The present disclosure is generally related to systems and methods for controlling data processing operations pertaining to the development, maintenance, and installation of custom workflow programs defined within microservices.
Many enterprise software applications, services, and/or the like are provided in a software as a service (SaaS) framework. SaaS has become a common delivery model for such applications and services in which SaaS is typically supported by a cloud-based environment and accessed by users using a thin client such as a Web browser. Accordingly, microservice-based architectures are often preferable in cloud-based environments involving large, complex applications, services, and/or the like that require flexible development, deployment, and scaling.
A microservice-based architecture is implemented using multiple separate and self-contained applications, or microservices, that each provide a particular service and collectively form one or more fully functional applications within a SaaS framework, with the goal being the services can be brought to life independent of others. For various services provided through the microservices of an enterprise software application, service, and/or the like, it is often the case that these services may involve workflows through which a sequence of processes are performed for particular aspects of the services.
For example, an incidence of a particular event occurring for a particular service provided through a microservice may require a workflow to be performed for the event to evaluate and address the outcome of the event. Often such workflows are integrated into the different microservices using independent (custom) logic and/or user interfaces, which can lead to inefficiencies in maintaining workflow capabilities through the various microservices that make up the enterprise software application, service, and/or the like. Therefore, a need exists in the art for reusable, standardized configurations for implementing and managing custom workflows within different microservices used for an enterprise software application, service, and/or the like that can be associated with various domain objects of the microservices.
In general, various aspects of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for generating and managing custom workflows for domain objects defined within microservices. In accordance with various aspects, a method is provided. Accordingly, the method comprises: receiving, via a graphical user interface, a first plurality of attribute values for a custom workflow to include in a microservice, wherein each attribute value of the first plurality of attribute values corresponds to an attribute of a first plurality of attributes defined for a workflow component; accessing, by computing hardware and from a schema table defined in a repository for the microservice, mapping data for an attribute of the first plurality of attributes; identifying, by the computing hardware and based on the mapping data for the attribute of the first plurality of attributes, a corresponding field of a workflows table mapped to the attribute of the first plurality of attributes, wherein the workflows table is defined in the repository; storing, by the computing hardware, a first record in the workflows table for the custom workflow, wherein an attribute value of the first plurality of attribute values for the attribute of the first plurality of attributes is stored for the first record in the corresponding field mapped to the attribute of the first plurality of attributes; receiving, via the graphical user interface, a second plurality of attribute values for a first stage to include in the custom workflow, wherein each attribute value of the second plurality of attribute values corresponds to an attribute of a second plurality of attributes defined for a stage component; accessing, by the computing hardware and from the schema table, mapping data for an attribute of the second plurality of attributes; identifying, by the computing hardware and based on the mapping data for the attribute of the second plurality of attributes, a corresponding field of a stages table mapped to the attribute of the second plurality of attributes, wherein the stages table is defined in the repository; and storing, by the computing hardware, a first record in the stages table for the first stage to include in the custom workflow, wherein an attribute value of the second plurality of attribute values is stored for the first record in the corresponding field mapped to the attribute of the second plurality of attributes.
In some aspects, the method further comprises: receiving, via the graphical user interface, a third plurality of attribute values for a second stage to include in the custom workflow, wherein each attribute value of the third plurality of attribute values corresponds to an attribute of the second plurality of attributes; identifying, by the computing hardware and based on the mapping data for the attribute of the second plurality of attributes, the corresponding field of the stages table mapped to the attribute of the second plurality of attributes; and storing, by the computing hardware, a second record in the stages table for the second stage to include in the custom workflow, wherein an attribute value of the third plurality of attribute values is stored for the second record in the corresponding field mapped to the attribute of the second plurality of attributes.
In some aspects, the method further comprises: receiving, via the graphical user interface, a third plurality of attribute values for a first subtask to include in the first stage of the custom workflow, wherein each attribute value of the third plurality of attribute values corresponds to an attribute of a third plurality of attributes defined for a subtask component; accessing, by the computing hardware and from the schema table, mapping data for an attribute of the third plurality of attributes; identifying, by the computing hardware and based on the mapping data for the attribute of the third plurality of attributes, a corresponding field of a subtasks table mapped to the attribute of the third plurality of attributes, wherein the subtasks table is defined in the repository; and storing, by the computing hardware, a first record in the subtasks table for the first subtask to include in the first stage of the custom workflow, wherein an attribute value of the third plurality of attribute values is stored for the first record in the corresponding field mapped to the attribute of the third plurality of attributes.
In some aspects, the method further comprises: receiving, via the graphical user interface, a fourth plurality of attribute values for a second subtask to include in the first stage of the custom workflow, wherein each attribute value of the fourth plurality of attribute values corresponds to an attribute of the third plurality of attributes; accessing, by the computing hardware and from the schema table, the mapping data for the attribute of the third plurality of attributes; identifying, by the computing hardware and based on the mapping data for the attribute of the third plurality of attributes, the corresponding field of the subtasks table mapped to the attribute of the third plurality of attributes; and storing, by the computing hardware, a second record in the subtasks table for the second subtask to include in the first stage of the custom workflow, wherein an attribute value of the fourth plurality of attribute values is stored for the second record in the corresponding field mapped to the attribute of the third plurality of attributes.
In some aspects, the method further comprises: receiving, via the graphical user interface, a condition and an action for a first rule to include in the first stage of the custom workflow, wherein the condition corresponds to a first attribute defined for a rule component and the action corresponds to a second attribute defined for the rule component; for the condition: identifying, by the computing hardware and based on an identifier for the first attribute, a third record stored in the schema table for the first attribute; and identifying, by the computing hardware and based on mapping data stored in the third record of the schema table, a first field of a rules table mapped to the first attribute, wherein the rules table is defined in the repository; for the action: identifying, by the computing hardware and based on an identifier for the second attribute, a fourth record stored in the schema table for the second attribute; and identifying, by the computing hardware and based on mapping data stored in the third record of the schema table, a second field of the rules table mapped to the second attribute; and storing, by the computing hardware, a first record in the rules table for the first rule to include in the first stage of the custom workflow, wherein the condition and the action are stored for the first record in the first field and the second field, respectively.
In some aspects, the method further comprises: receiving, via the graphical user interface, an identifier for a domain object defined within the microservice and an identifier for the custom workflow; and storing, by the computing hardware, a record in a workflow assignment table defined in the repository for the microservice, the record comprising mapping data that maps the domain object to the custom workflow, wherein storing the record in the workflow assignment table results in the custom workflow being made available for use with an instance generated of the domain object. Accordingly, in some aspects, the custom workflow being made available to the instance comprises allowing a user, through a second graphical user interface, to define properties for the first stage of the custom workflow that are applicable to the instance of the domain object.
In accordance with various aspects, a system is provided comprising a non-transitory computer-readable medium storing instructions and a processing device communicatively coupled to the non-transitory computer-readable medium. Accordingly, the processing device is configured to execute the instructions and thereby perform operations that comprise: receiving, via a graphical user interface, a first plurality of attribute values defined for a custom workflow to include in a microservice, wherein each attribute value of the first plurality of attribute values corresponds to an attribute of a first plurality of attributes defined for a workflow component; for each attribute value of the first plurality of attribute values: identifying, based on an identifier for the corresponding attribute of the first plurality of attributes, a first record stored in a schema table for the corresponding attribute of the first plurality of attributes, wherein the schema table is defined in a repository for the microservice; and identifying, based on mapping data stored in the first record of the schema table, a corresponding field of a workflows table mapped to the corresponding attribute of the first plurality of attributes, wherein the workflows table is defined in the repository; storing a first record in the workflows table for the custom workflow, wherein each of the first plurality of attribute values is stored for the first record in the corresponding field mapped to the corresponding attribute of the first plurality of attributes; receiving, via the graphical user interface, a second plurality of attribute values for a first stage to include in the custom workflow, wherein each attribute value of the second plurality of attribute values corresponds to an attribute of a second plurality of attributes; for each attribute value of the second plurality of attribute values: identifying, based on an identifier for the corresponding attribute of the second plurality of attributes, a second record stored in the schema table for the corresponding attribute of the second plurality of attributes; and identifying, based on mapping data stored in the second record of the schema table, a corresponding field of a stages table mapped to the corresponding attribute of the second plurality of attributes, wherein the stages table is defined in the repository; and storing a first record in the stages table for the first stage to include in the custom workflow, wherein each of the second plurality of attribute values is stored for the first record in the corresponding field mapped to the corresponding attribute of the second plurality of attributes, and storing the first plurality of attribute values and the second plurality of attribute values persists the custom workflow in the microservice.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a third plurality of attribute values for a second stage to include in the custom workflow, wherein each attribute value of the third plurality of attribute values corresponds to an attribute of the second plurality of attributes; for each attribute value of the third plurality of attribute values: identifying, based on the identifier for the corresponding attribute of the second plurality of attributes, the second record stored in the schema table for the corresponding attribute of the second plurality of attributes; and identifying, based on the mapping data stored in the second record of the schema table, the corresponding field of the stages table mapped to the corresponding attribute of the second plurality of attributes; and storing a second record in the stages table for the second stage to include in the custom workflow, wherein each of the third plurality of attribute values is stored for the second record in the corresponding field mapped to the corresponding attribute of the second plurality of attributes and a particular attribute value of the third plurality of attribute values identifies a position in a sequence of the second stage to include in the custom workflow with respect to the first stage to include in the custom workflow.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a third plurality of attribute values for a first subtask to include in the first stage of the custom workflow, wherein each attribute value of the third plurality of attribute values corresponds to an attribute of a third plurality of attributes defined for a subtask component; for each attribute value of the third plurality of attribute values: identifying, based on an identifier for the corresponding attribute of the third plurality of attributes, a third record stored in the schema table for the corresponding attribute of the third plurality of attributes; and identifying, based on mapping data stored in the third record of the schema table, a corresponding field of a subtasks table mapped to the corresponding attribute of the third plurality of attributes, wherein the subtasks table is defined in the repository; and storing a first record in the subtasks table for the first subtask to include in the first stage of the custom workflow, wherein each of the third plurality of attribute values is stored for the first record in the corresponding field mapped to the corresponding attribute of the third plurality of attributes.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a fourth plurality of attribute values for a second subtask to include in the first stage of the custom workflow, wherein each attribute value of the fourth plurality of attribute values corresponds to an attribute of the third plurality of attributes; for each attribute value of the fourth plurality of attribute values: identifying, based on the identifier for the corresponding attribute of the third plurality of attributes, the third record stored in the schema table for the corresponding attribute of the third plurality of attributes; and identifying, based on the mapping data stored in the third record of the schema table, the corresponding field of the subtasks table mapped to the corresponding attribute of the third plurality of attributes; and storing a second record in the subtasks table for the second subtask to include in the first stage of the custom workflow, wherein each of the fourth plurality of attribute values is stored for the second record in the corresponding field mapped to the corresponding attribute of the third plurality of attributes.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a condition and an action for a first rule to include in the first stage of the custom workflow, wherein the condition corresponds to a first attribute defined for a rule component and the action corresponds to a second attribute defined for the rule component; for the condition: identifying, based on an identifier for the first attribute, a third record stored in the schema table for the first attribute; and identifying, based on mapping data stored in the third record of the schema table, a first field of a rules table mapped to the first attribute, wherein the rules table is defined in the repository; for the action: identifying, based on an identifier for the second attribute, a fourth record stored in the schema table for the second attribute; and identifying, based on mapping data stored in the third record of the schema table, a second field of the rules table mapped to the second attribute; and storing a first record in the rules table for the first rule to include in the first stage of the custom workflow, wherein the condition and the action are stored for the first record in the first field and the second field, respectively.
In some aspects, the operations further comprise: receiving, via the graphical user interface, an identifier for a domain object defined within the microservice and an identifier for the custom workflow; and storing a record in a workflow assignment table defined in the repository for the microservice, the record comprising mapping data that maps the domain object to the custom workflow, wherein storing the record in the workflow assignment table results in the custom workflow being made available for use with an instance generated of the domain object. Accordingly, in some aspects, the custom workflow being made available to the instance comprises allowing a user, through a second graphical user interface, to define properties for the first stage of the custom workflow that are applicable to the instance of the domain object.
In addition in accordance with various aspects, a non-transitory computer-readable medium having program code that is stored thereon. In particular aspects, the program code executable by one or more processing devices performs operations that comprise: receiving, via a graphical user interface, a first attribute value for a custom workflow to include in a microservice, wherein the first attribute value corresponds to a first attribute defined for a workflow component; identifying, based on an identifier for the first attribute defined for the workflow component, a first record stored in a schema table for the first attribute, wherein the schema table is defined in a repository for the microservice; identifying, based on mapping data stored in the first record of the schema table, a corresponding field of a workflows table mapped to the first attribute defined for the workflow component, wherein the workflows table is defined in the repository; storing a first record in the workflows table for the custom workflow, wherein the first attribute value is stored for the first record in the corresponding field mapped to the first attribute defined for the workflow component; receiving, via the graphical user interface, a second attribute value for a first stage to include in the custom workflow, wherein the second attribute value corresponds to a first attribute defined for a stage component; identifying, based on an identifier for the first attribute defined for the stage component, a second record stored in the schema table for the first attribute defined for the stage component; identifying, based on mapping data stored in the second record of the schema table, a corresponding field of a stages table mapped to the first attribute defined for the stage component, wherein the stages table is defined in the repository; and storing a first record in the stages table for the first stage to include in the custom workflow, wherein the second attribute value is stored for the first record in the corresponding field mapped to the first attribute defined for the stage component, and storing the first attribute value and the second attribute value persists the custom workflow in the microservice.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a third attribute value for a second stage to include in the custom workflow, wherein the third attribute value corresponds to the first attribute defined for the stage component; identifying, based on the identifier for the first attribute defined for the stage component, the second record stored in the schema table for the first attribute defined for the stage component; identifying, based on the mapping data stored in the second record of the schema table, the corresponding field of the stages table mapped to the first attribute defined for the stage component; and storing a second record in the stages table for the second stage to include in the custom workflow, wherein the third attribute value is stored for the second record in the corresponding field mapped to the first attribute defined for the stage component.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a third attribute value for a first subtask to include in the first stage of the custom workflow, wherein the third attribute value corresponds to a first attribute defined for a subtask component; identifying, based on an identifier for the first attribute defined for the subtask component, a third record stored in the schema table for the first attribute defined for the subtask component; identifying, based on mapping data stored in the third record of the schema table, a corresponding field of a subtasks table mapped to the first attribute defined for the subtask component, wherein the subtasks table is defined in the repository; and storing a first record in the subtasks table for the first subtask to include in the first stage of the custom workflow, wherein the third attribute value is stored for the first record in the corresponding field mapped to the first attribute defined for the subtask component.
In some aspects, the operations further comprise: receiving, via the graphical user interface, a condition and an action for a first rule to include in the first stage of the custom workflow, wherein the condition corresponds to a first attribute defined for a rule component and the action corresponds to a second attribute defined for the rule component; for the condition: identifying, based on an identifier for the first attribute defined for the rule component, a third record stored in the schema table for the first attribute defined for the rule component; and identifying, based on mapping data stored in the third record of the schema table, a first field of a rules table mapped to the first attribute defined for the rule component, wherein the rules table is defined in the repository; for the action: identifying, based on an identifier for the second attribute defined for the rule component, a fourth record stored in the schema table for the second attribute defined for the rule component; and identifying, based on mapping data stored in the third record of the schema table, a second field of the rules table mapped to the second attribute defined for the rule component; and storing a first record in the rules table for the first rule to include in the first stage of the custom workflow, wherein the condition and the action are stored for the first record in the first field and the second field, respectively.
In some aspects, the operations further comprise: receiving, via the graphical user interface, an identifier for a domain object defined within the microservice and an identifier for the custom workflow; and storing a record in a workflow assignment table defined in the repository, the record comprising mapping data that maps the domain object to the custom workflow, wherein storing the record in the workflow assignment table results in the custom workflow being made available for use with an instance generated of the domain object. Accordingly, in some aspects, the custom workflow being made available to the instance comprises allowing a user, through a second graphical user interface, to define properties for the first stage of the custom workflow that are applicable to the instance of the domain object.
In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Overview and Technical Contributions of Various Aspects
As noted, many enterprise software applications, services, and/or the like are provided in a software as a service (SaaS) framework supported by a cloud-based environment. Accordingly, microservice-based architectures are often preferable in cloud-based environments involving large, complex applications, services, and/or the like that require flexible development, deployment, and scaling. A microservices application, for example, may be implemented using multiple separate and self-contained applications, or microservices, that each provide a particular service and collectively form one or more fully functional applications within a SaaS framework.
A microservice is often viewed as focused on producing a particular task. For example, an enterprise software application may be offered that provides a platform for various entities (e.g., organizations) to operationalize privacy, security, and data governance. The enterprise software application may provide a number of different services to these entities that can be used in operationalizing privacy, security, and data governance. For example, many entities that handle certain types of data, such as personal data of individuals, may be required to ensure the data is handled in a secure manner to minimize the risk of experiencing a data-related incident involving the data such as a breach, theft, and/or the like of the data. Therefore, the enterprise software application may provide a service, implemented through a microservice, in evaluating various data assets of an entity that are used in handling the data to identify and address vulnerabilities of the data assets that can expose the data to a significant risk of experiencing some type of data incident involving the data, such as a data breach leading to the unauthorized access of the data, a data loss event, etc.
As a specific example, a data asset for an entity may be a database, data repository, server, router, and/or the like that handles certain data for the entity (e.g., stores, processes, transfers, collects, and/or the like the certain data for the entity). The entity may be interested in identifying any vulnerabilities of the data asset that may expose the entity to a data-related incident involving the certain data. Therefore, the entity may load information on the data asset into the service provided through the enterprise software application and utilize the service in evaluating the data asset and its handling of the certain data. In conducting the evaluation, the service may identify a risk posed by the data asset handling the certain data. For instance, the service may identify that the certain data is transferred through the data asset in manner that can allow for the data to be intercepted by an unauthorized third party. Accordingly, the service may provide a risk management process for evaluating the identified risk and based on the evaluation, implement a plan to address (e.g., mitigate) the risk. Here, the service may implement a risk management process within the microservice via a workflow that can be executed to perform the risk management process.
The microservice may be configured according to an object model that defines domain objects that represent various meaningful elements to a domain applicable to the service. For example, a domain object that the microservice can define within the microservice associated with the risk evaluation service is “risk,” itself. The microservice may define the domain object “risk” within the microservice through a class. For example, the domain object “risk” can be implemented as a Plain Old Java Object (POCO).
Accordingly, the microservice can use the class defined for the domain object “risk” in implementing both behavior and data attributes for the domain object. A behavior that can be defined for the domain object “risk” is the workflow executed to perform the risk management process. Once assigned, when the class for the domain object “risk” is instantiated to generate a specific instance of the domain object “risk,” the instance of the domain object includes the behavior defining the workflow so that the service can then execute the workflow to perform the risk management process for the instance of the domain object “risk.” For example, when the domain object “risk” is instantiated to generate an instance representing the risk imposed by the data asset transferring the certain data in a manner that can allow for the data to be intercepted by an unauthorized third party, the instance representing this specific risk includes the behavior defining the workflow so that the workflow can be executed to conduct the risk management process for the risk.
A workflow may comprise various components that are involved in performing the process associated with the workflow. For example, a workflow may involve various steps, stages, operations, and/or the like that are encountered in performing the workflow. In addition, different tasks may be involved in the various steps, stages, operations, and/or the like. Further, the microservice may define various attributes for the various components (e.g., for the different tasks and/or the various steps, stages, operations, and/or the like) that can make up a workflow. Furthermore, different (custom) workflows can be defined within a microservice (and/or across different microservices) that use different combinations of these components and/or attributes thereof. Therefore, personnel (e.g., teams) who are responsible for constructing and/or maintaining a microservice are also typically responsible for defining (implementing) the custom workflows that are to be utilized within the microservice.
For the team to define these custom workflows, the various components, and attributes thereof that can be used within the custom workflows need to persist in the microservice so that the components and attributes are available for use in building out a particular custom workflow. The team responsible for the microservice generally accomplishes this task through the use of a repository defined for the microservice. For example, the repository may be a relational database in which tables and/or fields of tables found within the database are mapped to the various components and/or attributes that can be used within the custom workflows. The team is then able to build a specific custom workflow for the microservice by utilizing the tables and/or fields in storing values for various components and/or attributes used in constructing the custom workflow. Once a custom workflow is built, the team can then associate the workflow with a particular domain object to define the workflow as a behavior for the domain object.
However, a technical challenge that is often encountered by a team in constructing custom workflows for a microservice is designing and implementing the various components and attributes thereof necessary for constructing the custom workflows. Here, different teams for different microservices may design and implement different “core” components that are used in constructing a custom workflow. For example, a first team responsible for a first microservice may design the core components to simply include a workflow component and a task component where the workflow component is used to represent a custom workflow and the task component is used to represent various tasks that can be defined for performing for the custom workflow. In another example, a second team for a second microservice may design the core components to include a workflow component, a step component, and a subtask component where the workflow component is used to represent a custom workflow, the step component is used to represent sequential steps involved in the custom workflow, and the subtask component is used to represent various tasks that can be performed at the various steps of the custom workflow. The different teams may also design and implement different attributes for these core components.
Accordingly, clients of the first and second microservices who want to make use of these custom workflows are then required to recognize and understand the different configurations of the components and attributes that make up the custom workflows in the two (e.g., or more) microservices. That is to say, clients who want to use custom workflows in the first microservice must understand that the custom workflows for the first microservice have a configuration that includes workflow components and task components. In addition, these same clients who also want to use custom workflows in the second microservice must understand that the custom workflows for the second microservice have a configuration that includes workflow components, step components, and subtasks components. These differences (inconsistencies) in configurations of custom workflows between the first microservice and the second microservice can become quite frustrating for these clients who are utilizing the custom workflows in the first and second microservices. Such frustration can become even more significant when differences (inconsistencies) in configurations of components and attributes thereof that make up custom workflows is encountered by clients across a multitude of microservices (services). That is to say, clients may become frustrated with the different “look and feel” of custom workflows available across the different services provided through the different microservices.
Another technical challenge that is often encountered by a team in constructing custom workflows for a microservice is designing and implementing the tables and fields necessary for persisting the various components and attributes thereof used in constructing the custom workflows for the microservice. Again, a team responsible for a particular microservice may implement any number of different configurations to persist the components and attributes. However, these different configurations may not always deliver equal performance for operations involving the components and attributes such as storing, fetching, deleting, updating, and/or the like values defined for the different components and/or attributes for a custom workflow. As a result, clients of different microservices, using different configurations for persisting custom workflows, may experience inconsistent performance with respect to executing custom workflows for various instances of data objects defined within the different microservices.
Yet, another technical challenge that is often encountered by a team in constructing custom workflows for a microservice is the team is often required to design and implement endpoints (e.g., points of entry) within the microservice that are used in communicating with the repository to perform operations involving the components and/or attributes thereof defined for a custom workflow. For example, the team may need to design and implement endpoints that allow communication with the repository to persist (store) certain components and/or attributes thereof selected for defining a particular custom workflow for the microservice. Such design and implementation may involve generating a mapping between the various components and attributes available to include in a custom workflow to their corresponding tables and fields found in the repository. In addition, the team may also be required to design and implement custom user interfaces for using these endpoints in defining, implementing, and managing custom workflows for the microservice. All of which can require significant resources and time with respect to developing program code for implementing the various endpoints, as well as the user interfaces for using the endpoints.
Various aspects of the present disclosure overcome many of the technical challenges associated with generating, defining, and managing custom workflows for a microservice, as detailed above. In particular, various aspects of the disclosure involve the use of a novel approach for providing a set of core components used in generating custom workflows through the inclusion of a library within a microservice. The library includes an object for each of the core components. For example, each of the objects may be a Java Persistence Application Programming Interface (JPA) entity. Once the library has been included in a microservice, the library includes code that builds out the necessary tables and mapping data to persist the core components in the repository of the microservice. The mapping data includes a mapping of the core components (e.g., the objects thereof) to their corresponding tables found in the repository. Once persisted, these core components, via the objects, mapping data, and tables, can be used in constructing custom workflows for the microservice. In addition, the library includes code that builds out the necessary fields of the tables and mapping data to persist attributes for the core components in the repository of the microservice. The mapping data includes a mapping of the attributes defined for each of the core components (e.g., attributes defined for the objects thereof) to their corresponding fields found in the appropriate table for the core component. The attributes of the different core components can be used in defining properties of custom workflows constructed for the microservice. In some aspects, these core components can include a workflow component, a stage component, a subtask component, and a rule component. Further, the library includes standardized endpoints to facilitate communication with the core components. Therefore, inclusion of the library in the microservice exposes these endpoints to the microservice and provides communication channels with the core components that can be used in implementing custom workflows.
The workflow component can represent a custom workflow designed and installed for the microservice. The stage component can be used in representing a stage to include in a custom workflow. The subtask component may be used in representing a subtask that can be performed within a particular stage of a custom workflow. The rule component may be used in representing a rule that controls one or more actions that are performed within the custom workflow based on one or more conditions.
As a specific example, a custom workflow may need to be implemented into a microservice for a risk management process. The risk management process may be used for evaluating an identified risk and based on the evaluation, implementing a plan to address (e.g., mitigate) the risk. Therefore, the core components can be used in representing various features of the risk management process to generating a custom workflow within the microservice for the risk management process. Accordingly, the workflow component is used to represent the custom workflow, itself, within the microservice. In the specific example, an instance of the workflow component (object thereof) is generated to represent the risk management process that involves storing values for attributes defined for the workflow component in the appropriate table found in the repository for the microservice. For instance, a value providing a name for the custom workflow (e.g., “risk management process”) can be stored in a corresponding field (e.g., “Name” field) of the appropriate table.
The stage component is used to represent a stage that can be defined within a workflow to organize a group of features for the custom workflow. For example, a stage can be used in organizing a group of related tasks to perform for the custom workflow. Often, the stages of a custom workflow are performed in a sequence. Looking at the specific example, the stage component can be used to represent a particular stage performed for the risk management process that comprises an evaluation stage conducted for the risk management process that involves conducting an evaluation for the identified risk to assess the risk's severity. An instance of the stage component (object thereof) is generated to represent the evaluation stage that involves storing values for attributes defined for the stage component in the appropriate table found in the repository for the microservice. For instance, a value providing a position of the evaluation stage in a sequence of stages to be performed for the risk management process (e.g., “1”) can be stored in a corresponding field (e.g., “Sequence” field) of the appropriate table.
The subtask component is used to represent a subtask that can be performed during a stage of the custom workflow. A subtask may be performed during a stage to accomplish some type of work, activity, process, exercise, and/or the like. A subtask may be performed manually or through an automated process. Looking at the specific example, the subtask component can be used to represent a particular subtask that can be performed during the evaluation stage of the risk management process that comprises a scoring subtask that involves scoring and quantifying a level of risk for the identified risk to measure the risk's severity. An instance of the subtask component (object thereof) is generated to represent the scoring subtask that involves storing values for attributes defined for the subtask component in the appropriate table found in the repository for the microservice. For instance, a value identifying whether the scoring subtask is required to be performed during the evaluation stage (e.g., “TRUE”) can be stored in a corresponding field (e.g., “Required” field) of the appropriate table.
The rule component is used to represent a rule that controls one or more actions that are performed within the custom workflow based on one or more conditions. The microservice, in executing an instance of the custom workflow, can carry out the one or more actions in an automated manner. Looking at the specific example, the rule component can be used to represent a notification rule that involves automatically sending an electronic notification to risk management personnel if the risk score satisfies a threshold value. Accordingly, a hook point can be defined for the rule that identifies where during the custom workflow that the microservice evaluates the one or more conditions defined for the rule. For instance, the hook point for notification rule may be defined as the completion of the scoring subtask. An instance of the rule component (object thereof) is generated to represent the notification rule that involves storing values for hook point, condition(s), and action(s) defined for the rule component in the appropriate table found in the repository for the microservice. For instance, a value identifying the hook point for the notification rule (e.g., “H1”) can be stored in a corresponding field (e.g., “Hook_ID” field) of the appropriate table.
In addition, various aspects of the disclosure involve the use of a novel workflow management engine that executes functions for generating, implementing, and managing custom workflows for the microservice. For instance, a create workflow module accessible via the workflow management engine can create a new custom workflow for the microservice and persist the new custom workflow within the microservice. The create workflow module uses one or more standardized endpoints in communicating with the repository of the microservice and storing the custom workflow within the repository. Here, the create workflow module can use the standardized endpoint(s) to access the workflow component (object thereof) and identify, using mapping data defined for the workflow component, a workflows table installed within the repository, as well as the fields of the workflows table that are used to store values for various attributes of the custom workflow.
In addition, the workflow management engine can provide access to other modules creating other core components (e.g., stages, subtasks, rules, etc.) for a custom workflow defined for the microservice and persisting these other core components for the custom workflow within the microservice. For instance, a create stage module accessible via the workflow management engine can create a stage to include in a custom workflow defined for the microservice and persist the stage for the custom workflow within the microservice. Similar to the create workflow module, the create stage module can use one or more standardized endpoints in communicating with the repository of the microservice and storing the stage for the custom workflow within the repository.
Finally, a publish workflow module accessible via the workflow management engine can publish a custom workflow defined for the microservice. Publishing the custom workflow makes the custom workflow available to define as behavior for a particular domain object of the microservice. The publish workflow module can use one or more standardized endpoints communicating with the repository of the microservice in publishing the custom workflow by changing a status value for the custom workflow (e.g., changing a value stored in a status attribute for the custom workflow).
Accordingly, the novel library and/or workflow management engine can be included in multiple microservices that are implemented for an enterprise software application to provide capabilities within the microservices to generate and persist custom workflows within the microservices. Once generated and persisted, these custom workflows can be published and associated with domain objects defined within the microservices. As a result, the custom workflows become available for execution with respect to instances generated for their respective domain objects.
According to various aspects, the inclusion of the novel library and/or workflow management engine within the different microservices for the enterprise software application establishes a set of core components and attributes thereof to be used in generating custom workflows within the microservices that is common across all the different microservices. As a result, teams who are responsible for the different microservices are no longer required to design and implement their own versions of custom workflows within the different microservices. Therefore, these teams do not have to expend resources in developing the core components and attributes needed to implement custom workflows within their microservices. In addition, the common set of core components and attributes across the different microservices provides clients of the microservices (the services implemented by the microservices) with the experience a similar “look and feel” of workflows across the different microservices.
Further, the inclusion of the novel library and/or workflow management engine within the different microservices for the enterprise software application provides a set of standardized endpoints that communicate with the core components (objects thereof) to gain access to mapping data used in generating, implementing, and managing custom workflows within the microservices. Therefore, the teams who are responsible for the different microservices are also no longer required to design and implement their own versions of endpoints within the different microservices. These standardized endpoints can facilitate quicker development of user interfaces used for generating, implementing, and managing custom workflows within the microservices. Furthermore, the standardized endpoints can allow for development and implementation of standardized user interfaces across the different microservices for such tasks. As a result, the various teams for the different microservices are no longer required to expend as many resources, or expend any resources at all, in developing user interfaces for these tasks.
The disclosure is provided herein in the context of using a microservice-based architecture for an enterprise software application. However, various aspects described in this disclosure can be used for a microservice-based architecture that involves a variety of other applications besides an enterprise software application. For example, various aspects of the disclosure are applicable to a microservice-based architecture used for mobile applications such as a mobile banking application, a media content application, an Internet of things (IoT) application, and/or the like. In another example, various aspects of the disclosure are applicable to a microservice-based architecture used for web applications such as an e-commerce website, corporate website, media website, and/or the like. Therefore, the disclosure provided herein involving the use of a microservice-based architecture for an enterprise software application should not be viewed as limiting the scope of various aspects of the disclosure.
Example Computing Environment
The inclusion of the library 121 in a particular microservice 115 results in the library 121 exposing the core components and attributes thereof to the microservice 115 by building out the tables and fields required for persisting the core components and attributes thereof in a repository of the microservice 115. For example, the library may provide these core components as Java Persistence Application Programming Interfaces (JPAs) entities. In addition, the inclusion of the library 121 exposes mapping data for the core components and attributes thereof. The mapping data maps each of the core components to their corresponding table in the repository and the each of the attributes for a core component to the attribute's corresponding field of the table. Further, the inclusion of the library 121 exposes standardized endpoints needed to communicate with the core components, and thus the tables and fields of the core components, in generating, implementing, and managing custom workflows for the microservice 115. For example, these standardized endpoints may be representational state transfer (REST) application programming interfaces (APIs).
The inclusion of the workflow management engine 120 in a particular microservice 115 provides access to various modules that can use the standardized endpoints for generating, implementing, and managing custom workflows for the microservice 115. In addition, the workflow management engine 120 according to particular aspects may provide one or more user interfaces (e.g., graphical user interfaces) for the various modules that can be used by teams in executing the modules.
Accordingly, the workflow management engine 120 and library 121, each of which can be installed in each microservice 115 implemented for various services provided through the enterprise software application, can provide a reusable mechanism for implementing custom workflow capabilities into the various services. In addition, the workflow management engine 120 and library 121 can standardize how such custom workflows are implemented within each of the services. This standardization can reduce the resources expended on separately designing and developing core components and architecture necessary for implementing custom workflows specific to a microservice 115. Instead, the workflow management engine 120 and library 121, which can be included in any of the microservices 115, provides these custom workflow capabilities within each microservice 115. Furthermore, this standardization provides, to a given client (e.g., within a particular tenant of a SaaS system), a similar “look and feel” with respect to custom workflows across the various services provided through the microservices 115. Such standardization in the “look and feel” of different custom workflows can make these workflows more intuitive, since a user can infer how to operate controls and functions in a custom workflow that the user has not yet encountered based on the similar look and feel of controls and functions in a different custom workflow with which the user is familiar. This standardization in the end user experience can increase the utility of these custom workflows within a software environment (e.g., a tenant of a SaaS system).
Turning now to
The microservice 115 includes a data repository 180 used in storing data for the microservice 115. For example, the repository 180 may be a relational database that stores data for domain objects utilized by the microservice 115. Inclusion of the library 121 (not pictured in
In addition, the microservice 115 includes a workflow management engine 120 that provides access to various modules that can be used in generating, implementing, and managing custom workflows within the microservice 115. In this example, the workflow management engine 120 includes a create workflow module 130, a create stage module 140, a create subtask module 150, a create rule module 160, and publish workflow module 170. Two or more of these modules can be executed in collaboration to create a new custom workflow within the microservice 115
The create workflow module 130 can be executed to generate a new custom workflow within the microservice 115. The create workflow module 130 can store values for various attributes of the new custom workflow as defined by a user. The create workflow module 130 accomplishes this task by utilizing one or more standardized endpoints to communicate with the workflow component (object thereof) to access the mapping of the selected attributes for the new custom workflow to various fields of a workflows table defined in the repository 180.
The create stage module 140 can be executed to add a stage into a particular custom workflow. The create stage module 140 can stores values for various attributes of the stage selected for inclusion in the stage of a custom workflow. The create stage module 140 accomplishes this task by utilizing one or more standardized endpoints to communicate with the stage component (object thereof) to access the mapping of the selected attributes for the stage to various fields of a stages table found in the repository 180.
The create subtask module 150 can be executed to add a subtask into a stage of a particular custom workflow. A subtask is a task performed during the stage of a custom workflow to accomplish some type of work, activity, process, exercise, and/or the like involved in executing the custom workflow. In one example, a subtask may be an activity such as “performing an evaluation of particular risk identified for a data asset.” In another example, a subtask may be an activity such as “identifying an access control to be applied to a data asset in order to mitigate or otherwise address a risk identified for the data asset.” Similar to the create stage module 140 and create workflow module 130, the create subtask module 150 according to particular aspects stores values for various attributes of the subtask selected for inclusion in the subtask of the new custom workflow. The create subtask module 150 accomplishes this task by utilizing one or more standardized endpoints to communicate with the subtask component (object thereof) to access the mapping of the selected attributes for the subtask to various fields of a subtasks table found in the repository 180.
The create rule module 160 can be executed to add a rule related to a component (e.g., a stage) of a particular custom workflow. An example of a rule is a set of code that executes one or more actions in response to one or more conditions being met. A rule for a component of a custom workflow can impose one or more controls on that component. For instance, a rule can be included in a stage of a custom workflow that involves sending a notification (e.g., an email) to specific personnel when a risk identified for a data asset is evaluated as high.
As discussed further herein, multiple “hook” points (e.g., the beginning or end of a custom workflow, a stage, a subtask, etc.) are defined throughout a custom workflow that can be used in implementing a rule. A computing system executing an instance of a custom workflow implements the rule at a certain hook point of the custom workflow by, for example, evaluating the condition(s) for the rule in response to encountering the hook point in the execution of the custom workflow instance. An example of an “instance” of a custom workflow being executed is an execution of the custom workflow for a particular instance of a domain object associated with the custom workflow. For example, if a rule is inserted into to a custom workflow at the beginning of a stage, then the condition(s) for the rule are evaluated when the stage begins during execution of an instance of the custom workflow.
The create rule module 160 can store values for the condition(s) and action(s) of the rule selected for inclusion at the hook point for the new custom workflow. The create rule module 160 accomplishes this task by utilizing one or more standardized endpoints to communicate with the rule component (object thereof) to access the mapping of the condition(s) and action(s) for the rule to various fields of a rules table found in the repository 180.
The publish workflow module 170 can be executed to publish a particular custom workflow to make the workflow available within the microservice 115. In addition, the publish workflow module 170 can link or otherwise associate a custom workflow with a particular domain object defined for the microservice 115. As a result, the custom workflow (e.g., an instance of the custom workflow) is then available for execution for an instance generated of the particular domain object. The publish workflow module 170 can store the association between the custom workflow and the domain object in the microservice 115 by utilizing one or more standardized endpoints to store a record that maps the association in a workflow assignment table found in the repository 180 of the microservice 115.
According to various aspects, the workflow management engine 120 provides personnel 126 (e.g., team members) with access to one or more of these modules 130, 140, 150, 160, 170 available through via one or more user interfaces 125. For example, the one or more user interfaces 125 may comprise one or more webpages provided through a website that is in communication with the microservice 115. The user interfaces 125 may be standardized user interfaces that have been provided along with the library 121 and/or workflow management engine 120 that can be used by the personnel 126 in generating, implementing, and/or managing custom workflows for the microservice 115. However, in other instances, the personnel 126 may build custom user interfaces 125 that communicate with the various modules 130, 140, 150, 160, 170 available through the workflow management engine 120.
Repository Architecture
The enterprise software application may provide several different services. These services may utilize custom workflows associated with different domain objects for representing various entity and/or value objects used within the services. For example, the enterprise software application may provide a risk evaluation service through the enterprise software application that allows an entity (e.g., organization) to evaluate different data assets found within computing systems of the entity that are used in handling certain types of data such as personal data of individuals, referred to as data subjects. Here, the enterprise software application may receive, via one or more user inputs, information on a particular data asset so that a risk evaluation can be conducted on the data asset to identify any risks that may exist in having the data asset handle the certain type of data. Therefore, a domain object that may be defined and used within the risk evaluation service is “data asset.” In addition, another domain object that may be defined and used within the risk evaluation service is “risk.”
For a risk that has been identified for the data asset, the risk evaluation service (or some other service) may provide a risk management process for evaluating a particular risk identified for the data asset, and based on the evaluation, implement a plan for managing the risk by implementing actions to address/mitigate the risk and/or to monitor the risk. Therefore, the risk management process may need to be implemented within a microservice 115 so that it is available within the risk evaluation service. To do so, the team responsible for the microservice 115 may need to implement a custom workflow within the microservice 115 that the microservice can execute to perform the risk management process.
The repository architecture 300 may include one or more data structures (e.g., tables) used for implementing such a custom workflow. The data structures can store mapping data that maps attributes of core components, which can be used in constructing custom workflows, to data elements (e.g., fields for tables) that store values for the attributes with respect to particular custom workflows that are generated for the microservice 115. The remainder of the disclosure refers to tables and fields as the data structures and data elements used within the repository 180 for persisting custom workflows. In other aspects, a data structure and/or data element may encompass data structures and/or data elements, in addition to, or other than tables and fields. For example, other data structures may include files, spreadsheets, matrices, and/or the like. Other fields may include delimited text, cells, and/or the like.
As previously noted, a library 121 is included in the microservice 115 that builds out the tables within the microservice's 115 repository 180 to support custom workflow capabilities. According to various aspects, the library 121 builds out the tables to support several core components that can be used in constructing a custom workflow. These core components include a workflow component, a stage component, a subtask component, and a rule component.
As previously discussed, the microservice can use a workflow component to represent and define a custom workflow designed and installed for the microservice 115. The microservice can use a stage component to represent and define a stage to include in a custom workflow. The microservice can use a subtask component to represent and define a subtask that can be performed within a particular stage of a custom workflow. The microservice can use a rule component to represent and define a rule that controls one or more actions that are performed within the custom workflow based on one or more conditions.
Looking first at
Here, the Schema table 310 includes records that map attributes, as shown in the Component_Attribute column 315, for the various core components 311, 312, 313, 314 to fields of tables defined in the repository 180 for the various core components 311, 312, 313, 314, as shown in the Mapping column 316. One or more of the create workflow module 130, create stage module 140, create subtask module 150, create rule module 160, and/or publish workflow module 170 can reference the Schema table 310 in storing a particular custom workflow that has been defined for the microservice 115. In some aspects, the create workflow module 130 can query the Schema table 310 for mapping data for attributes of a particular custom workflow. The create workflow module 130 uses the mapping data returned in response to the query to identify fields in the repository 180 to which to store the values for the attributes. The create workflow module 130 stores values for these attributes in the identified fields.
For example, the create workflow module 130 may need to store a name as an attribute for a newly configured custom workflow for the microservice 115. To do so, the create workflow module 130 may query the Schema table 310 to identify a record 317 found in the table 310 for the “Name” attribute 318 of a custom workflow. The create workflow module 130 may then reference the mapping data 319 found in the record 317 and determine that the name (i.e., attribute value) provided for the newly configured custom workflow is to be stored in the “Name” field of the Workflows table 320. Similarly, the create stage module 140, create subtask module 150, and create rule module 160 may also reference the Schema table 310 in storing values for various attributes defined for stages, subtasks, and rules, respectfully, that are defined for a particular custom workflow in the same manner.
According to particular aspects, the library 121 maps the attributes of the various core components 311, 312, 313, 314 by storing the records for the different attributes in the Schema table 310 at a time when the library 121 is initially installed in the microservice 115 and builds out the Schema table 310. In addition, the library 121 builds out the tables and fields for the various core components as reflected by the mapping data stored in the records of the Schema table 310. Therefore, the repository architecture 300 includes a table for each core component that is configured for storing values for the various attributes that may be defined for any particular custom workflow implemented into the microservice 115.
In some aspects, a single table (e.g., a Schema table 310) can be used for storing the mapping data for the attributes of the various core components. But in other aspects, configurations of the repository architecture 300 can use more than a single table for such a purpose. For example, in particular configurations of the architecture 300, a schema table may be implemented for each core component. As a specific example, the repository architecture 300 can include a workflow schema table, a stage schema table, a subtask schema table, and a rule schema table. Such a configuration may be beneficial in some instances since fewer records may need to be queried to reference the mapping data for an attribute for any particular core component. For example, to determine where to store a value for the name attribute of a stage, the create stage module 140 would only need to query the records providing mapping data for the various attributes that can be defined for a stage found in a stage schema table as opposed to having to query the records providing mapping data for the various attributes that can be defined for all the core components in a single schema table.
Accordingly, the particular repository architecture 300 shown in
In an illustrative example, a team uses the workflow management engine 120 to build a custom workflow that performs a risk management process for evaluating a particular risk identified for a data asset, and based on the evaluation, implementing a plan for managing the risk. One or more members of the team responsible for the microservice 115 may use one or more user interfaces 125 that allow the member(s) to define the configuration of the custom workflow by defining what core components make up the custom workflow, as well as define values for various attributes of the core components. In turn, the create workflow module 130, create stage module 140, create subtask module 150, and/or create rule module 160 may then be executed in persisting the custom workflow (the configuration thereof) within the microservice 115 by storing values for various attributes of the core components that have been identified by the member(s) as making up the custom workflow.
Therefore, the one or more members, through the one or more user interfaces 125, may select the core components that make up the custom workflow and provide values for various attributes of the core components. For example, a member may provide input (e.g., via a user interface) indicating that he or she wishes to create a new custom workflow for the microservice 115 and navigates to a user interface 125 that request values for various attributes to define for the custom workflow. Such attributes may include a name of the custom workflow, a description of the custom workflow, a type for the custom workflow, whether the custom workflow is to be used as a default with respect to domain objects the custom workflow may be associated with, and/or the like. Once the member has entered the values for the various attributes, the member may indicate (e.g., may select a button on the screen) to have the new custom workflow created for the microservice 115. In turn, the create workflow module 130 may be executed to store the values for the attributes in the repository 180.
According to various aspects, the create workflow module 130 creates the custom workflow in the microservice 115 by querying the records stored in the Schema table 310 and referencing the mapping data found in the records for the various attributes defined for the workflow core component in determining the fields of the Workflows table 320 to use in storing the values received from the member. Once the create workflow module 130 has determined the fields to use in storing the values for the attributes, the create workflow module 130 stores a record having a “W1” workflow identifier 321 in the Workflows table 320 with the values for the attributes stored in their corresponding fields as shown in
The create workflow module 130 may continue to configure the custom workflow by defining stages to include in the custom workflow based on user input from the member. Here, the member may navigate to another user interface 125 that allows the member to define a stage to include in the custom workflow, as well as define values for various attributes of the stage. For example, the attributes may include a name for the stage, a description of the stage, and/or the like. In addition, the stages of a custom workflow are typically performed in a sequence. Therefore, an attributed defined for the stage may include its position within the sequence of stages.
In addition to the attributes, the create workflow module 130 may also define one or more subtasks that can be performed during the stage based on definitions for the one or more subtasks provided by the member via a user interface. According to various aspects, these subtasks may then be selected during the execution of an instance of the custom workflow to be performed during the stage of the custom workflow. For example, the member may define seven different subtasks that can be performed during the stage. As a result, the seven subtasks will be available to a client during the execution of an instance of the custom workflow for the client to select to include in the instance of the custom workflow to be performed during the stage. In some instances, a subtask may be required to be performed and is automatically added to the instance of the custom workflow.
Similar to the workflow and stages, the member may define values for various attributes of a subtask. For example, attributes for a subtask may include a name of the subtask, a description of the subtask, and/or the like. In addition, the attributes may include an indicator as to whether the subtask is required to be performed for the stage of the custom workflow. If the indicator is set to “TRUE,” then the subtask may automatically be added to the stage for an instance generated of the custom workflow.
According to various aspects, the create workflow module 130, through the user interface 125, may receive and create the stage for the custom workflow, as well as the subtasks to make available for the stage. In turn, the create stage module 140 and the create subtask module 150 may be executed to store the values for the attributes of the stage and the values for the attributes of the subtasks, respectfully, in the repository 180.
Therefore, in similar fashion to the create workflow module 130, the create stage module 140 according to various aspects queries the records stored in the Schema table 310 and references the mapping data found in the records for the various attributes defined for the stage core component in determining the fields of the Stages table 330 to use in storing the values received from the member for the stage. Once the create stage module 140 has determined the fields to use in storing the values for the attributes, the create stage module 140 stores a record in the Stages table 330 with the values for the attributes of the stage stored in their corresponding fields.
Likewise, the create subtask module 150 queries the records stored in the Schema table 310 and references mapping data found in the records for the various attributes defined for the subtask core component in determining the fields of the Subtasks table 340 to use in storing the values received from the member for each of the subtasks. Once the create subtask module 150 has determined the fields to use in storing the values for the attributes for each of the subtasks, the create subtask module 150 stores a record for each subtask in the Subtasks table 340 with the values for the attributes of the subtask stored in their corresponding fields of the record for the subtask.
Therefore, turning to
According to particular aspects, a client that is executing an instance of the custom workflow may decide to include all or only certain stages of the custom workflow. For example, a client may identify a risk for a particular asset that is only considered minimal and therefore, may decide that a treatment plan is not needed for addressing and/or mitigating the risk. Therefore, the client may decide to skip (not include) the “Mitigated” stage in the instance of the custom workflow.
In addition, the custom workflow may define a single subtask for the “Recommended” stage that is named “Analysis.” This particular subtask involves conducting a thorough analysis of the risk identified for the data asset so that appropriate recommendations can be identified for addressing and/or mitigating the risk. Further, the custom workflow defines two subtasks (e.g., based on input from the member) for the “Mitigated” stage that are named “ControlApplication” and “Control Verification.” The “ControlApplication” subtask involves applying various controls that are identified to address and/or mitigate the risk. For example, the risk may involve a risk of unauthorized parties gaining access to the data asset. Therefore, the “ControlApplication” subtask may involve implementing an access control such as two-factor authentication for the data asset to control access to the asset. The “Control Verification” subtask involves performing one or more verification processes to ensure (verify) that the proper controls have been implemented to address and/or mitigate the risk.
Looking at
Three records having “WST1,” “WST2,” “WST3” identifiers 341, 342, 343 have also been added to the Subtasks table 340 to persist the three subtasks “Analysis,” “ControlApplication,” and “Control Verification” defined by the member for the “Recommended” and “Mitigated” stages. Similar to the Stages table 330, the Subtasks table 340 includes various fields that can be used in storing attribute values for each of the subtasks. In addition, the Subtasks table 340 includes a “Stage_ID” field that is stores an identifier 331, 332, 333 for the stage corresponding to each of the subtasks. Furthermore, the Subtasks table 340 includes a “Required” field 344 that identifies whether the subtask is required to be performed for its corresponding stage. In this example, the “Required” field 344 for each of the three subtasks has been set to “TRUE,” indicating a required performance of each of the subtasks during their respective stages.
According to particular aspects, the “Required” field 344 can be set to “FALSE” for a subtask defined for a stage of a custom workflow to indicate that the subtask is option for the stage. In these instances, the subtask can be made available for selection by a client for an instance generated of the custom workflow. Therefore, if the client wishes to have the subtask performed during the stage of the instance of the custom workflow, the client can select the subtask to indicate so, and the custom workflow can add the subtask to the stage for the instance of the custom workflow.
As previously noted, the member may also define rules for the custom workflow that involve performing one or more actions in response to one or more conditions being met, or in some instances, not being met. For example, a rule may cause a remainder email must be sent to the individual who has been assigned to complete a particular subtask if the subtask is not completed in a specified amount of time.
According to various aspects, the microservice may provide various hook points that trigger a rule during different moments of the custom workflow. For example, a hook point may be provided at the beginning of a stage that allows for a rule to be defined that is triggered when the stage begins for an instance of the custom workflow. Here, “triggering” involves evaluating the condition(s) of the rule and if the condition(s) are met, or not met depending on the rule, then executing the action(s) defined by the rule.
Therefore, the member may identify the applicable hook point in defining a rule for the custom workflow. In addition, the member may identify one or more conditions for the rule, along with one or more actions to perform. According to various aspects, the member, through a user interface 125, may create the one or more rules for the custom workflow. In turn, the create rule module 160 may be executed to persist in the rules in the repository 180. The create rule module 160 queries the records stored in the Schema table 310 and references mapping data found in the records for the hook point, conditions, and actions defined for the rule component in determining the fields of the Rules table 350 to use in storing the hook point, condition(s), and action(s) received by the member for each of the rules. Once the create subtask module 150 has determined the fields to use in storing the hook point, condition(s), and action(s) for each of the rules, the create rule module 160 stores a record for each rule in the Rules table 350 with the hook point, condition(s), and action(s) stored in their corresponding fields of the record for the rule.
For example, the member may have defined three rules for the custom workflow developed for the risk management process. The first rule may involve sending an assessment to perform for the identified risk if the risk is determined to have a score level greater than “medium.” The second rule may involve assigning a subtask to have an individual review the assessment if the assessment were sent based on the first rule. The third rule may involve generating and sending an email remainder for a subtask if the completion date set for the subtask is less than two days.
Therefore, looking at
The publish workflow module 170, responsive to user input via a user interface 125 from a member indicating that the custom workflow's development is complete, can publish the custom workflow and associate the custom workflow with a particular domain object for the microservice 115. For example, a custom workflow published for the risk management process can be associated with the “risk” domain object defined for the microservice 115. The publish workflow module 170 stores a record in a Workflow Assignment table 360 provided in the repository that associates (maps) the domain object to the customer workflow. For example, as shown in
As a result of publishing the custom workflow and associating it with the “risk” domain object, the custom workflow becomes available for execution for each instance generated of the “risk” domain object in the microservice 115. For instance, a client, using the risk assessment service to assess a data asset using in handling a certain type of data, may identify a particular risk associated with the data asset handling the certain type of data. In response to user input identifying this risk, the microservice 115 implementing the service may generate an instance of the “risk” domain object to represent the identified risk that is comprised of an instance of the custom workflow developed for performing the risk management process. The enterprise software application can subsequently execute custom workflow within the service for the identified risk to perform the risk management process on the risk.
According to various aspects, the repository architecture 300 may also include other tables that are used in storing data (e.g., attributes) for instances of custom workflows. For example, an attribute that may defined for a subtask to perform during a stage of an instance generated for a particular custom workflow may be an individual who has been assigned to complete the subtask. Additional attributes may be defined for the subtask such as, for example, a completion date for the subtask, an individual who is to approve completion of the subtask, and/or the like. Therefore, one or more tables may be included in the repository architecture 300 that can be used in persisting the values defined for these attributes.
According to some aspects, the library 121 that is included in the microservice 115 and builds out the tables and fields as previously described, may also build out the tables and fields needed in persisting data for instances generated of custom workflows. In other instances, the data may be stored in tables used in persisting domain objects for the microservice 115. Yet, in other instances, members responsible for the microservice 115 may design and implement their own tables that are used in persisting data for instances of custom workflows. Further detail is provided below regarding the configuration and functionality of the create workflow module 130, create stage module 140, create subtask module 150, create rule module 160, and publish workflow module 170 according to various aspects of the disclosure.
Create Workflow Module
Turning now to
The process 500 involves the create workflow module 130 receiving one or more values for one or more attributes of the custom workflow in Operation 510. For example, the received values may include a name of the custom workflow, a description of the custom workflow, a type for the custom workflow, whether the custom workflow is to be used as a default with respect to domain objects the custom workflow may be associated with, and/or the like. In addition, the values may include an identifier for the custom workflow. According to some aspects, the create workflow module 130 may generate the identifier for the custom workflow.
The create workflow module 130 identifies the fields provided in the Workflows table 320 that are used in storing the values of the attributes provided by member in Operation 515. For instance, the create workflow module 130 performs this particular operation by referencing mapping data provided in the repository 180. Here, the create workflow module 130 can gain access to the mapping data through using the one or more standardized endpoints to communicate with the workflow component. The mapping data may be in the form of a Schema table 310 provided in the repository 180 that includes records identifying the various attributes that may be defined for the workflow component and the attributes' corresponding fields in the Workflows table 320 used in storing values for the attributes. The create workflow module 130 queries the Schema table 310 in identifying the fields used in storing the values for the attributes provided by the member.
Here, the create workflow module 130 may identify a specific record stored in the Schema table 310 for each attribute that a value has been provided for by the member. For example, an attribute identifier (e.g., name of the attribute) may be provided for a particular attribute along with the value for the attribute that can be used by the create workflow module 130 in identifying the record stored in the Schema table 310 for the attribute. In addition, the create workflow module 130 may provide a core component identifier that represents the core component “Workflow” that can also be used by the create workflow module 130 in identifying the record. Once the create workflow module 130 has identified the record in the Schema table 310 that corresponds to the attribute, the create workflow module 130 can then reference the mapping data provided by the record in identifying the field found in the Workflows table 320 that is used for storing the value for the attribute.
For example, the create workflow module 130 may provide the core component identifier “Workflow” and attribute identifier “Name” along with a value for a particular attribute. The create workflow module 130 may use these two identifiers in querying the record associated with the particular attribute from the Schema table 310. The create workflow module 130 can then reference the mapping data for the record in determining that the “Name” field of the Workflows table 320 is used in storing the value received along with these two identifiers.
The process 500 continues with the create workflow module 130 storing a record in the Workflows table 320 to record the values of the attributes provided by the member for the custom workflow in Operation 520. Again, the create workflow module 130 may do so by utilizing the one or more standardized endpoints to communicate with the workflow component to store the record in the Workflows table 320. The create workflow module 130 records the value for each of the attributes in the attribute's corresponding field of the record stored in the Workflows table 320. As a result, the custom workflow persists in the microservice 115 and defined based on the values provided for the various attributes. In addition, the create workflow module 130 may also store a value in a “Status” field in Operation 525 for the custom workflow representing a current status of the custom workflow.
According to various aspects, the create workflow module 130 may set the status of the custom workflow to “DRAFT.” This status may indicate that the custom workflow is still in development and that further core components and corresponding attributes need to be defined for the custom workflow. For example, one or more stages may need to be defined for the custom workflow.
Although the create workflow module 130 shown in
Create Stage Module
Turning now to
The process 600 involves the create stage module 140 receiving one or more values for one or more attributes of the stage in Operation 610. For example, the values that may be received may include a name for the stage, a description of the stage, a position of the stage in a sequence of the stages defined for the custom workflow, and/or the like. In addition, the create stage module 140 may receive an identifier for the custom workflow, as well as an identifier for the stage. According to some aspects, the create stage module 140 may generate the identifier for the stage.
The create stage module 140 identifies the fields provided in the Stages table 330 that are used in storing the values of the attributes provided by member in Operation 615. Similar to the create workflow module 130, the create stage module 140 performs this particular operation according to various aspects by referencing mapping data provided in the form of a Schema table 310 that includes records identifying the various attributes that may be defined for a stage component of a custom workflow and the attributes' corresponding fields in the Stages table 330 used in storing values for the attributes. The create stage module 140 can gain access to the mapping data through using the one or more standardized endpoints to communicate with the stage component.
The create stage module 140 queries the Schema table 310 to identify a specific record stored in the Schema table 310 for each attribute for the stage that a value has been provided for by the member. For example, an attribute identifier (e.g., name of the attribute) and a core component identifier (e.g., “Stage”) may be provided for a particular attribute along with the value for the attribute that the create stage module 140 uses in identifying the record stored in the Schema table 310 for the attribute. Once the create stage module 140 has identified the record in the Schema table 310 that corresponds to the attribute, the create stage module 140 can then reference the mapping data provided by the record in identifying the field found in the Stages table 330 that is used for storing the value for the attribute.
The process 600 continues with the create stage module 140 storing a record in the Stages table 330 to record the values of the attributes provided by the member for the stage in Operation 620. Again, the create stage module 140 may do so by utilizing the one or more standardized endpoints to communicate with the stage component to store the record in the Stages table 330. Accordingly, the create stage module 140 records the value for each of the attributes in the attribute's corresponding field of the record stored in the Stages table 330. In addition, the create stage module 140 records the identifier for the stage and the identifier for the workflow in the corresponding fields of the record to associate the stage with the custom workflow. As a result, the stage is then persisted in the custom workflow and defined based on the values provided for the various attributes.
As previously discussed, the member may also define one or more subtasks for the stage. Therefore, the create stage module 140 may determine whether values for attributes have also been received for one or more subtasks that have been defined to include in the stage in Operation 625. For example, the values may include subtask identifiers and/or subtask names that the create stage module 140 determines are associated with one or more subtasks. If the create stage module 140 determines attribute values have been received for one or more subtasks to include in the stage, then the create stage module 140 records the one or more subtasks for the stage in Operation 630.
According to various aspects, the create stage module 140 performs this particular operation by invoking (executing) a create subtask module 150. For example, the create stage module 140 may provide the values of attributes for the subtask(s) that are to be added to the stage to the create subtask module 150. In addition, the create stage module 140 may provide the create subtask module 150 with an identifier for the stage. As further discussed herein, the create subtask module 150 records the values provided for various attributes for the one or more subtasks in the Subtasks table 340 to persist the subtask(s) for the stage. Once the subtask(s) have been recorded for the stage, the create stage module exits in Operation 635. Accordingly, the create stage module 140 can create additional stages for the custom workflow by storing the values defined for various attributes of the additional stages, as well as the subtask(s) defined for the additional stages.
Although the create stage module 140 shown in
Create Subtask Module
Turning now to
The process 700 involves the create subtask module 150 receiving value(s) for one or more attributes for each of the subtasks in Operation 710. For example, the values that may be received for each subtask may include a name for the subtask, a description of the stage, an indicator of whether the subtask is required to be performed for the stage, and/or the like. In addition, the create subtask module 150 may receive an identifier for each of the subtasks and/or an identifier for the stage that the subtask(s) are to be associated with for the custom workflow. According to some aspects, the create subtask module 150 may generate the identifier for each of the subtasks.
The create subtask module 150 identifies the fields provided in the Subtasks table 340 that are used in storing the values of the attributes provided by member in Operation 715. Similar to the create workflow module 130 and the create stage module 140, the create subtask module 150 performs this particular operation according to various aspects by referencing mapping data provided in the form of a Schema table 310 that includes records identifying the various attributes that may be defined for a subtask component of a custom workflow and the attributes' corresponding fields in the Subtasks table 340 used in storing values for the attributes. The create subtask module 150 can gain access to the mapping data through using the one or more standardized endpoints to communicate with the subtask component.
The create subtask module 150 queries the Schema table 310 to identify a specific record stored in the Schema table 310 for each attribute of the subtask(s) that a value has been provided for by the member. For example, an attribute identifier (e.g., name of the attribute) and a core component identifier (e.g., “Subtask”) may be provided for a particular attribute along with the value for the attribute for each subtask. The create subtask module 150 uses these identifiers in identifying the record stored in the Schema table 310 for the attribute. Once the create subtask module 150 has identified the record in the Schema table 310 that corresponds to the attribute, the create subtask module 150 can then reference the mapping data provided by the record in identifying the field found in the Subtasks table 340 that is used for storing the value for the attribute.
The process 700 continues with the create subtask module 150 storing a record in the Subtasks table 340 for a first one of the subtasks to record the values of the attributes provided by the member for the subtask in Operation 720. Again, the create subtask module 150 may do so by utilizing the one or more standardized endpoints to communicate with the subtask component to store the record in the Subtasks table 340. Accordingly, the create subtask module 150 records the value for each of the attributes in the attribute's corresponding field of the record stored in the Subtasks table 340. In addition, the create subtask module 150 records the identifier for the subtask and the identifier for the stage in the corresponding fields of the record to associate the subtask with the stage of the custom workflow. As a result, the subtask is then persisted in the stage of the custom workflow and defined based on the values provided for the various attributes.
The create subtask module 150 then determines whether another subtask has been provided for the stage in Operation 725. For example, the create subtask module 150 may determine that another identifier for a subtask has been provided along with associated values for other attributes. Therefore, if the create subtask module 150 determines attribute values have been provided for another subtask to include in the stage, then the create subtask module 150 returns to Operation 720 and stores a record in the Subtasks table 340 for the subtask. Once the create subtask module 150 has processed the attribute values for all of the subtasks, the create subtask module 150 exists at Operation 730. As a result, the subtasks that have been define for the stage are now persisted in the repository 180 for the microservice 115 so that the subtasks are available for use with instances generated of the custom workflow.
Although the create subtask module 150 shown in
Create Rule Module
Turning now to
The process 700 involves the create rule module 160 receiving an identifier for the hook point, condition(s), and action(s) for each of the rules in Operation 810. In addition, the create rule module 160 may receive an identifier for each of the rules and/or an identifier for the workflow that the rule(s) are to be associated with for the custom workflow. According to some aspects, the create rule module 160 may generate the identifier for each of the rules.
According to various aspects, the identifiers for the hook points may be mapped to particular hook points that are available for use within the custom workflow. The mappings for the identifiers may be provided in a table found within the repository 180. For example, a variety of hook points may be available that may include points such as the beginning and end of a custom workflow, the beginning and end of a stage of the custom workflow, and/or the beginning and end of a subtask of a custom workflow. In addition, hook points may be available that are tied to properties and/or states of the custom workflow. For example, a hook point can be made available that is tied to a particular attribute of a custom workflow, stage, and/or subtask. A specific example may include the status of a custom workflow and/or stage of the custom workflow. Further, hook points may be available that are tied to properties and/or states of a domain object associated with the custom workflow. A specific example, a hook point may be available that is tied to an instance of a domain object representing a particular item or article such as a particular risk.
The create rule module 160 identifies the fields provided in the Rules table 350 that are used in storing the hook point, condition(s), and action(s) for a rule in Operation 815. The create rule module 160 performs this particular operation according to various aspects by referencing mapping data provided in the form of a Schema table 310 that includes records identifying the hook point, conditions, and actions defined for a rule component of a custom workflow and the hook point's, conditions', and rules' corresponding fields in the Rules table 350 used in storing the hook point identifier, conditions, and actions for a rule. The create rule module 160 can gain access to the mapping data through using the one or more standardized endpoints to communicate with the rule component.
The create rule module 160 queries the Schema table 310 to identify a specific record stored in the Schema table 310 for each of the hook point, a condition, and an action. According to particular aspects, the Rules table 350 may include more than one field for storing conditions, as well as more than one field for storing actions. For example, a core component identifier (e.g., “Rule”) may be provided along with a hook point identifier for a rule. The create rule module 160 uses the identifier in identifying the record stored in the Schema table 310 for the hook point. Once the create rule module 160 has identified the record in the Schema table 310 that corresponds to the hook point, the create rule module 160 can then reference the mapping data provided by the record in identifying the field found in the Rules table 350 that is used for storing the value for the hook point. The create rule module 160 can do the same for conditions and actions.
The process 800 continues with the create rule module 160 storing a record in the Rules table 350 for a first one of the rules to record the hook point identifier, condition(s), and action(s) provided by the member for the rule in Operation 820. Again, the create rule module 160 may do so by utilizing the one or more standardized endpoints to communicate with the rule component to store the record in the Rules table 350. Accordingly, the create rule module 160 records the hook point identifier, condition(s), and action(s) in their corresponding fields of the record stored in the Rules table 350. In addition, the create rule module 160 records the identifier for the rule and the identifier for the custom workflow in the corresponding fields of the record to associate the rule with the custom workflow. As a result, the rule is then persisted in the custom workflow and defined based on the hook point identifier, condition(s), and action(s) provided.
The create rule module 160 then determines whether another rule has been provided for the custom workflow in Operation 825. For example, the create rule module 160 may determine that another identifier for a rule has been provided along with associated hook point identifier, condition(s), and action(s). Therefore, if the create rule module 160 determines a hook point identifier, condition(s), and action(s) have been provided for another rule to include in the custom workflow, then the create rule module 160 returns to Operation 820 and stores a record in the Rules table 350 for the rule. Once the create rule module 160 has processed the hook point identifiers, condition(s), and action(s) for all of the rules, the create rule module 160 exists at Operation 830. As a result, the rules that have been define for the custom workflow are now persisted in the repository 180 for the microservice 115 so that the rules are evaluated and executed for instances generated of the custom workflow.
Although the create rule module 160 shown in
Publish Workflow Module
Turning now to
The process 900 involves the publish workflow module 170 receiving a request to publish the custom workflow in Operation 910. The request may include an identifier for the custom workflow, as well as one or more identifiers for domain objects that are to be associated with the custom workflow. The publish workflow module 170 determines whether the custom workflow is to be assigned to one or more domain objects in Operation 915. For example, the publish workflow module 170 determines whether any domain object identifiers have been provided in the request.
If the publish workflow module 170 determines the custom workflow is to be assigned to one or more domain objects, then the publish workflow module 170 stores a record for each of the domain objects in the Workflow Assignment table 360 in Operation 920. Here, the publish workflow module 170 can utilize the one or more standardized endpoints to gain access to mapping data to identify the Workflow Assignment table 360 and corresponding fields of the table 360. Each record includes the custom workflow identifier for the custom workflow and the domain object identifier for the domain object. Therefore, the record maps the custom workflow to the domain object.
The publish workflow module 170 then publishes the custom workflow in Operation 925 by updating the status of the custom workflow. For example, the publish workflow module 170 according to various aspects updates the “Status” attribute of the custom workflow in the Workflows table 320 to “Published.” Here, the publish workflow module 170 queries the records stored in the Workflows table 320 based on the custom workflow identifier and once the record has been identified, the publish workflow module 170 updates the “Status” field for the record to “Published.” As a result, the custom workflow is now available in the microservice 115 for use and if assigned to one or more domain objects, instances of the custom workflow become available for instances generated of the one or more domain objects.
Although the publish workflow module 170 shown in
Examples of Graphical User Interfaces
As previously noted, custom workflows may use various user interfaces (e.g., graphical user interfaces or GUIs) 125 to manage custom workflows and their associated stages, subtasks, and rules.
Example Technical Platforms
Aspects of the present disclosure may be implemented in various ways, including as computer program products that comprise articles of manufacture. Such computer program products may include one or more software components including, for example, software objects, methods, data structures, and/or the like. A software component may be coded in any of a variety of programming languages. An illustrative programming language may be a lower-level programming language such as an assembly language associated with a particular hardware architecture and/or operating system platform. A software component comprising assembly language instructions may require conversion into executable machine code by an assembler prior to execution by the hardware architecture and/or platform. Another example programming language may be a higher-level programming language that may be portable across multiple architectures. A software component comprising higher-level programming language instructions may require conversion to an intermediate representation by an interpreter or a compiler prior to execution.
Other examples of programming languages include, but are not limited to, a macro language, a shell or command language, a job control language, a script language, a database query, or search language, and/or a report writing language. In one or more example aspects, a software component comprising instructions in one of the foregoing examples of programming languages may be executed directly by an operating system or other software component without having to be first transformed into another form. A software component may be stored as a file or other data storage construct. Software components of a similar type or functionally related may be stored together such as, for example, in a particular directory, folder, or library. Software components may be static (e.g., pre-established, or fixed) or dynamic (e.g., created or modified at the time of execution).
A computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, computer program products, program code, and/or similar terms used herein interchangeably). Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).
According to various aspects, a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid-state drive (SSD), solid state card (SSC), solid state module (SSM)), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like. A non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like. Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like. Further, a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.
According to various aspects, a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory (VRAM), cache memory (including various levels), flash memory, register memory, and/or the like. It will be appreciated that where various aspects are described to use a computer-readable storage medium, other types of computer-readable storage media may be substituted for or used in addition to the computer-readable storage media described above.
Various aspects of the present disclosure may also be implemented as methods, apparatuses, systems, computing devices, computing entities, and/or the like. As such, various aspects of the present disclosure may take the form of a data structure, apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations. Thus, various aspects of the present disclosure also may take the form of entirely hardware, entirely computer program product, and/or a combination of computer program product and hardware performing certain steps or operations.
Various aspects of the present disclosure are described below with reference to block diagrams and flowchart illustrations. Thus, each block of the block diagrams and flowchart illustrations may be implemented in the form of a computer program product, an entirely hardware aspect, a combination of hardware and computer program products, and/or apparatuses, systems, computing devices, computing entities, and/or the like carrying out instructions, operations, steps, and similar words used interchangeably (e.g., the executable instructions, instructions for execution, program code, and/or the like) on a computer-readable storage medium for execution. For example, retrieval, loading, and execution of code may be performed sequentially such that one instruction is retrieved, loaded, and executed at a time. In some examples of aspects, retrieval, loading, and/or execution may be performed in parallel such that multiple instructions are retrieved, loaded, and/or executed together. Thus, such aspects can produce specially configured machines performing the steps or operations specified in the block diagrams and flowchart illustrations. Accordingly, the block diagrams and flowchart illustrations support various combinations of aspects for performing the specified instructions, operations, or steps.
Example System Architecture
According to various aspects, each server device 1615 may include at least one server and at least one data store. Here, the server devices 1615 may represent various forms of servers including, but not limited to a web server, an application server, a proxy server, a network server, and/or a server pool. In general, the server system 1610 accepts requests from team member devices (e.g., the team computing system 1620) with respect to implementing and/or managing functionality associated with application services (microservices 115 thereof) over the network(s) 1625.
According to various aspects, the server system 1610 can provide a cloud infrastructure to host one more microservice-based applications (e.g., microservices 115 provided as one or more computer-executable programs executed by one or more server devices 1615). In some examples, computing resources of the server system 1610 can be provisioned based on modelling of network traffic associated with use of the one or more microservices 115. Accordingly, the microservices 115 may be designed to communicate using communication methods and protocols, such as lightweight RESTful APIs (i.e., application programming interfaces (API) implemented using representational state transfer (REST) architectures). For example, the API may be implemented as a REST API, which may be accessed using the hypertext transfer protocol (HTTP), in a manner similar to a standard web page. However, any suitable communication protocol may be used.
Example Computing Hardware
A hardware device 1700 includes a processor 1702, a main memory 1704 (e.g., read-only memory (ROM), flash memory, dynamic random-access memory (DRAM) such as synchronous DRAM (SDRAM), Rambus DRAM (RDRAM), and/or the like), a static memory 1706 (e.g., flash memory, static random-access memory (SRAM), and/or the like), and a data storage device 1718, that communicate with each other via a bus 1732.
The processor 1702 may represent one or more general-purpose processing devices such as a microprocessor, a central processing unit, and/or the like. According to some aspects, the processor 1702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, processors implementing a combination of instruction sets, and/or the like. According to some aspects, the processor 1702 may be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, and/or the like. The processor 1702 can execute processing logic 1726 for performing various operations and/or steps described herein.
The hardware device 1700 may further include a network interface device 1708, as well as a video display unit 1710 (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT), and/or the like), an alphanumeric input device 1712 (e.g., a keyboard), a cursor control device 1714 (e.g., a mouse, a trackpad), and/or a signal generation device 1716 (e.g., a speaker). The hardware device 1700 may further include a data storage device 1718. The data storage device 1718 may include a non-transitory computer-readable storage medium 1730 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more modules 1722 (e.g., sets of software instructions) embodying any one or more of the methodologies or functions described herein. For instance, according to particular aspects, the modules 1722 include a create workflow module 130, create stage module 140, create subtask module 150, create rule module 160, and/or publish workflow module 170 that are part of a workflow management engine 120 as described herein. The one or more modules 1722 may also reside, completely or at least partially, within main memory 1704 and/or within the processor 1702 during execution thereof by the hardware device 1700—main memory 1704 and processor 1702 also constituting computer-accessible storage media. The one or more modules 1722 may further be transmitted or received over a network 1625 via the network interface device 1708.
While the computer-readable storage medium 1730 is shown to be a single medium, the terms “computer-readable storage medium” and “machine-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” should also be understood to include any medium that is capable of storing, encoding, and/or carrying a set of instructions for execution by the hardware device 1700 and that causes the hardware device 1700 to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, and/or the like.
System Operation
The logical operations described herein may be implemented (1) as a sequence of computer implemented acts or one or more program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical operations described herein are referred to variously as states, operations, steps, structural devices, acts, or modules. These states, operations, steps, structural devices, acts, and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof. Greater or fewer operations may be performed than shown in the figures and described herein. These operations also may be performed in a different order than those described herein.
While this specification contains many specific aspect details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular aspects of particular inventions. Certain features that are described in this specification in the context of separate aspects also may be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect also may be implemented in multiple aspects separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be a sub-combination or variation of a sub-combination.
Similarly, while operations are described in a particular order, this should not be understood as requiring that such operations be performed in the particular order described or in sequential order, or that all described operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various components in the various aspects described above should not be understood as requiring such separation in all aspects, and the described program components (e.g., modules) and systems may be integrated together in a single software product or packaged into multiple software products.
Many modifications and other aspects of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific aspects disclosed and that modifications and other aspects are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This application claims priority from U.S. Provisional Patent Application Ser. No. 63/150,299, filed Feb. 17, 2021, the entire disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
4574350 | Starr | Mar 1986 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5710917 | Musa et al. | Jan 1998 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5872973 | Mitchell et al. | Feb 1999 | A |
5913041 | Ramanathan et al. | Jun 1999 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148297 | Swor et al. | Nov 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6240422 | Atkins et al. | May 2001 | B1 |
6243816 | Fang et al. | Jun 2001 | B1 |
6253203 | Oflaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | Oflaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484149 | Jammes et al. | Nov 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6516314 | Birkler et al. | Feb 2003 | B1 |
6516337 | Tripp et al. | Feb 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6574631 | Subramanian et al. | Jun 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6699042 | Smith et al. | Mar 2004 | B2 |
6701314 | Conover et al. | Mar 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6754665 | Futagami et al. | Jun 2004 | B1 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Yoshida et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6909897 | Kikuchi | Jun 2005 | B2 |
6925443 | Baggett, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980927 | Tracy et al. | Dec 2005 | B2 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7100195 | Underwood | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124107 | Pishevar et al. | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7293119 | Beale | Nov 2007 | B2 |
7299299 | Hollenbeck et al. | Nov 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7346518 | Frank et al. | Mar 2008 | B1 |
7353204 | Liu | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7376835 | Olkin et al. | May 2008 | B2 |
7380120 | Garcia | May 2008 | B1 |
7382903 | Ray | Jun 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7428546 | Nori et al. | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7533113 | Haddad | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7565685 | Ross et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7584508 | Kashchenko et al. | Sep 2009 | B1 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617136 | Lessing et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7627666 | DeGiulio et al. | Dec 2009 | B1 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7681034 | Lee et al. | Mar 2010 | B1 |
7681140 | Ebert | Mar 2010 | B2 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7702639 | Stanley et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7711995 | Morris | May 2010 | B1 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7761586 | Olenick et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7802305 | Leeds | Sep 2010 | B1 |
7805349 | Yu et al. | Sep 2010 | B2 |
7805451 | Hosokawa | Sep 2010 | B2 |
7813947 | DeAngelis et al. | Oct 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7836078 | Dettinger et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan et al. | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7860816 | Fokoue-Nkoutche et al. | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7890461 | Oeda et al. | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904360 | Evans | Mar 2011 | B2 |
7904478 | Yu et al. | Mar 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7974992 | Fastabend et al. | Jul 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7991747 | Upadhyay et al. | Aug 2011 | B1 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8005891 | Knowles et al. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8036374 | Noble, Jr. | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041749 | Beck | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8090754 | Schmidt et al. | Jan 2012 | B2 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8099765 | Parkinson | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8135815 | Mayer | Mar 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8156159 | Ebrahimi et al. | Apr 2012 | B2 |
8166406 | Goldfeder et al. | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8181151 | Sedukhin et al. | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8185497 | Vermeulen et al. | May 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205093 | Argott | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214362 | Djabarov | Jul 2012 | B1 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8260262 | Ben Ayed | Sep 2012 | B2 |
8261362 | Goodwin et al. | Sep 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8340999 | Kumaran et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370224 | Grewal | Feb 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Convertino et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8381297 | Touboul | Feb 2013 | B2 |
8386314 | Kirkby et al. | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8448252 | King et al. | May 2013 | B1 |
8463247 | Misiag | Jun 2013 | B2 |
8464311 | Ashley et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8515988 | Jones et al. | Aug 2013 | B2 |
8516076 | Thomas | Aug 2013 | B2 |
8527337 | Lim et al. | Sep 2013 | B1 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8533844 | Mahaffey et al. | Sep 2013 | B2 |
8538817 | Wilson | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560841 | Chin et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561100 | Hu et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566726 | Dixon et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8572717 | Narayanaswamy | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8589372 | Krislov | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8630961 | Beilby et al. | Jan 2014 | B2 |
8631048 | Davis et al. | Jan 2014 | B1 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8650399 | Le Bihan et al. | Feb 2014 | B2 |
8655939 | Redlich et al. | Feb 2014 | B2 |
8656265 | Paulin et al. | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8762406 | Ho et al. | Jun 2014 | B2 |
8762413 | Graham, Jr. et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8763131 | Archer et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769412 | Gill et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8776241 | Zaitsev | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8813028 | Farooqi | Aug 2014 | B2 |
8813214 | McNair et al. | Aug 2014 | B1 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8819800 | Gao et al. | Aug 2014 | B2 |
8826446 | Liu et al. | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8839346 | Murgia | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8843745 | Roberts, Jr. | Sep 2014 | B2 |
8849757 | Kruglick | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8856936 | Datta Ray et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8863261 | Yang | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8930364 | Brooker | Jan 2015 | B1 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8938221 | Brazier et al. | Jan 2015 | B2 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9002939 | Laden et al. | Apr 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9014661 | DeCharms | Apr 2015 | B2 |
9015796 | Fujioka | Apr 2015 | B1 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9047583 | Patton et al. | Jun 2015 | B2 |
9047639 | Quintiliani et al. | Jun 2015 | B1 |
9049244 | Prince et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9077736 | Werth et al. | Jul 2015 | B2 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9087090 | Cormier et al. | Jul 2015 | B1 |
9092478 | Vaitheeswaran et al. | Jul 2015 | B2 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9106710 | Feimster | Aug 2015 | B1 |
9110918 | Rajaa et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9135444 | Carter et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9141911 | Zhao et al. | Sep 2015 | B2 |
9152818 | Hathaway et al. | Oct 2015 | B1 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9165036 | Mehra | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202026 | Reeves | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9218596 | Ronca et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9245266 | Hardt | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9258116 | Moskowitz | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9274858 | Milliron et al. | Mar 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286149 | Sampson et al. | Mar 2016 | B2 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9299050 | Stiffler et al. | Mar 2016 | B2 |
9306939 | Chan et al. | Apr 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9325731 | McGeehan | Apr 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9336220 | Li et al. | May 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9342706 | Chawla et al. | May 2016 | B2 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9348929 | Eberlein | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9361446 | Demirjian et al. | Jun 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9374693 | Olincy et al. | Jun 2016 | B1 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil et al. | Jul 2016 | B2 |
9386078 | Reno et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9418221 | Turgeman | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9424414 | Demirjian et al. | Aug 2016 | B1 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9461876 | Van Dusen et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473505 | Asano et al. | Oct 2016 | B1 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477685 | Leung et al. | Oct 2016 | B1 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9495547 | Schepis et al. | Nov 2016 | B1 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9514231 | Eden | Dec 2016 | B2 |
9516012 | Chochois et al. | Dec 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571559 | Raleigh et al. | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9576289 | Henderson et al. | Feb 2017 | B2 |
9578060 | Brisebois et al. | Feb 2017 | B1 |
9578173 | Sanghavi et al. | Feb 2017 | B2 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski et al. | Apr 2017 | B2 |
9626680 | Ryan et al. | Apr 2017 | B1 |
9629064 | Graves et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9647949 | Varki et al. | May 2017 | B2 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasundaram et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9665883 | Roullier et al. | May 2017 | B2 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9699209 | Ng et al. | Jul 2017 | B2 |
9703549 | Dufresne | Jul 2017 | B2 |
9704103 | Suskind et al. | Jul 2017 | B2 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9734148 | Bendersky et al. | Aug 2017 | B2 |
9734255 | Jiang | Aug 2017 | B2 |
9736004 | Jung et al. | Aug 2017 | B2 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9753796 | Mahaffey et al. | Sep 2017 | B2 |
9754091 | Kode et al. | Sep 2017 | B2 |
9756059 | Demirjian et al. | Sep 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9773269 | Lazarus | Sep 2017 | B1 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9787671 | Bogrett | Oct 2017 | B1 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9798896 | Jakobsson | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9805381 | Frank et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9819684 | Cernoch et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9830563 | Paknad | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9841969 | Seibert, Jr. et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9848061 | Jain et al. | Dec 2017 | B1 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9876825 | Amar et al. | Jan 2018 | B2 |
9877138 | Franklin | Jan 2018 | B1 |
9880157 | Levak et al. | Jan 2018 | B2 |
9882935 | Barday | Jan 2018 | B2 |
9887965 | Kay et al. | Feb 2018 | B2 |
9888377 | McCorkendale et al. | Feb 2018 | B1 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898739 | Monastyrsky et al. | Feb 2018 | B2 |
9898769 | Barday | Feb 2018 | B2 |
9912625 | Mutha et al. | Mar 2018 | B2 |
9912677 | Chien | Mar 2018 | B2 |
9912810 | Segre et al. | Mar 2018 | B2 |
9916703 | Levinson et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
9934406 | Khan et al. | Apr 2018 | B2 |
9934493 | Castinado et al. | Apr 2018 | B2 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942214 | Burciu et al. | Apr 2018 | B1 |
9942244 | Lahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948652 | Yu et al. | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9954879 | Sadaghiani et al. | Apr 2018 | B1 |
9954883 | Ahuja et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9977920 | Danielson et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019591 | Beguin | Jul 2018 | B1 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10055869 | Borrelli et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069858 | Robinson et al. | Sep 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10075451 | Hall et al. | Sep 2018 | B1 |
10084817 | Saher et al. | Sep 2018 | B2 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10097551 | Chan et al. | Oct 2018 | B2 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10152560 | Potiagalov et al. | Dec 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10187394 | Bar et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10205994 | Splaine et al. | Feb 2019 | B2 |
10212134 | Rai | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10230571 | Rangasamy et al. | Mar 2019 | B2 |
10230711 | Kohli | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275221 | Thattai et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10282559 | Barday et al. | May 2019 | B2 |
10284604 | Barday et al. | May 2019 | B2 |
10289584 | Chiba | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10296504 | Hock et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311475 | Yuasa | Jun 2019 | B2 |
10311492 | Gelfenbeyn et al. | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10320940 | Brennan et al. | Jun 2019 | B1 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10326798 | Lambert | Jun 2019 | B2 |
10326841 | Bradley et al. | Jun 2019 | B2 |
10327100 | Davis et al. | Jun 2019 | B1 |
10331689 | Sorrentino et al. | Jun 2019 | B2 |
10331904 | Sher-Jan et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10339470 | Dutta et al. | Jul 2019 | B1 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346637 | Barday et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10346849 | Ionescu et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10348775 | Barday | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10366241 | Sartor | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387577 | Hill et al. | Aug 2019 | B2 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10417621 | Cassel et al. | Sep 2019 | B2 |
10419476 | Parekh | Sep 2019 | B2 |
10423985 | Dutta et al. | Sep 2019 | B1 |
10425492 | Comstock et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10435350 | Ito et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10438273 | Burns et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10453076 | Parekh et al. | Oct 2019 | B2 |
10453092 | Wang et al. | Oct 2019 | B1 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10460322 | Williamson et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10489454 | Chen | Nov 2019 | B1 |
10503926 | Barday et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10536478 | Kirti et al. | Jan 2020 | B2 |
10541938 | Timmerman et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10552462 | Hart | Feb 2020 | B1 |
10558809 | Joyce et al. | Feb 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564815 | Soon-Shiong | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567439 | Barday | Feb 2020 | B2 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10592692 | Brannon et al. | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10614365 | Sathish et al. | Apr 2020 | B2 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10645102 | Hamdi | May 2020 | B2 |
10645548 | Reynolds et al. | May 2020 | B2 |
10649630 | Vora et al. | May 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10657469 | Bade et al. | May 2020 | B2 |
10657504 | Zimmerman et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10708305 | Barday et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726145 | Duminy et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10735388 | Rose et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762213 | Rudek et al. | Sep 2020 | B2 |
10762236 | Brannon et al. | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10769303 | Brannon et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10778792 | Handy Bosma et al. | Sep 2020 | B1 |
10783256 | Brannon et al. | Sep 2020 | B2 |
10785173 | Willett et al. | Sep 2020 | B2 |
10785299 | Gupta et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10795527 | Legge et al. | Oct 2020 | B1 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10798133 | Barday et al. | Oct 2020 | B2 |
10803196 | Bodegas Martinez et al. | Oct 2020 | B2 |
10805331 | Boyer et al. | Oct 2020 | B2 |
10831831 | Greene | Nov 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10853501 | Brannon | Dec 2020 | B2 |
10860721 | Gentile | Dec 2020 | B1 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10860979 | Geffen et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10891393 | Currier et al. | Jan 2021 | B2 |
10893074 | Sartor | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10902490 | He et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10924514 | Altman et al. | Feb 2021 | B1 |
10929557 | Chavez | Feb 2021 | B2 |
10949555 | Rattan et al. | Mar 2021 | B2 |
10949565 | Barday et al. | Mar 2021 | B2 |
10956213 | Chambers | Mar 2021 | B1 |
10957326 | Bhaya et al. | Mar 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10963572 | Belfiore, Jr. et al. | Mar 2021 | B2 |
10965547 | Esposito et al. | Mar 2021 | B1 |
10970418 | Durvasula et al. | Apr 2021 | B2 |
10972509 | Barday et al. | Apr 2021 | B2 |
10976950 | Trezzo et al. | Apr 2021 | B1 |
10983963 | Venkatasubramanian et al. | Apr 2021 | B1 |
10984458 | Gutierrez | Apr 2021 | B1 |
10997318 | Barday et al. | May 2021 | B2 |
11003748 | Oliker et al. | May 2021 | B2 |
11012475 | Patnala et al. | May 2021 | B2 |
11023528 | Lee | Jun 2021 | B1 |
11037168 | Lee | Jun 2021 | B1 |
11057356 | Malhotra et al. | Jul 2021 | B2 |
11057427 | Wright et al. | Jul 2021 | B2 |
11062051 | Barday et al. | Jul 2021 | B2 |
11068318 | Kuesel et al. | Jul 2021 | B2 |
11068584 | Burriesci et al. | Jul 2021 | B2 |
11068618 | Brannon et al. | Jul 2021 | B2 |
11068797 | Bhide et al. | Jul 2021 | B2 |
11068847 | Boutros et al. | Jul 2021 | B2 |
11093950 | Hersh et al. | Aug 2021 | B2 |
11138299 | Brannon et al. | Oct 2021 | B2 |
11144622 | Brannon et al. | Oct 2021 | B2 |
11144678 | Dondini et al. | Oct 2021 | B2 |
11144862 | Jackson et al. | Oct 2021 | B1 |
11195134 | Brannon et al. | Dec 2021 | B2 |
11201929 | Dudmesh et al. | Dec 2021 | B2 |
11210420 | Brannon et al. | Dec 2021 | B2 |
11238390 | Brannon et al. | Feb 2022 | B2 |
11240273 | Barday et al. | Feb 2022 | B2 |
11252159 | Kannan et al. | Feb 2022 | B2 |
11256777 | Brannon et al. | Feb 2022 | B2 |
11263262 | Chen | Mar 2022 | B2 |
11327996 | Reynolds et al. | May 2022 | B2 |
11443062 | Latka | Sep 2022 | B2 |
20020004736 | Roundtree et al. | Jan 2002 | A1 |
20020049907 | Woods et al. | Apr 2002 | A1 |
20020055932 | Wheeler et al. | May 2002 | A1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030093680 | Astley et al. | May 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030140150 | Kemp et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040002818 | Kulp et al. | Jan 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040128508 | Wheeler et al. | Jul 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050198646 | Kortela | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060035204 | LaMarche et al. | Feb 2006 | A1 |
20060041507 | Novack et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060190280 | Hoebel et al. | Aug 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070011058 | Dev | Jan 2007 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061125 | Bhatt et al. | Mar 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins et al. | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080005194 | Smolen et al. | Jan 2008 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland et al. | Jan 2008 | A1 |
20080046982 | Parkinson | Feb 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080077512 | Grewal | Mar 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080140696 | Mathuria | Jun 2008 | A1 |
20080189306 | Hewett et al. | Aug 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080222271 | Spires | Sep 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080270351 | Thomsen | Oct 2008 | A1 |
20080270381 | Thomsen | Oct 2008 | A1 |
20080270382 | Thomsen et al. | Oct 2008 | A1 |
20080270451 | Thomsen et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20080288299 | Schultz | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090119500 | Roth et al. | May 2009 | A1 |
20090132419 | Grammer et al. | May 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090140035 | Miller | Jun 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100010912 | Jones et al. | Jan 2010 | A1 |
20100010968 | Redlich et al. | Jan 2010 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100161973 | Chin et al. | Jun 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100262624 | Pullikottil | Oct 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110153396 | Marcuvitz et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20110302643 | Pichna et al. | Dec 2011 | A1 |
20120019379 | Ayed | Jan 2012 | A1 |
20120041939 | Amsterdamski | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102411 | Sathish | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120191596 | Kremen et al. | Jul 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120324113 | Prince et al. | Dec 2012 | A1 |
20120330769 | Arceo | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130091156 | Raiche et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130152041 | Hatfield | Jun 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130166573 | Vaitheeswaran et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130179988 | Bekker et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130211872 | Cherry et al. | Aug 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254649 | ONeill et al. | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula et al. | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Peter | Feb 2014 | A1 |
20140040161 | Jason | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140041048 | Goodwin et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140067973 | Eden | Mar 2014 | A1 |
20140074550 | Chourey | Mar 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140108968 | Vishria | Apr 2014 | A1 |
20140137257 | Martinez et al. | May 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140143844 | Goertzen | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140222468 | Araya et al. | Aug 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278539 | Edwards | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289681 | Wielgosz | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150006514 | Hung | Jan 2015 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026056 | Calman et al. | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150088598 | Acharyya et al. | Mar 2015 | A1 |
20150089585 | Novack | Mar 2015 | A1 |
20150106264 | Johnson | Apr 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150121462 | Courage et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150163121 | Mahaffey et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150205955 | Turgeman | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150248391 | Watanabe | Sep 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150271167 | Kalai | Sep 2015 | A1 |
20150288715 | Hotchkiss | Oct 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150348200 | Fair et al. | Dec 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160006760 | Lala et al. | Jan 2016 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160071020 | Sathish et al. | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160080405 | Schler et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160094566 | Parekh | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160104259 | Menrad | Apr 2016 | A1 |
20160124742 | Rangasamy et al. | May 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160189156 | Kim et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160253497 | Christodorescu et al. | Sep 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160292453 | Patterson et al. | Oct 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160350836 | Burns et al. | Dec 2016 | A1 |
20160359861 | Manov et al. | Dec 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170061501 | Horwich | Mar 2017 | A1 |
20170063881 | Doganata et al. | Mar 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170070495 | Cherry et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170171325 | Perez | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170177681 | Potiagalov | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw et al. | Jun 2017 | A1 |
20170193017 | Migliori | Jul 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170278004 | McElhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289168 | Bar et al. | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180032757 | Michael | Feb 2018 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180046939 | Meron et al. | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180182009 | Barday et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180204281 | Painter et al. | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Maung | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180336509 | Guttmann | Nov 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012211 | Selvaraj | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190132350 | Smith et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190139087 | Dabbs et al. | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190171801 | Barday et al. | Jun 2019 | A1 |
20190179652 | Hesener et al. | Jun 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266200 | Francolla | Aug 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190303509 | Greene | Oct 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20190356684 | Sinha et al. | Nov 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190377901 | Balzer et al. | Dec 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392162 | Stern et al. | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200004938 | Brannon et al. | Jan 2020 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200050966 | Enuka et al. | Feb 2020 | A1 |
20200051117 | Mitchell | Feb 2020 | A1 |
20200057781 | McCormick | Feb 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200081865 | Farrar et al. | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200110904 | Shinde et al. | Apr 2020 | A1 |
20200117737 | Gopalakrishnan et al. | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143301 | Bowers | May 2020 | A1 |
20200143797 | Manoharan et al. | May 2020 | A1 |
20200159952 | Dain et al. | May 2020 | A1 |
20200159955 | Barlik et al. | May 2020 | A1 |
20200167653 | Manjunath et al. | May 2020 | A1 |
20200175424 | Kursun | Jun 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200211002 | Steinberg | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226156 | Borra et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242259 | Chirravuri et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200250342 | Miller et al. | Aug 2020 | A1 |
20200252413 | Buzbee et al. | Aug 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200285755 | Kassoumeh et al. | Sep 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200296171 | Mocanu et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200310917 | Tkachev et al. | Oct 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200394327 | Childress et al. | Dec 2020 | A1 |
20200401380 | Jacobs et al. | Dec 2020 | A1 |
20200401962 | Gottemukkala et al. | Dec 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
20210056569 | Silberman et al. | Feb 2021 | A1 |
20210081567 | Park et al. | Mar 2021 | A1 |
20210099449 | Frederick et al. | Apr 2021 | A1 |
20210110047 | Victor | Apr 2021 | A1 |
20210125089 | Nickl et al. | Apr 2021 | A1 |
20210136065 | Liokumovich et al. | May 2021 | A1 |
20210152496 | Kim et al. | May 2021 | A1 |
20210233157 | Crutchfield, Jr. | Jul 2021 | A1 |
20210243595 | Buck et al. | Aug 2021 | A1 |
20210248247 | Poothokaran et al. | Aug 2021 | A1 |
20210256163 | Fleming et al. | Aug 2021 | A1 |
20210279360 | Gimenez Palop et al. | Sep 2021 | A1 |
20210297441 | Olalere | Sep 2021 | A1 |
20210303828 | Lafreniere et al. | Sep 2021 | A1 |
20210312061 | Schroeder et al. | Oct 2021 | A1 |
20210326786 | Sun et al. | Oct 2021 | A1 |
20210328969 | Gaddam et al. | Oct 2021 | A1 |
20210382949 | Yastrebenetsky et al. | Dec 2021 | A1 |
20210397735 | Samatov et al. | Dec 2021 | A1 |
20210400018 | Vettaikaran et al. | Dec 2021 | A1 |
20210406712 | Bhide et al. | Dec 2021 | A1 |
20220217045 | Blau | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
111496802 | Aug 2020 | CN |
112115859 | Dec 2020 | CN |
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
20020067158 | Aug 2002 | WO |
20030050773 | Jun 2003 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2008134203 | Nov 2008 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
2020146028 | Jul 2020 | WO |
2022006421 | Jan 2022 | WO |
Entry |
---|
Bao et al, “Performance Modelling and Workflow Scheduling of Microservice-Based Applications in Clouds”, IEEE Transactions On Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019). |
Preuveneers et al, “Access Control with Delegated Authorized Policy Evaluation for Data-Driven Microservice Workflows”, Future Internet 2017, MDPI, pp. 1-21 (Year: 2017). |
Czeskis et al., “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013). |
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020). |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170. |
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098. |
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102. |
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609. |
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019). |
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756. |
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014),XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html. [retrieved on Mar. 31, 2022]. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298. |
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Ali et al., “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015). |
Chang et al., “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010). |
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014). |
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421. |
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015). |
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006). |
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009). |
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year 2015). |
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015). |
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011). |
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021). |
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807. |
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276. |
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808. |
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352. |
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334. |
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014). |
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016). |
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922. |
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year: 2015). |
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” arxiv.org, Cornell University Library, 201 OLIN Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015). |
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014). |
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582. |
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012). |
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011). |
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions On Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019). |
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759. |
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886. |
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year 2011). |
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year: 2006). |
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year: 2000). |
Falbo et al., “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002). |
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Jun. 9, 2022, from corresponding U.S. Appl. No. 17/494,220. |
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
International Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Nemec et al., “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015). |
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551. |
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715. |
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Ozdikis et al, “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year 2010). |
Vukovic et al, “Managing Enterprise IT Systems Using Online Communities,” Jul. 9, 2011, IEEE, pp. 552-559. (Year 2011). |
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005). |
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Notice of Allowance, dated Oct. 18, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Office Action, dated Sep. 16, 2022, from corresponding U.S. Appl. No. 17/306,438. |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332. |
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220. |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906. |
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901. |
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853. |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272. |
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948. |
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765. |
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196. |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/,894,819. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909. |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699. |
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/ US2017/036919. |
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/ US2017/036914. |
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/ US2017/036898. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036889. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036890. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036893. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036901. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036913. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/ US2017/036920. |
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/ US2018/045296. |
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/ US2021/051217. |
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/ US2021/053518. |
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/ US2018/046949. |
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/ US2021/050497. |
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/ US2018/055772. |
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/ US2017/025600. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/ US2017/025605. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/ US2017/025611. |
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/ US2018/055736. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/ US2018/055773. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/ US2018/055774. |
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/ US2021/043481. |
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/ US2018/046939. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/ US2021/040893. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/ US2021/044910. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/ US2018/043975. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/ US2018/043976. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/ US2018/043977. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/ US2018/044026. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/ US2018/045240. |
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/ US2017/036888. |
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/ US2018/044046. |
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/ US2018/045243. |
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/ US2018/045249. |
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/ US2017/036917. |
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/ US2017/036912. |
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/ US2017/036896. |
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/ US2018/037504. |
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/ US2021/033631. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917. |
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888. |
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736. |
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773. |
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774. |
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296. |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013). |
Acar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Aman et al, “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016). |
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
Avepoint, Automating Privacy Impact Assessments, AvePoint, Inc. |
Avepoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc. |
Avepoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc. |
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017). |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010). |
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bertino et al, “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011). |
Bhargav-Spantzel et al., Receipt Management- Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010). |
Binns, et al, “Data Havens, or Privacy Sans Frontières? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019). |
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003). |
Bujlow et al, “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CoolCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%200%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019). |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999). |
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12. |
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013). |
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29. |
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019). |
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany. |
Fan et al, “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010). |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 10, 2019. |
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition. |
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010). |
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002). |
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121. |
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010). |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018). |
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4 - 6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003). |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Gonçalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Guo, et al, “Opal: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies ”In-the-Wild“ Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Halevy, et al, “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003). |
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015). |
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014). |
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014). |
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019). |
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk—based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al, “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
Iapp, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
Iapp, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals. |
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014). |
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018). |
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999). |
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Jones et al, “AI and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Lebeau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018). |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006). |
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3; figure 3 (Year: 2016). |
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509. (Year: 2003). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020). |
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017). |
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008). |
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017). |
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks, ” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year: 2020). |
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010). |
Reardon et al, User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016). |
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013). |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013). |
Shankar et al, “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY : ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006). |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017). |
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online]. Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016). |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
Tanwar, et al, “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014). |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, 20150304. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al, Scanning Electronic Documents for Personally Identifiable Information, ACM, 2006-10-30, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015. |
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yin et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278. |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Final Office Action, dated Sep. 19, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Notice of Allowance, dated Aug. 22, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Notice of Allowance, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Jul. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Dowling, “Auditing Global HR Compliance”, published May 23, 2014, retrieved from https://www.shrm.org/resourcesandtools/hr-topics/global-hr/pages/auditing-global-hr-compliance.aspx Jul. 2, 2022. |
ESWC 2008 Ph.D. Symposium, Tenerife, Spain retrieved from https://ceur-ws.org/vol-358/ on Jun. 7, 23. |
Heil et al., “Downsizing and Righsizing”, archived May 23, 2013, retreived from https://web.archive.org/web/20130523153311/https://www.referenceforbusiness.com/management/De-Ele/Downsizing-and-Rightsizing.html Jun. 7, 2023. |
Kamiran, et al. “Classifying without Discriminating,” 2009 2nd International Conference on Computer, Control and Communication, IEEE, Abstract (Year: 2009). |
Zemel, et al. “Learning Fair Representations,” Proceedings of the 30th International Conference on Machine Learning, JMLR vol. 28, pp. 4-5 (Year: 2013). |
Final Office Action, dated Apr. 13, 2023, from corresponding U.S. Appl. No. 16/925,550. |
Final Office Action, dated Mar. 3, 2023, from corresponding U.S. Appl. No. 17/306,438. |
Office Action, dated Mar. 9, 2023, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Apr. 4, 2023, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Mar. 16, 2023, from corresponding U.S. Appl. No. 17/494,220. |
Office Action, dated Feb. 15, 2023, from corresponding U.S. Appl. No. 17/499,582. |
Notice of Allowance, dated Jan. 31, 2023, from corresponding U.S. Appl. No. 17/499,624. |
Notice of Allowance, dated Mar. 8, 2023, from corresponding U.S. Appl. No. 17/530,201. |
Office Action, dated Nov. 11, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Final Office Action, dated Mar. 16, 2023, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Aug. 2, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Final Office Action, dated Mar. 3, 2023, from corresponding U.S. Appl. No. 17/670,354. |
Office Action, dated Aug. 12, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Final Office Action, dated Mar. 9, 2023, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Feb. 8, 2023, from corresponding U.S. Appl. No. 17/831,700. |
Number | Date | Country | |
---|---|---|---|
20220261288 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63150299 | Feb 2021 | US |