating and restoring data requires more actions to be taken. For example, it may be necessary to search many backup tapes to find the correct data. The quantity of secondary copy media, such as tapes, may mean that some secondary copy media has been moved offsite such that it must first be retrieved before data can be recovered from it. Each of these factors increases the cost of protecting data and the time required to recover data in the event of data loss. Quick recovery of data is often critical to today's businesses, and any additional delay could affect business operations and customers' satisfaction with the business.


Management of data in this way also consumes resources, and it is often desirable to minimize impact to computing systems to provide maximum availability for handling customer or employee requests. Some organizations defer activities such as performing backups until off hours, such as early in the morning to reduce the impact to the availability of systems. However, recovery of a file may be needed during business hours or at other inconvenient times, and choosing the best way to retrieve the data is important for maintaining the availably of the system.


There is a need for a system that overcomes the above problems, as well as one that provides additional benefits.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram that illustrates components of a data management system, in one embodiment.



FIG. 2 is a flow diagram that illustrates the steps performed by the data management system to create a primary copy of data.



FIG. 3 is a flow diagram that illustrates the steps performed by the data management system to create secondary copies of data.



FIG. 4 is a flow diagram that illustrates the steps performed by the data management system to retrieve data in response to a request.



FIG. 5 is a flow diagram that illustrates the steps performed by the data management system to search an index of content.



FIG. 6 is a flow diagram that illustrates the steps performed by the data management system to determine the best copy of data from which to satisfy a data retrieval request.



FIG. 7 is a table that illustrates typical contents of a metabase used by the data management system to satisfy a data retrieval request.



FIG. 8 is a display page of an example display produced by the data management system for retrieving data.





In the drawings, the same reference numbers and acronyms identify elements or acts with the same or similar functionality for ease of understanding and convenience. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the Figure number in which that element is first introduced (e.g., element 110 is first introduced and discussed with respect to FIG. 1).


DETAILED DESCRIPTION

The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.


Overview


A data management system often contains a primary or production copy of data, and one or more secondary copies created from the primary copy of the data. For example, a web server may contain the primary copy of the data. A snapshot, change journal, replication, migration, backup, or other storage operation may be performed to create the one or more secondary copies of the data. For example, a snapshot operation may create an image of the current state of the primary copy, and the data management system may transfer the snapshot to another system for storage as a secondary copy. The secondary copy may later be encrypted or otherwise processed to create additional secondary copies. For example, an organization may initially backup data to a first secondary copy and later encrypt the data to a second secondary copy before the data is stored in a third-party offsite storage facility.


A method and system for managing copies of data is provided, referred to as the data management system. The data management system creates and manages copies of data. For example, the data management system may create a secondary copy such as a backup of the data stored on each of the computer systems within an organization. The secondary copy represents a second version of the original source version of the data. The data management system may make additional secondary copies of the data, called auxiliary copies. For example, the data management system may create secondary copies to perform additional operations on the data (e.g., encryption and protection) and to store the data in a new location (e.g., in a tape library or at an off-site data vault). The data management system may also store information about the data managed by the system within a data structure such as a database, also called a metabase. The metabase may contain information such as when the data management system performed the last data copy, where each of the data copies is stored, what files are contained within each data copy, and so on. When the data management system receives a request to access data, there may be many copies of the data available, and the data management system selects a desirable copy of the data to satisfy the access request as described in further detail below. The data management system may first consult the metabase to determine which copies contain the requested data without accessing the computer systems where the data is actually stored. In this way, the data management system provides high availability of data while reducing the impact of access requests on critical computer systems.


The invention will now be described with respect to various embodiments. The following description provides specific details for a thorough understanding of, and enabling description for, these embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the invention.


The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.


Unless described otherwise below, aspects of the invention may be practiced with conventional systems. Thus, the construction and operation of the various blocks shown in FIG. 1 may be of conventional design, and need not be described in further detail herein to make and use the invention, because such blocks will be understood by those skilled in the relevant art. One skilled in the relevant art can readily make any modifications necessary to the blocks in FIG. 1 (or other embodiments or figures) based on the detailed description provided herein.



FIG. 1 is a block diagram that illustrates components of the data management system, in one embodiment. The data management system 115 interacts with computer systems (e.g., 105 and 110) within an organization. The data management system 115 creates a first secondary copy of the data stored on the computer system 105 and a first secondary copy of the data stored on the computer system 110 and stores the first secondary copies in a primary copy store 120. The data management system 115 also creates additional secondary copies of the data within a secondary copy data store 125. The data management system stores information about the data and the copies within a metabase 130. Although the figure depicts a single metabase 130, the data management system may distribute the metabase across several computer systems according to many distribution schemes that will be recognized by those of ordinary skill in the art. For example, a metabase could be associated with each computer system, or with a group of computer systems, and so on.



FIG. 1 and the discussion herein provide a brief, general description of a suitable computing environment in which the invention can be implemented. Although not required, aspects of the invention are described in the general context of computer-executable instructions, such as routines executed by a general-purpose computer, e.g., a server computer, wireless device, or personal computer. Those skilled in the relevant art will appreciate that the invention can be practiced with other communications, data processing, or computer system configurations, including: Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. Indeed, the terms “computer,” “host,” and “host computer” are generally used interchangeably herein, and refer to any of the above devices and systems, as well as any data processor.


Aspects of the invention can be embodied in a special purpose computer or data processor that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions explained in detail herein. Aspects of the invention can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), Storage Area Network (SAN), Fibre Channel, or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.


Aspects of the invention may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme). Those skilled in the relevant art will recognize that portions of the invention reside on a server computer, while corresponding portions reside on a client computer such as a mobile or portable device, and thus, while certain hardware platforms are described herein, aspects of the invention are equally applicable to nodes on a network.


Creating Copies


The data management system may create the primary copy of the data stored on a computer system in a variety of ways. In some embodiments, snapshot software installed on each computer system is used to capture a point-in-time view of the data on a computer system. The data management system may copy the snapshot data to another computer system. Snapshots may contain a snapshot of all of the data on a system, or they may be incremental and provide information about the data that has changed since a previous snapshot was taken. In some embodiments, change journaling software (often built into the operating system) is used to detect changes to data and to update the primary copy. In some embodiments, an agent is installed for each type of data stored on a computer system. The agent may be designed to copy a specific type of data (e.g., database data or data produced by a specific application) more efficiently than a simple copy of the underlying data files. Once a primary copy has been created, additional operations can be performed on the data without accessing the original computer system from which the data was copied.


The data management system may copy data from a computer system as files or the data management system may process the contents of the files as application data. As described above, an agent may be installed that interprets data produced by a particular application. For example, data stored by an email server (e.g., Microsoft Exchange Server), may be stored in a series of files. Creating a copy of the files is often not as useful as interpreting the data itself and storing the data in its interpreted form. For example, the data from an email server may be stored in one large file with a non-descriptive name, such as “mailbox.dat,” but it is more useful when searching for data to understand that the file contains mailboxes belonging to specific users, and that each of those mailboxes contains email messages having descriptive information such as a subject, TO header, and so on. Therefore, rather than simply storing the file, the data management system may parse, recognize, and store information about each user's mailbox and the email messages contained within it. Similar processes may be used to store data created by database applications, word processors, accounting software, and so on.



FIGS. 2-6 are representative flow diagrams that depict processes used in some embodiments. These flow diagrams do not show all functions or exchanges of data, but instead they provide an understanding of commands and data exchanged under the system. Those skilled in the relevant art will recognize that some functions or exchange of commands and data may be repeated, varied, omitted, or supplemented, and other (less important) aspects not shown may be readily implemented.



FIG. 2 is a flow diagram that illustrates the steps performed by the data management system to create a first secondary copy of data. In step 210, the data management system selects a computer system that will provide the primary data to be copied. In step 220, the data management system examines the data to determine how the data should be copied. For example, as described above, the data may be stored on a file-by-file basis, or additional information may be captured for application data generated by recognized applications. In step 230, the data management system copies the data from the selected computer system to the primary copy data store. In step 240, the data management system updates the metabase with information about the first secondary copy. The information added to the metabase may contain information about the content within the data, access control information obtained from the source location of the data, and so on. The data management system may also perform other operations on the copied data such as classifying the data (e.g., based on keywords within the data, the data content, attributes of the data, and so forth), encrypting the data, and so on. After step 240, these steps conclude.


In some embodiments, the data management system performs additional operations on secondary copies of data. For example, an organization may create an unencrypted first secondary copy, but perform encryption on an auxiliary secondary copy to allow the organization to safely store the auxiliary secondary copy with a third-party data storage provider without worrying that the third party may view confidential information contained within the data. The data management system may also examine the first secondary copy and eliminate duplicate data objects within the first secondary copy to create a single instance of each data object. This process is generally referred to as single instancing. For example, when copying data from multiple computer systems within an organization, each computer system will often contain similar files for the operating system and configuration data. Storing multiple copies of the same data wastes storage space, and increases the time and cost associated with data management, so single instancing can provide substantial cost savings to an organization.


In some embodiments, the data management system creates an index of the content contained within each copy. The index information may be stored within the metabase. The index may contain information such as each of the locations where the data is located, keywords contained within the data, classifications assigned to the data, and user access information describing which users are permitted to view the contents of the data. The content index may be used to facilitate search and retrieval of the data, such as in response to a user request to restore a particular file.


In some embodiments, the data management system performs the operations described above based on a storage policy. For example, operations such as the creation of a primary copy of data may be performed automatically on a schedule. The storage policy defines the types of operations to be performed, and the conditions that trigger their performance. For example, a storage policy may specify the creation of a secondary copy of data onto tape when the primary copy of the data reaches a certain size or is a certain number of days old. The storage policy may also define which computer systems are involved in a particular data management operation, such as a particular pool of servers to use for performing encryption of data.



FIG. 3 is a flow diagram that illustrates the steps performed by the data management system to create secondary copies of data. In step 310, the data management system accesses the primary copy to obtain the data. The system can also create a secondary copy from another secondary copy, or can access the original source location of the data to create the secondary copy. The primary copy is generally preferred over accessing the original source location to reduce the impact of data management operations to the original source location. In step 320, the data management performs extra operations such as those described above, such as encryption, single instancing, and content indexing. In step 330, the data management copies the data from the primary copy or other source location to a secondary copy data store. A variety of media or storage devices can be used as a secondary data store such as a magnetic disk, a tape or tape library, a network-attached storage (NAS) device, a redundant array of inexpensive disks (RAID) array, and so on. In step 340, the data management system updates the metabase with information about the new secondary copy, such as where the copy is stored, what data is stored in it, and any operations performed on the data, such as encryption. This information can be used later when the data is retrieved to determine the difficulty of obtaining specified data from a particular copy. After step 340, these steps conclude.


Retrieving Data


The data management system periodically receives requests to retrieve data from users and from the system itself. For example, a user may search for a specific file or document, and the data management system finds matching data. The system may request a copy of the data on which to perform a data management operation. For example, if a storage policy specifies that an encrypted copy of data should be created, the data management system may query the metabase to locate an available copy of the data to encrypt, so that the original source of the data is not impacted by the encryption operation.



FIG. 4 is a flow diagram that illustrates the steps performed by the data management system to retrieve data in response to a request. In step 410, the data management system searches an index of content available within the system to identify one or more copies containing the data. The content index is maintained by the data management system as data copies are created and stored within the metabase. In step 420, the data management system determines a desirable copy to satisfy the data retrieval request, based on factors such as availability. In some embodiments, the data management system selects a desirable copy from which to access data based on the availability of the data. For example, data stored on a magnetic disk is typically more readily available than data stored in a tape library, and data stored in a tape library is typically more readily available that data stored in an offsite data vault or with a third-party data storage provider. Other qualities of the data copy may also determine its availability. For example, encrypted data must be decrypted before it can be accessed, so an encrypted copy may be slower to access than a non-encrypted copy. A desirable copy may also be chosen based on hardware differences between copies stored in a particular tier or class of a hierarchical storage management (HSM) system. In step 430, the data management system accesses the requested data and provides the data to in response to the request. After step 430, these steps conclude.


In some embodiments, the data management system determines availability based on the environment of the entity requesting the data. For example, if a user of a computer system within an organization is requesting data from another computer system within the organization, then the data management system may factor in the subnet of the two computer systems relative to each other. If a copy is available on the same subnet as the requesting user, then that copy may be preferred over a copy on a different subnet. As another example, the data management system may hierarchically group computer systems within an organization into storage cells that share certain storage characteristics (e.g., network location or storage policies), and a copy may be preferred based on the storage cell that the computer system storing it is associated with. Alternatively or additionally, the purpose of the retrieval request may influence the copy used to retrieve the data. For example, a legal discovery request may specify certain documents that must be retrieved within a long timeframe (e.g., a year), such that the most available copy is not required and a slower copy can be used so that other operations can use the most available copy.


In some embodiments, the data management system determines the age of the data available in each copy. For example, the time a copy was created may be stored with the copy, or the copy may contain other information indicating the time that the data was last modified. For some search requests, an older copy of the data available on tape media may be acceptable, whereas for other search requests only a very recent copy will satisfy the request. If the user is searching for a particular file, the data management system may determine that although a particular copy is older and out of date with respect to some files, the file requested by the user has not changed since the copy was made and the copy can adequately satisfy the user's request. Using this type of analysis, the data management system can select the most appropriate copy to use for many different circumstances.


In some embodiments, the data management system restricts the data accessible to a user based on the user's identity and authentication information stored within the system. Each data object may contain authentication information stored within the metabase that specifies the accessibility of the data object for each user, or the data management system may leverage an existing authentication system, such as Microsoft Windows Active Directory. For example, a person on the engineering team of an organization may be unable to view data objects copied from the CEO's computer system, even though the data objects match the engineer's search criteria. Some copies may also be inaccessible to certain users. For example, some employees within an organization may not be permitted to decrypt encrypted data copies, such that those copies are unavailable for satisfying a data retrieval request from the employee.



FIG. 5 is a flow diagram that illustrates the steps performed by the data management system to search the index of content. In step 510, the data management system receives a request to access data in the form of a search query or other means of specifying parameters and characteristics associated with the data to be found. In step 520, the data management system searches the metabase for data having characteristics that satisfy the search query. In step 530, the data management system creates search results from the matching entries within the metabase. In step 540, the data management system removes any entries from the search results that the requesting user does not have the authority to access. In step 550, the data management system returns the search results. Alternatively, rather than removing entries in step 540, step 550 can indicate that the entries are inaccessible such that the entries are still provided in the search results, but the user has an indication that additional authority is needed to access the entries. After step 550, these steps conclude.



FIG. 6 is a flow diagram that illustrates the steps performed by the data management system to determine a desirable copy of data from which to satisfy a data retrieval request. In step 605, the data management system receives a list of available copies that contain the requested data. For example, one copy may be stored locally on a magnetic disk, while another copy may be stored in a tape library. In step 610, the data management system selects the first copy from the list. In decision step 615, if the copy is stored on fast media, then the data management system continues at step 620 and assigns the selected copy a high availability score, else the component continues at step 625. In decision step 625, if the copy is stored on slower media (e.g., tape), then the data management system continues at step 630 and assigns the selected copy a medium availability score, else the component continues at step 635. In decision step 635, if the copy is stored off-site (e.g., with a third-party data storage provider), then the data management system continues at step 640 and assigns the selected copy a low availability score, else the component continues at step 645. In step 645, the data management system adjusts the score of the selected copy based on the proximity of the copy to the requesting computer system. For example, this step may increase the score of a selected copy accessible on the same network subnet of the requesting computer system. In decision step 650, the data management system loops to step 610 to select the next copy, else the component completes and reports the copy having the highest availability score. The data management system may also maintain a “live” index of copies or resources as data is generated, and the above steps may be performed by checking the index for the values described (e.g., whether the data is on slower media). The data management system then uses this copy to access the data as described in FIG. 4.



FIG. 7 illustrates one of the data structures used by the system. Relevant data can have preceding headers, or other overhead data preceding (or following) the relevant data. Alternatively, relevant data can avoid the use of any overhead data, such as headers, and simply be recognized by a certain byte or series of bytes within a serial data stream. Any number of data structures and types can be employed herein.



FIG. 7 is a table that illustrates typical contents of the metabase used by the data management system to satisfy a data retrieval request. The data management system uses this and similar data structures to determine which copy of data to use to satisfy the data retrieval request. For example, the data management system may index data available from multiple copies using a copy stored on media with a higher availability based on the location or other attributes indicated by the data structure described below. As another example, the data management system may prefer an unencrypted copy of the data to an encrypted copy to avoid wasting time unnecessarily decrypting the data. The table 700 contains a location column 710, a keywords column 720, a user tags column 730, an application column 740, and an available column 750. The table 700 contains three sample entries. The first entry 760 specifies a location to a file on the corporate intranet using a web universal resource locator (URL). The entry 760 contains keywords “finance,” “profit,” and “loss” that identify content within the file. The entry 760 contains tags added by a user that specify that the content comes from the accounting department and is confidential. The entry 760 indicates that a spreadsheet program typically consumes the content, and that the entry is immediately available. Another entry 770 specifies data stored on a local tape that is a personal email, and can be available in about an hour. Another entry 780 specifies an offsite tape that is a presentation related to a cancelled project. The entry 780 refers to offsite data that is available within one week due to the delay of retrieving the archived data from the offsite location.


In some embodiments, the data management system provides a user interface for identifying and retrieving data. For example, the data management system may host a web server that provides access to the metabase, such that a user can submit a search request and find matching data categorized by the metabase. Then, the user can access the web server using a web browser. This allows the user to access data regardless of the operating system of the computer system on which the data was originally stored and regardless of the operating system of the computer system that the user is submitting the request from. In some embodiments, the data management system converts the data within search results returned in response to a user search into a format that is viewable within the web browser. For example, if a search returns a document that is normally opened by a particular word processing program, the data management system may provide the ability to convert and view the document as Hypertext Markup Language (HTML) within the requesting user's web browser. In this way, a user can search for documents created by many types of applications and on many platforms without installing additional software.



FIG. 8 is a display page of an example display produced by the data management system for retrieving data. The display page could be implemented as a web page, stand-alone application, or any other technology suitable for displaying a user interface. The display page 800 contains a search criteria text entry area 805, and a search button 810. A user can type search criteria within the search criteria text entry area 805 that identifies the type of information the user is trying to retrieve. For example, the user may enter “confidential and CEO” to indicate that the user wants to find documents accessed by the CEO of an organization that are categorized as confidential. The user then presses the search button 810 to begin the search. The display page also contains a list of search results 815 produced by the user's search request. The list of search results 815 contains a type column 820, a description column 825, and an availability column 830. The type column 820 specifies the type of the data object represented by the search results, such as document, email, database entry, and so on. The description column 825 contains a description of the data object, such as the file name for a search result that refers to a file or the subject of a search result that refers to an email message. The availability column 830 contains the availability information for the most available copy determined by the steps described above. The list of search results 815 contains a first sample entry 835 that specifies a document described as “Preliminary Earnings Report” that is immediately available. The list of search results 815 also contains a second sample entry 840 that specifies an email message described as “1995 Business Plan” that is accessible in one day. The difference in availability of the search results may indicate, for example, that one is stored on-site while the other is stored off-site.


CONCLUSION

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled,” as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. In addition, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.


The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


These and other changes can be made to the invention in light of the above Detailed Description. While the above description details certain embodiments of the invention and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in implementation details, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.


While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as embodied in a computer-readable medium, other aspects may likewise be embodied in a computer-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.

Claims
  • 1. A method in a computer system for accessing data stored in multiple copies, the method comprising: displaying a user interface configured to receive a request identifying at least one data object to be accessed;receiving through the user interface a request identifying at least one data object to be accessed;querying an index to locate one or more data copies from multiple data copies that contain the identified at least one data object, wherein the multiple data copies include primary copies and secondary copies,wherein the secondary copies include at least one backup copy, andwherein the querying includes accessing a database of metadata to determine which of the multiple data copies contain the requested data without accessing the computer systems where the primary copy is stored; anddisplaying a list of results comprising data copies located by the query that satisfy the request, wherein a user can access the one or more data copies by selecting a desired copy from the displayed list,wherein querying an index comprises accessing a database of metadata that categorizes data, andwherein the database provides a list of data objects organized according to the categories of the data objects.
  • 2. The method of claim 1 wherein the displayed list of results provides a URL for accessing the identified at least one data object through each located data copy.
  • 3. The method of claim 1 wherein the user interface is hosted by a web server with access to multiple data copies at least some of which are located on different physical data storage devices.
  • 4. The method of claim 1 wherein querying an index comprises accessing a metabase that stores metadata describing each copy of the source data.
  • 5. The method of claim 1 wherein the user interface is accessible by more than one type of web browser.
  • 6. The method of claim 1 wherein the identified at least one data object can be accessed through the displayed list irrespective of an operating system on which the at least one data object is stored.
  • 7. The method of claim 1 wherein the identified at least one data object can be accessed through the displayed list irrespective of an operating system being used by a user that submitted the request.
  • 8. The method of claim 1 including for each located data copy containing the identified at least one data object, converting the identified at least one data object to a format accessible by a web browser.
  • 9. The method of claim 1 wherein displaying a list of results comprises displaying a list of results such that a user can view a data object identified by the results without installing additional software.
  • 10. The method of claim 1 wherein displaying a list of results comprises displaying information describing the availability of each data copy relative to other data copies.
  • 11. The method of claim 1 wherein displaying a list of results comprises applying access control to identify results to which a requesting user does not have access.
  • 12. A non-transitory computer-readable medium containing instructions for controlling a computer system to access multiple copies of data through a server, by a method comprising: submitting a request identifying at least one data object stored in one or more data copies within a data management system;receiving one or more results responsive to the submitted request, wherein each result contains a link through which a data object associated with the result can be accessed;submitting a request to access a data object associated with one or more of the received results; andreceiving a version of the data object formatted for display, wherein receiving a version of the data object formatted for display comprises converting a data object that is proprietary to one operating system into a format accessible by another operating system.
  • 13. The computer-readable medium of claim 12 wherein receiving a version of the data object formatted for display comprises converting a word processing document in an application-specific format into HTML.
  • 14. The computer-readable medium of claim 12 wherein receiving a version of the data object formatted for display comprises converting an email message into HTML.
  • 15. At least one tangible, non-transitory computer-readable medium storing a display page for identifying and retrieving data objects accessible through multiple copies of similar source data, comprising: a criteria entry area configured to receive one or more criteria that identify at least one data object stored within a data management system;a search activation indication configured to initiate a search for matching data objects based on the received criteria; anda results display area configured to display one or more matching data objects in response to one or more criteria submitted via the criteria entry area and in response to initiation of a search via the search activation indication, wherein the results display area provides a link to each data object through which a browser-compatible instance of the data object can be accessed,wherein the results display area displays a type associated with each matching data object such that a user can select a matching data object to access based on the type of the data object.
  • 16. The display page of claim 15 wherein the results display area displays the relative availability of each matching data object, such that a user can select a matching data object to access based on the availability of the data object.
  • 17. The display page of claim 15 wherein the criteria entry area contains an area for entering one or more categories associated with the at least one data object stored within the data management system.
  • 18. The display page of claim 15 wherein the results display area displays an indication that a user can not access at least one data object displayable in the results display area because the user is not authorized to access the at least one data object.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/074,157 entitled “MANAGING COPIES OF DATA,” filed Mar. 29, 2011 now U.S. Pat. No. 8,099,428, which is a continuation of U.S. patent application Ser. No. 13/019,132 entitled “MANAGING COPIES OF DATA,” filed on Feb. 1, 2011 (now U.S. Pat. No. 7,984,063), which is a continuation of U.S. patent application Ser. No. 12/794,437 entitled “MANAGING COPIES OF DATA,” filed on Jun. 4, 2010 (now U.S. Pat. No. 7,882,093) which is a divisional of U.S. patent application Ser. No. 11/694,890 entitled “MANAGING COPIES OF DATA,” filed on Mar. 30, 2007 (now U.S. Pat. No. 7,734,669) which claims priority to U.S. Provisional Application No. 60/871,735 entitled “METHOD AND SYSTEM FOR SEARCHING STORED DATA,” and filed on Dec. 22, 2006, each of which is hereby incorporated by reference.

US Referenced Citations (255)
Number Name Date Kind
4464122 Fuller et al. Aug 1984 A
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5212784 Sparks May 1993 A
5226157 Nakano et al. Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5386545 Gombos, Jr. et al. Jan 1995 A
5410700 Fecteau et al. Apr 1995 A
5448718 Cohn et al. Sep 1995 A
5448724 Hayashi Sep 1995 A
5485606 Midgdey et al. Jan 1996 A
5491810 Allen Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5504873 Martin et al. Apr 1996 A
5517405 McAndrew et al. May 1996 A
5537568 Yanai et al. Jul 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5555371 Duyanovich et al. Sep 1996 A
5559957 Balk Sep 1996 A
5564037 Lam Oct 1996 A
5608865 Midgely et al. Mar 1997 A
5613134 Lucus et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5634052 Morris May 1997 A
5638509 Dunphy et al. Jun 1997 A
5659614 Bailey, III Aug 1997 A
5666501 Jones et al. Sep 1997 A
5673381 Huai et al. Sep 1997 A
5673382 Cannon et al. Sep 1997 A
5699361 Ding et al. Dec 1997 A
5729743 Squibb Mar 1998 A
5740405 DeGraaf Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5758649 Iwashita et al. Jun 1998 A
5761677 Senator et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5778165 Saxon Jul 1998 A
5778395 Whiting et al. Jul 1998 A
5812398 Nielsen Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5860073 Ferrel et al. Jan 1999 A
5864846 Voorhees et al. Jan 1999 A
5875478 Blumenau Feb 1999 A
5887134 Ebrahim Mar 1999 A
5896531 Curtis et al. Apr 1999 A
5901327 Ofek May 1999 A
5924102 Perks Jul 1999 A
5950205 Aviani, Jr. Sep 1999 A
5974563 Beeler, Jr. Oct 1999 A
5983239 Cannon Nov 1999 A
5991753 Wilde Nov 1999 A
6012053 Pant et al. Jan 2000 A
6021415 Cannon et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6052735 Ulrich et al. Apr 2000 A
6064821 Shough et al. May 2000 A
6073128 Pongracz et al. Jun 2000 A
6076148 Kedem Jun 2000 A
6091518 Anabuki et al. Jul 2000 A
6094416 Ying Jul 2000 A
6131095 Low et al. Oct 2000 A
6131190 Sidwell Oct 2000 A
6148412 Cannon et al. Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6161111 Mutalik et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6182198 Hubis et al. Jan 2001 B1
6212512 Barney et al. Apr 2001 B1
6226759 Miller et al. May 2001 B1
6239800 Mayhew et al. May 2001 B1
6253217 Dourish et al. Jun 2001 B1
6260069 Anglin Jul 2001 B1
6266679 Szalwinski et al. Jul 2001 B1
6266784 Hsiao et al. Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6298439 Beglin Oct 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6327590 Chidlovskii et al. Dec 2001 B1
6327612 Watanabe et al. Dec 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330642 Carteau Dec 2001 B1
6343287 Kumar et al. Jan 2002 B1
6343324 Hubis et al. Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6356801 Goodman et al. Mar 2002 B1
6363462 Bergsten Mar 2002 B1
6367073 Elledge Apr 2002 B2
6374363 Wu et al. Apr 2002 B1
6389432 Pothapragada et al. May 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6442706 Wahl et al. Aug 2002 B1
6470332 Weschler Oct 2002 B1
6484162 Edlund et al. Nov 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6502205 Yanai et al. Dec 2002 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6540623 Jackson Apr 2003 B2
6549918 Probert, Jr. et al. Apr 2003 B1
6557039 Leong et al. Apr 2003 B1
6564228 O'Connor May 2003 B1
6593656 Ahn et al. Jul 2003 B2
6618771 Leja et al. Sep 2003 B1
6629110 Cane et al. Sep 2003 B2
6647399 Zaremba Nov 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6675177 Webb Jan 2004 B1
6691232 Wood et al. Feb 2004 B1
6721767 De Meno et al. Apr 2004 B2
6732088 Glance May 2004 B1
6732231 Don et al. May 2004 B1
6732244 Ashton et al. May 2004 B2
6745178 Emens et al. Jun 2004 B1
6795828 Ricketts Sep 2004 B2
6816941 Carlson et al. Nov 2004 B1
6820070 Goldman et al. Nov 2004 B2
6839741 Tsai Jan 2005 B1
6839803 Loh et al. Jan 2005 B1
6850994 Gabryjelski Feb 2005 B2
6871182 Winnard et al. Mar 2005 B1
6892221 Ricart et al. May 2005 B2
6948038 Berkowitz et al. Sep 2005 B2
6957186 Guheen et al. Oct 2005 B1
6970997 Shibayama et al. Nov 2005 B2
6976039 Chefalas et al. Dec 2005 B2
6995675 Curkendall et al. Feb 2006 B2
6996616 Leighton et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7028079 Mastrianni et al. Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039860 Gautestad et al. May 2006 B1
7058661 Ciaramitaro et al. Jun 2006 B2
7099901 Sutoh et al. Aug 2006 B2
7107298 Prahlad et al. Sep 2006 B2
7133870 Tripp et al. Nov 2006 B1
7139826 Watanabe et al. Nov 2006 B2
7146387 Russo et al. Dec 2006 B1
7155421 Haldar Dec 2006 B1
7155481 Prahlad et al. Dec 2006 B2
7159081 Suzuki Jan 2007 B2
7171468 Yeung et al. Jan 2007 B2
7171585 Gail et al. Jan 2007 B2
7188141 Novaes Mar 2007 B2
7240100 Wein et al. Jul 2007 B1
7246207 Kottomtharayil et al. Jul 2007 B2
7269664 Hutsch et al. Sep 2007 B2
7284033 Jhanji Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7290017 Wang et al. Oct 2007 B1
7313659 Suzuki Dec 2007 B2
7346623 Prahlad et al. Mar 2008 B2
7346676 Swildens et al. Mar 2008 B1
7346751 Prahlad et al. Mar 2008 B2
7376947 Evers May 2008 B2
7379978 Anderson et al. May 2008 B2
7386535 Kalucha et al. Jun 2008 B1
7395282 Crescenti et al. Jul 2008 B1
7424543 Rice, III Sep 2008 B2
7434219 De Meno et al. Oct 2008 B2
7457790 Kochunni et al. Nov 2008 B2
7472142 Prahlad et al. Dec 2008 B2
7496841 Hadfield et al. Feb 2009 B2
7565484 Ghosal et al. Jul 2009 B2
7577694 Nakano et al. Aug 2009 B2
7584469 Mitekura et al. Sep 2009 B2
7587715 Barrett et al. Sep 2009 B1
7593935 Sullivan Sep 2009 B2
7596713 Mani-Meitav et al. Sep 2009 B2
7603626 Williams et al. Oct 2009 B2
7606844 Kottomtharayil Oct 2009 B2
7668884 Prahlad et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7689899 Leymaster et al. Mar 2010 B2
7730031 Forster Jun 2010 B2
7734593 Prahlad et al. Jun 2010 B2
7734669 Kottomtharayil et al. Jun 2010 B2
7751628 Reisman Jul 2010 B1
7792789 Prahlad et al. Sep 2010 B2
7814118 Kottomtharayil et al. Oct 2010 B2
7831793 Chakravarty et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7844676 Prahlad et al. Nov 2010 B2
7865517 Prahlad et al. Jan 2011 B2
7882077 Gokhale et al. Feb 2011 B2
7882093 Kottomtharayil et al. Feb 2011 B2
7937420 Tabellion et al. May 2011 B2
7937702 De Meno et al. May 2011 B2
7984063 Kottomtharayil et al. Jul 2011 B2
8037028 Prahlad et al. Oct 2011 B2
8055627 Prahlad et al. Nov 2011 B2
8060514 Arrouye et al. Nov 2011 B2
20020032878 Karpf Mar 2002 A1
20020049883 Schneider et al. Apr 2002 A1
20030018622 Chau Jan 2003 A1
20030050979 Takahashi Mar 2003 A1
20030101086 San Miguel May 2003 A1
20040267815 De Mes Dec 2004 A1
20050039069 Prahlad et al. Feb 2005 A1
20050097070 Enis et al. May 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050278207 Ronnewinkel Dec 2005 A1
20060036619 Fuerst et al. Feb 2006 A1
20060070061 Cox et al. Mar 2006 A1
20060115802 Reynolds Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060149604 Miller Jul 2006 A1
20060149724 Ritter et al. Jul 2006 A1
20060224846 Amarendran et al. Oct 2006 A1
20070022145 Kavuri Jan 2007 A1
20070028229 Knatcher Feb 2007 A1
20070043715 Kaushik et al. Feb 2007 A1
20070061298 Wilson et al. Mar 2007 A1
20070166674 Kochunni et al. Jul 2007 A1
20070250810 Tittizer et al. Oct 2007 A1
20080229037 Bunte et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080320319 Muller et al. Dec 2008 A1
20090171883 Kochunni et al. Jul 2009 A1
20090177719 Kavuri Jul 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20090320029 Kottomtharayil Dec 2009 A1
20090320033 Gokhale et al. Dec 2009 A1
20090320037 Gokhale et al. Dec 2009 A1
20100031017 Gokhale et al. Feb 2010 A1
20100070466 Prahlad et al. Mar 2010 A1
20100070474 Lad Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100076932 Lad Mar 2010 A1
20100114837 Prahlad et al. May 2010 A1
20110093471 Brockway et al. Apr 2011 A1
20110173171 De Meno et al. Jul 2011 A1
20110173207 Kottomtharayil et al. Jul 2011 A1
Foreign Referenced Citations (21)
Number Date Country
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0899662 Mar 1999 EP
0910019 Apr 1999 EP
0981090 Feb 2000 EP
0986011 Mar 2000 EP
2216368 Oct 1989 GB
07-046271 Feb 1995 JP
7073080 Mar 1995 JP
8044598 Feb 1996 JP
2000035969 Feb 2000 JP
2003531435 Oct 2003 JP
WO-9513580 May 1995 WO
WO-9912098 Mar 1999 WO
WO-0058865 Oct 2000 WO
WO-0106368 Jan 2001 WO
WO-0116693 Mar 2001 WO
WO-0180005 Oct 2001 WO
Related Publications (1)
Number Date Country
20120131052 A1 May 2012 US
Provisional Applications (1)
Number Date Country
60871735 Dec 2006 US
Divisions (1)
Number Date Country
Parent 11694890 Mar 2007 US
Child 12794437 US
Continuations (3)
Number Date Country
Parent 13074157 Mar 2011 US
Child 13343034 US
Parent 13019132 Feb 2011 US
Child 13074157 US
Parent 12794437 Jun 2010 US
Child 13019132 US