Managing network computing components utilizing request routing

Information

  • Patent Grant
  • 9929959
  • Patent Number
    9,929,959
  • Date Filed
    Monday, March 21, 2016
    8 years ago
  • Date Issued
    Tuesday, March 27, 2018
    6 years ago
Abstract
Aspects of the disclosure will be described with regard to the processing of a client computing device DNS queries by a DNS processing service to determine an identifier associated with a previously instantiated hosted virtual machine instance. In one aspect, if the previously instantiated hosted virtual machine instance is instantiated, the DNS service can resolve the DNS query by transmitting network address information associated with the previously instantiated hosted virtual machine instance. In another aspect, if the previously instantiated hosted virtual machine instance is not instantiated, the DNS service can initiate a process to cause an instantiation of a hosted virtual machine instance based on the previously instantiated hosted virtual machine instance. The DNS service can then resolve the DNS query by transmitting network address information, or an alternative identifier, associated with the newly instantiated hosted virtual machine instance.
Description
BACKGROUND

Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via a communication network. For example, a user at a personal computing device can utilize various types of software applications to request information from server computing devices via the Internet. In such embodiments, the user computing device can be referred to as a client computing device and the server computing device can be referred to as a service provider.


In some embodiments, companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


In some embodiments, a client computing device may access software applications that may be provided by communication with a data center. For example, a service provider may host, or have hosted on its behalf, one or more physical computing devices in a data center that provide client computing devices with access to software application via a communication network. Additionally, the service provider can also utilize virtualization technologies to provide access to the software application. For example, the service provider can instantiate and maintain a number of virtual machine instances on the physical computing devices associated with a data center.


Service providers are generally motivated to provide requested content/services or access to requested content/services to client computing devices often with consideration of cost and customer experience. For example, service providers can associate a cost associated with providing the client computing device with access to content/service and manage instantiated virtual machine instances on the basis of cost or available resources.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrative of an environment for the management and processing of DNS queries related to hosted virtual machine instances;



FIG. 2 is a block diagram of the environment of FIG. 1 illustrating the registration of client computing devices with a network computing provider;



FIG. 3A is a block diagram of the environment of FIG. 1 illustrating the processing of a DNS query related to an initial request for instantiation of a hosted virtual machine instance by the network computing provider on behalf of a client computing device;



FIG. 3B is a block diagram of the environment of FIG. 1 illustrating an initial request for instantiation of a hosted virtual machine instance by the network computing provider on behalf of a client computing device;



FIG. 4 is a block diagram of the environment of FIG. 1 illustrating the processing of a DNS query related to a subsequent request for access of a hosted virtual machine instance by the network computing provider on behalf of a client computing device;



FIG. 5A is a block diagram of the environment of FIG. 1 illustrating the processing of a subsequent for access of a hosted virtual machine instance by the network computing provider on behalf of a client computing device;



FIG. 5B is a block diagram of the environment of FIG. 1 illustrating the processing of a subsequent for access of a hosted virtual machine instance by the network computing provider on behalf of a client computing device; and



FIG. 6 is a flow diagram of a DNS query processing routine implemented by a DNS server.





DETAILED DESCRIPTION

Generally described, the present disclosure is directed to processing DNS queries from client computing devices. Specifically, aspects of the disclosure will be described with regard to the processing of a client computing device DNS queries by a DNS processing service in which the DNS query includes an identifier associated with a previously instantiated hosted virtual machine instance. In one aspect, if the previously instantiated hosted virtual machine instance is instantiated and available to process requests, the DNS service can resolve the DNS query by transmitting network address information, or an alternative identifier, associated with the previously instantiated hosted virtual machine instance. In another aspect, if the previously instantiated hosted virtual machine instance is not instantiated and otherwise not available to process requests, the DNS service can initiate a process to cause an instantiation of a hosted virtual machine instance based on the previously instantiated hosted virtual machine instance. The DNS service can then resolve the DNS query by transmitting network address information, or an alternative identifier, associated with the newly instantiated hosted virtual machine instance.



FIG. 1 is a block diagram illustrative of an environment 100 for the management and processing of DNS queries related to hosted virtual machine instances. As illustrated in FIG. 1, the environment 100 includes a number of client computing devices 102 (generally referred to as clients) for transmitting requests to a service provider. In an illustrative embodiment, the client computing devices 102 can corresponds to a wide variety of computing devices including personal computing devices, laptop computing devices, hand-held computing devices, terminal computing devices, mobile devices, wireless devices, various electronic devices and appliances and the like. In an illustrative embodiment, the client computing devices 102 include necessary hardware and software components for establishing communications over a communication network 108, such as a wide area network or local area network. For example, the client computing devices 102 may be equipped with networking equipment and browser software applications that facilitate communications via the Internet or an intranet.


Although not illustrated in FIG. 1, each client computing device 102 utilizes some type of local DNS resolver component, such as a DNS Name server, that generates the DNS queries attributed to the client computing device. In one embodiment, the local DNS resolver component may be provide by an enterprise network to which the client computing device 102 belongs. In another embodiment, the local DNS resolver component may be provided by an Internet Service Provider (ISP) that provides the communication network connection to the client computing device 102.


With continued reference to FIG. 1, the environment 100 can further include a service provider 104 in communication with the one or more client computing devices 102 to resolve DNS queries transmitted by the client computing devices via the communication network 108. The service provider 104 illustrated in FIG. 1 corresponds to a logical association of one or more computing devices associated with a DNS service provider. Specifically, the service provider 104 can include a number of Point of Presence (“POP”) locations 110, 116, 122 that correspond to nodes on the communication network 108. Each POP 110, 116, 122 includes a DNS component 112, 118, 124 made up of a number of DNS server computing devices for resolving DNS queries from the client computers 102. Each POP 110, 116, 122 also includes resource cache components 114, 120, 126 for maintaining information related to status of various network computing components. The DNS components 112, 118, 124 may further include additional software and/or hardware components that facilitate communications including, but not limited to, load balancing or load sharing software/hardware components.


In an illustrative embodiment, the DNS component 112, 118, 124 and resource cache component 114, 120, 126 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the POPs 110, 116, 122 are illustrated in FIG. 1 as logically associated with the service provider 104, the POPs will be geographically distributed throughout the communication network 108 in a manner to best serve various demographics of client computing devices 102. Additionally, one skilled in the relevant art will appreciate that the service provider 104 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, and the like.


With further continued reference to FIG. 1, the environment 100 can also include a network computing provider 106 in communication with the one or more client computing devices 102 and the service provider 104 via the communication network 108. The network computing provider 106 illustrated in FIG. 1 also corresponds to a logical association of one or more computing devices associated with a network computing and storage provider. Specifically, the network computing provider 106 can include a number of Point of Presence (“POP”) locations 128, 132, 136 that correspond to nodes on the communication network 108. Each POP 128, 132, 136 includes a network computing component (NCC) 130, 134, 138 for hosting applications, such as data streaming applications, via a number of instances of a virtual machine, generally referred to as an instance of an NCC. As will be explained in greater detail, each virtual instances hosted by an NCC is associated with an identifier that can be used by the client computing devices 102.


One skilled in the relevant art will appreciate that NCC 130, 134, 138 would include physical computing device resources and software to provide the multiple instances of a virtual machine or to dynamically cause the creation of instances of a virtual machine. Such creation can be based on a specific request, such as from a client computing device, or the NCC can initiate dynamic creation of an instance of a virtual machine on its own. Each NCC POP 128, 132, 136 may also include storage components made up of a number of storage devices. The NCCs 128, 132, 136 may further include additional software and/or hardware components that facilitate communications including, but not limited to, load balancing or load sharing software/hardware components for selecting instances of a virtual machine supporting a requested application or providing information to a DNS nameserver to facilitate request routing.


In an illustrative embodiment, NCCs 128, 132, 136 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the NCC POPs 128, 132, 136 are illustrated in FIG. 1 as logically associated with the network computing provider 106, the NCC POPs will be geographically distributed throughout the communication network 108 in a manner to best serve various demographics of client computing devices 102. Additionally, one skilled in the relevant art will appreciate that the network computing provider 106 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, and the like. Even further, one skilled in the relevant art will appreciate that the components of the network computing provider 106 and components of the service provider 104 can be managed by the same or different entities.


With reference now to FIGS. 2-5B, the interaction between various components of the environment 100 of FIG. 1 will be illustrated. For purposes of the example, however, the illustration has been simplified such that many of the components utilized to facilitate communications are not shown. One skilled in the relevant art will appreciate that such components can be utilized and that additional interactions would accordingly occur without departing from the spirit and scope of the present disclosure.


Illustratively, the interaction between a customer associated with a client computing device 102 and the network computing provider 106 begins with the registration of the client computing device 102 to access computing resources made available by the network computing provider 106. In one aspect, the registration process can include the exchange of business information typical in the establishment of an account, such as the exchange of financial information, establishment of desired service levels, configuration of the desired service, and the like. In another aspect, the registration process can include the generation of information utilized by the customer, via the client computing device 102, to access the desired service, such as account identifiers, passwords and information for accessing the service provider. In addition to the registration with the network computing provider 106, the customer can also register with the service provider 104 in order to allow the service provider 104 to process DNS queries for a domain with the computing resources made available by the network computing provider 106. As will be explained in greater detail, the registration with the service provider 104 will also configure the service provider 104 to manage computing resources made available by the network computing provider 106.


In accordance with aspects of the present application, the client computing device 102 can access one or more computing devices associated with the network computing provider 106 by utilizing a resource identifier, such as uniform resource identifier (“URL”) that will be used by, which will be generally referred to as a network computing provider URL. For purposes of an illustrative example, the network computing provider URL can be characterized into two portions. The first portion identifies a domain that will used to access the network computing provider resources. Illustratively, the domain can include, but is not limited to, a domain associated with a network computing provider 106 (e.g., networkcomputingprovider.com), a domain associated with a client computing device (e.g., anydomain.com), or a domain associated with a third party (e.g., third_party_domain.com). Additionally, the first portion of the network computing provider URL can also identify one or more specific types of devices or services associated with the identified domain (e.g., services or myapplication). The first portion of the network computing provider URL can be generally referred to as a DNS portion of the network computing provider URL. Additionally, a second portion of the network computing provider URL can also include additional information utilized in the processing and request of services (“extra_information”). In a first set of illustrative examples, the network computing provider URL has the form of:


http://services.network_computing_provider.com/extra_information


http://myapplication.anydomain.com/extra_information


In accordance with an illustrative embodiment, in addition to the above information, the first portion of the network computing provider URL (e.g., the DNS portion of the network computing provider URL) can also include additional information that will be used by a DNS query processing service to manage one or more virtual machine instances associated with the client computing device transmitting the DNS query. More specifically, the DNS portion of the network computing provider URL can include one or more identifiers, or other information, that can be used to associate the DNS query to one or more-instantiated virtual machine instances by the network computing provider associated with the domain (e.g., “unique_identifier”). In one embodiment, the unique identifier can correspond to an identifier utilized by the network computing provider 106 to manage previously instantiated computing resources. In another embodiment, the unique identifier can correspond to an identifier utilized by the network computing provider 106 to instantiate computing resources. Illustratively, the unique identifier can be unique to a single customer/client computing device 102 or unique to a set of customers or client computing devices 102. In this embodiment, the DNS server can parse the unique identifier information from the DNS portion of the network computing provider URL and utilize the identifier, or identifiers, to manage virtual machine instances, as will be described. In other illustrative examples, the network computing provider URL has the form of:


http://unique_identifier.services.network_computing_provider.com/extra_information


http://unique_identifier.myapplication.mydomain.com/extra_information


In accordance with further embodiments, in addition to the above information, the first portion of the network computing provider URL can also include additional information that will be used by a DNS query processing service as part of a request routing processes to identify one or more NCC POPs that may be best suited to service requests from the client computing devices 102. More specifically, the DNS portion of the network computing provider URL can include one or more identifiers, or other information, that can be used by the DNS server to identify which NCC POP may be best suited to process the client computing device requests (e.g., “routing_information”). The additional information can be combined with the unique identifiers included in the network computing provider URL or independent of any unique identifiers included in the network computing provider URL. Illustratively, the “routing_information” can directly or indirectly identify service level information related to a desired service level, financial information related to a financial cost to be incurred as part of the request routing service, preferred routing algorithms, geographic identifiers, preferred POPs, and the like. Illustratively, the DNS server can parse the routing information from the DNS portion of the network computing provider URL and utilize the routing information as part of a request routing algorithm. In this illustrative example, the network computing provider URL has the form of:


http://routing_information.unique_identifier.services.network_computing_provider.com/extra_information


http://routing_information.myapplication.mydomain.com/extra_information


Turning now to FIG. 2, an illustrative interaction for the registration of client computing devices 102 with a network computing provider 106 will be described. At (1), the client computing device 102 initiates the registration process by transmitting a request to the network computing provider 106. In one embodiment, the transmission of the request can correspond to the generation of various user interfaces to collect information from the customer associated with the client computing device 102 and transmit the collected information in accordance with an Application Protocol Interface (“API”). In other embodiments, the client computing device 102 may be configured to obtain or transmit information to the network computing provider 106 via an API without the need to generate user interfaces.


At (2), the network computing provider 106 obtains the registration request and processes the request to establish the requested account, update an existing account or otherwise establish the availability of the service for the customer. As will be explained in greater detail, the processing of the request can include the generation of the network computing provider URL, the one or more identifiers, including the unique identifier, that will be used as part of the network computing provider URL or that will be associated with the network computing provider URL. As previously described, in one embodiment, the registration process with the network computing provider 106 corresponds to the generation of a unique identifier that can be used by the network computing provider 106 to manage one or more computing resources instantiated on behalf of the customer/client computing device 102. For example, in this embodiment, the unique identifier can be used to determine whether previously instantiated virtual machine instances are available for further processing or to cause the re-instantiation of previously instantiated virtual machine instances.


In another embodiment, the registration process with the network computing provider 106 corresponds to the generation of a unique identifier that defines one or more attributes of computing devices resources that can be instantiated on behalf of the customer/client computing device 102. In this embodiment, the unique identifier can be utilized to cause the initial instantiation of the computing resources, such as one or more virtual machine instances. Illustratively, the registration process for the instantiation of computing device resources can include, but is not limited to, the specification of various hardware and software parameters for the computing device resources (physical or virtual), the configuration of various parameters (communication, security, etc.), the specification of financial cost parameters, the specification of service level agreements, and the like. Such unique identifiers may be selected from a pre-existing set of identifiers or may represent a unique configuration.


At (3), the service provider 106 transmits the network computing provider URL, unique identifiers, or a portion thereof, to the client computing device 106. The transmission can also include additional confirmation information or other information that may be used by the client computing device 102 to communicate with the service provider 106 or requests services from the network computing provider 106.


At (4), the receiving client computing device 102 then transmits a registration request with the service provider 104 to associate a network computing provider URL with one or more instance identifiers provided by the network computing provider 106. In one embodiment, the registration with the service provider 104 can correspond to a request for the service provider 104 to function as DNS query processing authority for one or more network computing provider URLs. In another embodiment, the service provider 104 may already function as the DNS query processing authority for the network computing provider URL. Accordingly, the request can corresponds to the association of the unique identifiers provides by the network computing provider 106 with the network computing provider URL. In still other embodiments, if the network computing provider URL corresponds to a domain not controlled by the client computing device 102 (e.g., serviceprovider.com), the service provider 104 may function as the DNS query processing authority for the network computing provider URL. Accordingly, the request can corresponds to the association of the unique identifiers provides by the network computing provider 106 with the network computing provider URL.


With reference to FIG. 3A, an illustrative interaction for the eventual transmission of a service request, such as request for the initiation of a hosted virtual machine instance by the network computing provider 106 on behalf of a client computing device 102. For purposes of an illustrative example, the interaction illustrated in FIG. 3A occurs at some point in time after the registration of the client computing device 102 with the network computing provider 106 and service provider 104 is complete, or otherwise, responsive to the completion of the registration process as illustrated in FIG. 2. As illustrated in FIG. 3A, the process begins at (1) with the transmission of a DNS query by a client computing device 102 to the service provider 104 to identify a network address of a particular NCC associated with the service provider 106. Illustratively, the DNS query corresponds to the network computing provider URL previously provided to the client computing device 102 during the registration process (FIG. 2).


One skilled in the relevant art will appreciate that the processing of a DNS query would begin with the identification of a DNS server authoritative to the “.” and the “com” portions of the translated URL. The issuance of DNS queries corresponding to the “.” and the “corn” portions of a URL are well known and have not been illustrated. Accordingly, as illustrated in FIG. 3A, after resolving DNS queries associated with the “.” and “com” portions of the network computing provider URL, the client computing device 102 then issues a DNS query for the network computing provider URL that results in the identification of a DNS server authoritative to the portion of the network computing provider URL, in this example one of the DNS server components 112 at POP 110 associated with service provider 104


At (2), the DNS server component 112 parses the DNS query to obtain any identifier (or other information) transmitted in the DNS portion of the network computing provider URL. At (3), the DNS server component 112 at service provider 104 resolves the DNS query by identifying either a network address of an NCC component or an alternative identifier that will be utilized to identify an appropriate NCC component. Illustratively, because the DNS server component 112 receives an initial DNS query that includes unique identifier in the DNS portion of the network computing provider URL that has not been previously utilized, the DNS server component maintains information associating the unique identifier a specific network address utilized to resolve the DNS query and an identifier of the specific instance of the network computing provider 106. Accordingly, at (4), the service provider 104 transmits and receives instance identification information based on a DNS query at (5). At (6), the DNS query is resolved by transmitting the above information to the client computing device 102. One skilled in the relevant art will appreciate that the resolution of the DNS query and the maintenance of the mapping of network addresses to network computing provider 106 identifiers can occur in a different order than the order illustrated in FIG. 3A.


In an illustrative embodiment, one or more DNS components of the service provider 104 maintain tables that associate the network computing provider URL, any unique identifiers in the network computing provider URL, or combination thereof with network addresses and other identifiers associated with the NCC components of the network computing provider 106. Additionally, the DNS components of the service provider 104 can also maintain various routing information, preferences or other information that were utilized in previous request routing processes. The tables can then be utilized in processing subsequent DNS queries. In one embodiment, the table is maintained individually by one or more DNS components of the service provider 104. In other embodiments, the table (or tables) may be distributed among a select subset of the DNS components in accordance with one or more distribution schemes implemented by the service provider 104.


Table 1 illustrates an illustrative embodiment of a portion of a table utilized by a DNS component of the service provider 104:












TABLE 1





Unique
Unique
Network
Routing


Identifier
Identifier
Address
Information







unique_identifier 1
1-xxx
123.45.678.90
None


any domain.com
5-xxx
345.78.910.11
service level


. . .
. . .
. . .
. . .


unique_identifier x1
67-xxx 
444.33.890.12
cost information









Table 2 illustrates another illustrative embodiment of a portion of a table utilized by a DNS component of the service provider 104 in which computing. As illustrated in Table 2, the first two entries in Table 2 correspond to examples in which computing device resources have not been instantiated by the network computing provider 106 on behalf of the customer/client computing device 102.













TABLE 2





Unique
Unique
Instance
Network
Routing


Identifier
Identifier
Identifier
Address
Information







unique_identifier x

identifier x




yourdomain.com

Identifier




. . .
. . .

. . .
. . .


unique_identifier x1
67-xxx

444.33.890.12
cost information









One skilled in the art will appreciate that a table would not necessarily need to have the routing information associated with previous request routing information. Additionally, the tables may require more or less information depending on the relationship between the service provider 104 and the network computing provider 106.


Turning now to FIG. 3B, illustrating an initial request for instantiation of a hosted virtual machine instance by the network computing provider on behalf of a client computing device will be described. At (1), the client computing device 102 transmits a request to the network computing provider 106 associated with the resolved DNS query. At (2), the network computing provider 106 processes the request and instantiates one or more hosted virtual machines instances corresponding to the request. Additionally, at (3), the network computing provider 106 and client computing device 102 can begin interacting as the client computing device 102 interfaces with virtual machine instances hosted on the NCC 134.


With reference to FIG. 4, for purposes of an illustrative example, at some point, the client computing device 102 has ceased interaction with the NCC 132, at least temporarily. Depending on the time elapsed between interactions, the network computing provider 106 can either terminate a hosted instance, while maintaining information related to the state of the virtual machine instance prior to termination.


In one embodiment, to access the service again, the client computing device 102 initiates a subsequent DNS query to the service provider 104. As illustrated in FIG. 4, the process begins at (1) with the transmission of a DNS query by a client computing device 102 to the service provider 104. Illustratively, the client computing device 102 would utilize the same (or similar) network computing provider URL that was previously transmitted during the initial DNS query to the service provider 104 (FIG. 3A).


With continued reference now to FIG. 4, at (2), upon receipt of the DNS query, the DNS server parses the DNS query to obtain any identifier (or other information) associated with the previously instantiated hosted virtual machine. One skilled in the relevant art will appreciate that parsing the network computing provider URL can include parsing the “unique_identifier” information included in the DNS portion of the network computing provider URL. Alternatively, the DNS server may utilize all the DNS portion of the network computing provider URL as the “unique_identifier” portion, especially in embodiments in which no additional information is utilized for request routing is included in the DNS portion of the network computing provider URL. For example, the DNS server can utilize the identified domain (e.g., “anydomain.com”) to recall the identifier.


At (3), the DNS server can then determine whether the previously instantiated hosted virtual machine is still instantiated and available to process a subsequent request from the client computing device 102. In one embodiment, the DNS server can transmit a request to the network computing provider 106 to determine in real time or substantially real time whether the network computing provider 106 has terminated the previously instantiated hosted virtual machine instance. For example, the DNS server 112 can reference a table that identifies the instance identifier with the unique identifier included in the network computing provider URL and transmit a request to the network computing provider 106 as part of an API. In another embodiment, the network computing provider 106 can maintain information related to the instantiation state of a number of hosted virtual machine instances that can be polled. In this embodiment, the network computing provider 106 would periodically poll for the status of a set of hosted virtual machine instances or be informed when a previously instantiated virtual machine instance has been terminated.













TABLE 3





Unique
Instance
Network
Routing



Identifier
Identifier
Address
Information
Status







unique_identifier 1
1-xxx
123.45.678.90
None
Active


unique_identifier 2
5-xxx
345.78.910.11
service level
Non-active


. . .
. . .
. . .
. . .
. . .


unique_identifier x1
67-xxx 
444.33.890.12
cost information
Active









With reference to the previous example, Table 3 illustrates an embodiment in which the DNS server components maintain information related to whether one or more previously instantiated virtual machine instances remain active. Additionally, the DNS servers can maintain information related to whether the active virtual machine instances available to process a subsequent requests.


With reference to FIG. 5A, if the previously instantiated hosted virtual machine instance is still instantiated and available to process subsequent requests, the DNS server can utilize network identifiers associated with the previously instantiated hosted virtual machine instance to resolve the DNS query. In one embodiment, at (1) the DNS server will resolve the DNS query by identifying the network address or an alternative identifier associated with the previously instantiated hosted virtual machine instance. At (2), the client computing device 102 utilizes the returned network address for the subsequent requests.


In an alternative embodiment, the DNS server may utilize additional request routing information to determine that a different virtual machine instance may be better suited to process the subsequent request by the client computing device 102. In one example, the processing of the request routing information may be indicative of lower cost estimates that may meet cost criteria for a different instantiated virtual machine instance of the network computing provider 106. In such embodiments, the DNS server 112 would transmit a request to instantiate a new hosted virtual machine instance in accordance with the request routing information.


In another example, the service provider 104 can utilize geographic criteria as additional request routing information. The geographic criteria can correspond to geographic-based regional service plans contracted between the service-provider 106 and the client computing device 102. Accordingly, a client computing device 102 DNS query received in a region not corresponding to the network computing provider 106's regional plan may be better processed by computing devices in a region corresponding to the network computing provider 106's regional plan.


In a further example, the service provider 104 can also analyze the DNS query according to service level criteria. The service level criteria can correspond to service or performance metrics contracted with the network computing provider 106. Examples of performance metrics can include latencies of data transmission between the service provider POPs and the client computing devices 102, total data provided on behalf of the network computing provider 106 by the service provider POPs, error rates for data transmissions, and the like.


In still a further example, the service provider 104 can process the DNS query according to network performance criteria. The network performance criteria can correspond to measurements of network performance for transmitting data from the service provider POPs to the client computing device 102. Examples of network performance metrics can include network data transfer latencies (measured by the client computing device or the network computing provider 106, network data error rates, and the like.


In yet a further example, the receiving DNS server process the DNS query for load balancing or load sharing purposes. The receiving DNS may obtain an identification of other POPs that define an order for such load balancing/load sharing. The list can be dynamic or periodically updated based on current network conditions.


With reference now to FIG. 5B, if the previously instantiated hosted virtual machine instance is not still instantiated and otherwise unavailable to process subsequent requests, the DNS server can cause the instantiation a new instance of the previously instantiated virtual machine instance. In one embodiment, at (1) the DNS server will transmit a request to instantiate a new version (e.g., “re-instantiate”) of the hosted virtual machine instance. At (2), the NCC processes the requests and begins to instantiate a hosted virtual machine instance corresponding to the request. At (3), the DNS server transmits network identifiers for the re-instantiated hosted virtual machine instance. At (4), the DNS server resolves the DNS query by identifying the network address or an alternative identifier associated with the previously instantiated hosted virtual machine instance. At (5), the client computing device 102 utilizes the returned network address for the subsequent requests.


With reference now to FIG. 6, a request routine 600 implemented by the service provider 104 to process DNS queries will be described. One skilled in the relevant art will appreciate that actions/steps outlined for routine 600 may be implemented by one or many computing devices/components that are associated with the service provider 104. Accordingly, routine 600 has been logically associated as being performed by the service provider 104.


At block 602, one of the DNS server components 112, 116, 122 receives a DNS query corresponding to a network computing provider URL. As previously discussed, the network computing provider URL includes an identifier corresponding a previously instantiated hosted virtual machine instance. The DNS portion of the network computing provider URL can be parsed to obtain the identifier. As previously discussed, in one embodiment, parsing of the DNS portion of the network computing provider URL can include parsing the “unique identifier” information included in the DNS portion of the network computing provider URL. Alternatively, the DNS server may utilize all the DNS portion of the network computing provider URL as the “unique_identifier” portion, especially in embodiments in which no additional information utilized for request routing is included in the DNS portion of the network computing provider URL.


At block 604, the DNS server transmits a query to the network computing provider 106 to determine an instantiation state for a virtual machine instance associated with the unique identifier. Illustratively, the DNS server attempts to determine whether the previously instantiated hosted virtual machine is still instantiated and available to process a subsequent request from the client computing device 102. In one embodiment, the DNS server can transmit a request to the network service provider 106 to determine in real time or substantially real time whether the network computing provider 106 has terminated the previously instantiated hosted virtual machine instance or whether the hosted virtual machine instance is otherwise unavailable. For example, the DNS server can transmit a request including a hosted virtual machine identifier in accordance with an API.


In another embodiment, the DNS server components or a different component of the service provider 104 can maintain information related to the instantiation state of a number of hosted virtual machine instances that can be polled. In this embodiment, the service provider 104 would periodically poll for the status of a set of hosted virtual machine instances or be informed when a previously instantiated virtual machine instance has been terminated. Accordingly, the transmission of the query regarding the instantiation state may include internal queries to the information maintained by the DNS components (or other components), a transmittal to external components, or combination thereof.


At decision block 606, a test is conducted to determine whether the selected hosted virtual machine instance is active and available to process requests if the previously instantiated hosted virtual machine instance is still instantiated and available to process subsequent requests. Illustratively, decision block 606 can correspond to an initial determination of whether one or more virtual machine instances have been previously instantiated. If so, decision block 606 would further determine whether the selected hosted virtual machine instance is still instantiated and otherwise available to process subsequent requests. If the selected hosted virtual machine instance is active and available to process requests, at block 608, the service provider 104 identifies network identifiers associated with the previously instantiated hosted virtual machine instance to resolve the DNS query. By way of illustrative example, the DNS component of the service provider 104 can utilize the table that maintains the network address of the hosted virtual machine instance to use in the resolution of the DNS query.


At decision block 610, a test is conducted to determine whether the service provider 104 should utilize a new instantiation of a hosted virtual machine instance even if the previously hosted virtual machine instance may still be instantiated. As previously described, the DNS server may utilize additional request routing information to determine that a different virtual machine instance may be better suited to process the subsequent request by the client computing device 102. In another embodiment, the network computing provider 106 may indicate that while a virtual machine instance may still be active, the network computing provider 106 would like to migrate the virtual machine instance or otherwise initiate one or more additional virtual machine instances in the place of the current virtual machine instance. If a new instantiation is determined, the routine 600 proceeds to block 614, which will be described below. Alternatively, if no new instantiation is required, at block 618, the DNS server will resolve the DNS query by identifying the network address or an alternative identifier associated with the previously instantiated hosted virtual machine instance.


Returning to decision block 606, if the previously instantiated hosted virtual machine instance has not been previously instantiate or if a previously instantiated hosted virtual machine instance is not still instantiated based on management decisions by the network computing provider 106, or if a previously instantiated hosted virtual machine instances is otherwise unavailable to process subsequent requests, the DNS server can cause the instantiation a new instance of the previously instantiated virtual machine instance. At block 614, in one embodiment, the DNS server will transmit a request to instantiate a new version (e.g., “re-instantiate”) of the hosted virtual machine instance. As previously discussed, the NCC processes the requests and begins to instantiate a hosted virtual machine instance corresponding to the request. In another embodiment, if the hosted virtual machine instance has not been previously instantiated (or was terminated by the customer), the DNS server will transmit a request to create a new instantiation of a hosted virtual machine instance. As previously discussed, the NCC processes the requests and begins to instantiate a hosted virtual machine instance corresponding to the request based on the configuration information maintained for by the DNS server. At block 616, the DNS server receives the network identifiers for the re-instantiated hosted virtual machine instance. At block 618, the DNS server resolves the DNS query by identifying the network address or an alternative identifier associated with the previously instantiated hosted virtual machine instance and the routine 600 terminates.


While illustrative embodiments have been disclosed and discussed, one skilled in the relevant art will appreciate that additional or alternative embodiments may be implemented within the spirit and scope of the present invention. Additionally, although many embodiments have been indicated as illustrative, one skilled in the relevant art will appreciate that the illustrative embodiments do not need to be combined or implemented together. As such, some illustrative embodiments do not need to be utilized or implemented in accordance with scope of variations to the present disclosure.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached FIG.S should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A system comprising: a network point of presence associated with a content delivery network (CDN) service provider, wherein the network point of presence includes a DNS server that receives a DNS query from a client computing device, wherein the DNS query comprises a uniform resource locator (URL), wherein the URL includes an identifier associated with a hosted virtual machine instance, wherein the identifier is included in a portion of a DNS portion of the URL, and wherein the DNS server in the network point of presence comprises hardware and is operative to: parse the DNS portion of the URL to obtain the identifier associated with the hosted virtual machine instance;determine that the hosted virtual machine is instantiated; andresolve the DNS query by transmitting information associated with the hosted virtual machine.
  • 2. The system as recited in claim 1, wherein parsing the DNS portion of the DNS query to obtain the identifier associated with the hosted virtual machine instance includes parsing a complete DNS portion of the DNS query.
  • 3. The system as recited in claim 1, wherein parsing the DNS portion of the DNS query to obtain the identifier associated with the hosted virtual machine instance includes parsing a sub-portion of the DNS portion of the DNS query.
  • 4. The system as recited in claim 1, wherein resolving the DNS query by transmitting information associated with the hosted virtual machine instance includes transmitting a canonical name record identifier associated with a service provider hosting the hosted virtual machine instance.
  • 5. The system as recited in claim 1, wherein resolving the DNS query by transmitting information associated with the hosted virtual machine instance includes transmitting a network address associated with a service provider hosting the hosted virtual machine instance.
  • 6. The system as recited in claim 1, wherein the DNS server in the network point of presence is operative to maintain, for a set of previously instantiated virtual machine instances, information related to an availability to process subsequent requests from the client computing device.
  • 7. The system as recited in claim 6, wherein the DNS server in the network point of presence is operative to: periodically transmit requests related to an availability to process subsequent requests from the client computing device for the set of previously instantiated virtual machine instances;obtain updated information related to an availability to process subsequent requests from the client computing device for the set of previously instantiated virtual machine instances;update the information related to an availability to process subsequent requests from the client computing device responsive to the updated information;obtain a request from the client computing device for the requested content; andprocess and transmit the requested content from the selected network computing component in response to the request from the client computing device.
  • 8. A method comprising: obtaining, by a DNS processing service, a DNS query from a client computing device, wherein the DNS query comprises a uniform resource locator (URL), wherein the URL includes an identifier associated with a hosted virtual machine instance, and wherein the identifier is included in a portion of a DNS portion of the URL;parsing, by the DNS processing service, the DNS portion of the URL to obtain the identifier associated with the hosted virtual machine instance;determining, by the DNS processing service, that the hosted virtual machine is instantiated; andresolving, by the DNS processing service, the DNS query by transmitting information associated with the hosted virtual machine.
  • 9. The method as recited in claim 8, wherein parsing the DNS portion of the DNS query to obtain the identifier associated with the hosted virtual machine instance includes parsing a complete DNS portion of the DNS query.
  • 10. The method as recited in claim 8, wherein parsing the DNS portion of the DNS query to obtain the identifier associated with the hosted virtual machine instance includes parsing a sub-portion of the DNS portion of the DNS query.
  • 11. The method as recited in claim 8, wherein resolving the DNS query by transmitting information associated with the hosted virtual machine instance includes transmitting a canonical name record identifier associated with a service provider hosting the hosted virtual machine instance.
  • 12. The method as recited in claim 8, wherein resolving the DNS query by transmitting information associated with the hosted virtual machine instance includes transmitting a network address associated with a service provider hosting the hosted virtual machine instance.
  • 13. The method as recited in claim 8 further comprising maintaining, for a set of previously instantiated virtual machine instances, information related to an availability to process subsequent requests from the client computing device.
  • 14. The method as recited in claim 8 further comprising: periodically transmitting requests related to an availability to process subsequent requests from the client computing device for the set of previously instantiated virtual machine instances;obtaining updated information related to an availability to process subsequent requests from the client computing device for the set of previously instantiated virtual machine instances;updating the information related to an availability to process subsequent requests from the client computing device responsive to the updated information;obtaining a request from the client computing device for the requested content; andprocessing and transmit the requested content from the selected network computing component in response to the request from the client computing device.
  • 15. A system comprising: a network point of presence associated with a content delivery network (CDN) service provider, wherein the network point of presence includes a DNS server that receives a DNS query from a client computing device, wherein the DNS query corresponds to a resource identifier associated with a previously instantiated hosted virtual machine instance, wherein the DNS query includes an identifier associated with the previously instantiated hosted virtual machine instance, wherein the resource identifier and the identifier associated with the previously instantiated hosted virtual machine instance are different, and wherein the DNS server in the network point of presence comprises hardware and is operative to: evaluate whether the previously instantiated hosted virtual machine associated with the DNS query is instantiated; andif the previously instantiated hosted virtual machine instance is not instantiated, resolve the DNS query by transmitting information associated with a re-instantiation of the previously instantiated hosted virtual machine instance determine that the hosted virtual machine is instantiated.
  • 16. The system as recited in claim 15, wherein the DNS server in the network point of presence is operative to: if the previously instantiated hosted virtual machine is instantiated, resolve the DNS query by transmitting information associated with the previously instantiated hosted virtual machine instance.
  • 17. The system as recited in claim 16, wherein the DNS server in the network point of presence is operative to: prior to resolving the DNS query by transmitting information associated with the previously instantiated hosted virtual machine instance, determine whether a new instantiation of the previously instantiated hosted virtual machine instance should be initiated.
  • 18. The system as recited in claim 17, wherein determining whether a new instantiation of the previously instantiated hosted virtual machine instance should be initiated includes evaluating updated request routing information corresponding to the DNS query.
  • 19. The system as recited in claim 15, wherein the DNS server in the network point of presence is operative to: maintain, for a set of previously instantiated virtual machine instances, information related a current instantiation state for the set of previously instantiated virtual machine instances.
  • 20. The system as recited in claim 19, wherein the DNS server in the network point of presence is operative to: periodically transmit requests related an instantiation state for the set of previously instantiate virtual machine instances;obtain updated information related instantiation state for the set of previously instantiate virtual machine instances; andupdate the information related to the instantiation state for the set of previously instantiate virtual machine instances.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/909,705, entitled “MANAGING NETWORK COMPUTING COMPONENTS UTILIZING REQUEST ROUTING” and filed on Jun. 4, 2013, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1199)
Number Name Date Kind
5063500 Shorter Nov 1991 A
5341477 Pitkin et al. Aug 1994 A
5459837 Caccavale Oct 1995 A
5611049 Pitts Mar 1997 A
5701467 Freeston Dec 1997 A
5764910 Shachar Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5852717 Bhide et al. Dec 1998 A
5892914 Pitts Apr 1999 A
5893116 Simmonds et al. Apr 1999 A
5895462 Toki Apr 1999 A
5905248 Russell et al. May 1999 A
5933811 Angles et al. Aug 1999 A
5937427 Shinagawa et al. Aug 1999 A
5974454 Apfel et al. Oct 1999 A
5991306 Burns et al. Nov 1999 A
5999274 Lee et al. Dec 1999 A
6016512 Huitema Jan 2000 A
6018619 Allard et al. Jan 2000 A
6026452 Pitts Feb 2000 A
6038601 Lambert et al. Mar 2000 A
6052718 Gifford Apr 2000 A
6078960 Ballard Jun 2000 A
6085234 Pitts et al. Jul 2000 A
6092100 Berstis et al. Jul 2000 A
6098096 Tsirigotis et al. Aug 2000 A
6108703 Leighton et al. Aug 2000 A
6128279 O'Neil et al. Oct 2000 A
6151631 Ansell et al. Nov 2000 A
6157942 Chu et al. Dec 2000 A
6167438 Yates et al. Dec 2000 A
6167446 Lister et al. Dec 2000 A
6173316 De Boor et al. Jan 2001 B1
6182111 Inohara et al. Jan 2001 B1
6182125 Borella et al. Jan 2001 B1
6185598 Farber et al. Feb 2001 B1
6192051 Lipman et al. Feb 2001 B1
6205475 Pitts Mar 2001 B1
6223288 Byrne Apr 2001 B1
6243761 Mogul et al. Jun 2001 B1
6275496 Burns et al. Aug 2001 B1
6286043 Cuomo et al. Sep 2001 B1
6286084 Wexler et al. Sep 2001 B1
6304913 Rune Oct 2001 B1
6324580 Jindal et al. Nov 2001 B1
6330602 Law et al. Dec 2001 B1
6338082 Schneider Jan 2002 B1
6345308 Abe Feb 2002 B1
6351743 DeArdo et al. Feb 2002 B1
6351775 Yu Feb 2002 B1
6363411 Dugan et al. Mar 2002 B1
6366952 Pitts Apr 2002 B2
6374290 Scharber et al. Apr 2002 B1
6377257 Borrel et al. Apr 2002 B1
6386043 Millins May 2002 B1
6405252 Gupta et al. Jun 2002 B1
6408360 Chamberlain et al. Jun 2002 B1
6411967 Van Renesse Jun 2002 B1
6415280 Farber et al. Jul 2002 B1
6430607 Kavner Aug 2002 B1
6438592 Killian Aug 2002 B1
6442165 Sitaraman et al. Aug 2002 B1
6452925 Sistanizadeh et al. Sep 2002 B1
6457047 Chandra et al. Sep 2002 B1
6459909 Bilcliff et al. Oct 2002 B1
6473804 Kaiser et al. Oct 2002 B1
6484143 Swildens et al. Nov 2002 B1
6484161 Chipalkatti et al. Nov 2002 B1
6493765 Cunningham et al. Dec 2002 B1
6505241 Pitts Jan 2003 B2
6523036 Hickman et al. Feb 2003 B1
6529910 Fleskes Mar 2003 B1
6529953 Van Renesse Mar 2003 B1
6553413 Leighton et al. Apr 2003 B1
6560610 Eatherton et al. May 2003 B1
6611873 Kanehara Aug 2003 B1
6622168 Datta Sep 2003 B1
6643357 Lumsden Nov 2003 B2
6643707 Booth Nov 2003 B1
6654807 Farber et al. Nov 2003 B2
6658462 Dutta Dec 2003 B1
6665706 Kenner et al. Dec 2003 B2
6678717 Schneider Jan 2004 B1
6678791 Jacobs et al. Jan 2004 B1
6681282 Golden et al. Jan 2004 B1
6694358 Swildens et al. Feb 2004 B1
6697805 Choquier et al. Feb 2004 B1
6724770 Van Renesse Apr 2004 B1
6732237 Jacobs et al. May 2004 B1
6754699 Swildens et al. Jun 2004 B2
6754706 Swildens et al. Jun 2004 B1
6760721 Chasen et al. Jul 2004 B1
6769031 Bero Jul 2004 B1
6782398 Bahl Aug 2004 B1
6785704 McCanne Aug 2004 B1
6795434 Kumar et al. Sep 2004 B1
6799214 Li Sep 2004 B1
6804706 Pitts Oct 2004 B2
6810291 Card et al. Oct 2004 B2
6810411 Coughlin et al. Oct 2004 B1
6829654 Jungck Dec 2004 B1
6862607 Vermeulen Mar 2005 B1
6868439 Basu et al. Mar 2005 B2
6874017 Inoue et al. Mar 2005 B1
6917951 Orbits et al. Jul 2005 B2
6925499 Chen et al. Aug 2005 B1
6928467 Peng et al. Aug 2005 B2
6928485 Krishnamurthy et al. Aug 2005 B1
6941562 Gao et al. Sep 2005 B2
6963850 Bezos et al. Nov 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6981017 Kasriel et al. Dec 2005 B1
6985945 Farhat et al. Jan 2006 B2
6986018 O'Rourke et al. Jan 2006 B2
6990526 Zhu Jan 2006 B1
6996616 Leighton et al. Feb 2006 B1
7003555 Jungck Feb 2006 B1
7006099 Gut et al. Feb 2006 B2
7007089 Freedman Feb 2006 B2
7010578 Lewin et al. Mar 2006 B1
7010598 Sitaraman et al. Mar 2006 B2
7024466 Outten et al. Apr 2006 B2
7031445 Lumsden Apr 2006 B2
7032010 Swildens et al. Apr 2006 B1
7058633 Gnagy et al. Jun 2006 B1
7058706 Iyer et al. Jun 2006 B1
7058953 Willard et al. Jun 2006 B2
7065587 Huitema et al. Jun 2006 B2
7072982 Teodosiu et al. Jul 2006 B2
7076633 Tormasov et al. Jul 2006 B2
7082476 Cohen et al. Jul 2006 B1
7086061 Joshi et al. Aug 2006 B1
7092505 Allison et al. Aug 2006 B2
7092997 Kasriel et al. Aug 2006 B1
7096266 Lewin et al. Aug 2006 B2
7099936 Chase et al. Aug 2006 B2
7103645 Leighton et al. Sep 2006 B2
7114160 Suryanarayana et al. Sep 2006 B2
7117262 Bai et al. Oct 2006 B2
7133905 Dilley et al. Nov 2006 B2
7136922 Sundaram et al. Nov 2006 B2
7139808 Anderson et al. Nov 2006 B2
7139821 Shah et al. Nov 2006 B1
7143169 Champagne et al. Nov 2006 B1
7143170 Swildens et al. Nov 2006 B2
7146560 Dang et al. Dec 2006 B2
7149809 Barde et al. Dec 2006 B2
7152118 Anderson, IV et al. Dec 2006 B2
7162539 Garcie-Luna-Aceves Jan 2007 B2
7174382 Ramanathan et al. Feb 2007 B2
7185063 Kasriel et al. Feb 2007 B1
7185084 Sirivara et al. Feb 2007 B2
7188214 Kasriel et al. Mar 2007 B1
7194522 Swildens et al. Mar 2007 B1
7194552 Schneider Mar 2007 B1
7200667 Teodosiu et al. Apr 2007 B2
7216170 Ludvig et al. May 2007 B2
7225254 Swildens et al. May 2007 B1
7228350 Hong et al. Jun 2007 B2
7228359 Monteiro Jun 2007 B1
7233978 Overton et al. Jun 2007 B2
7240100 Wein et al. Jul 2007 B1
7249196 Peiffer et al. Jul 2007 B1
7251675 Kamakura et al. Jul 2007 B1
7254626 Kommula et al. Aug 2007 B1
7254636 O'Toole, Jr. et al. Aug 2007 B1
7257581 Steele et al. Aug 2007 B1
7260598 Liskov et al. Aug 2007 B1
7260639 Afergan et al. Aug 2007 B2
7269784 Kasriel et al. Sep 2007 B1
7272227 Beran Sep 2007 B1
7274658 Bornstein et al. Sep 2007 B2
7284056 Ramig Oct 2007 B2
7289519 Liskov Oct 2007 B1
7293093 Leighton Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7316648 Kelly et al. Jan 2008 B2
7318074 Iyengar et al. Jan 2008 B2
7320131 O'Toole, Jr. Jan 2008 B1
7321918 Burd et al. Jan 2008 B2
7337968 Wilz, Sr. et al. Mar 2008 B2
7339937 Mitra et al. Mar 2008 B2
7340505 Lisiecki et al. Mar 2008 B2
7363291 Page Apr 2008 B1
7363626 Koutharapu et al. Apr 2008 B2
7370089 Boyd et al. May 2008 B2
7372809 Chen May 2008 B2
7373416 Kagan et al. May 2008 B2
7376736 Sundaram et al. May 2008 B2
7380078 Ikegaya et al. May 2008 B2
7392236 Rusch et al. Jun 2008 B2
7398301 Hennessey et al. Jul 2008 B2
7406512 Swildens et al. Jul 2008 B2
7406522 Riddle Jul 2008 B2
7409712 Brooks et al. Aug 2008 B1
7430610 Pace et al. Sep 2008 B2
7441045 Skene et al. Oct 2008 B2
7441261 Slater et al. Oct 2008 B2
7454457 Lowery et al. Nov 2008 B1
7454500 Hsu et al. Nov 2008 B1
7461170 Taylor et al. Dec 2008 B1
7464142 Flurry et al. Dec 2008 B2
7478148 Neerdaels Jan 2009 B2
7492720 Pruthi et al. Feb 2009 B2
7496651 Joshi Feb 2009 B1
7499998 Toebes et al. Mar 2009 B2
7502836 Menditto et al. Mar 2009 B1
7505464 Okmianski et al. Mar 2009 B2
7506034 Coates et al. Mar 2009 B2
7519720 Fishman et al. Apr 2009 B2
7519726 Palliyil et al. Apr 2009 B2
7523181 Swildens et al. Apr 2009 B2
7543024 Holstege Jun 2009 B2
7548947 Kasriel et al. Jun 2009 B2
7552235 Chase et al. Jun 2009 B2
7555542 Ayers et al. Jun 2009 B1
7561571 Lovett et al. Jul 2009 B1
7565407 Hayball Jul 2009 B1
7568032 Feng et al. Jul 2009 B2
7573916 Bechtolsheim et al. Aug 2009 B1
7574499 Swildens et al. Aug 2009 B1
7581009 Hsu et al. Aug 2009 B1
7594189 Walker et al. Sep 2009 B1
7596619 Leighton et al. Sep 2009 B2
7617222 Coulthard et al. Nov 2009 B2
7623460 Miyazaki Nov 2009 B2
7624169 Lisiecki et al. Nov 2009 B2
7631101 Sullivan et al. Dec 2009 B2
7640296 Fuchs et al. Dec 2009 B2
7650376 Blumenau Jan 2010 B1
7653700 Bahl et al. Jan 2010 B1
7653725 Yahiro et al. Jan 2010 B2
7657613 Hanson et al. Feb 2010 B1
7657622 Douglis et al. Feb 2010 B1
7661027 Langen et al. Feb 2010 B2
7664831 Cartmell et al. Feb 2010 B2
7664879 Chan et al. Feb 2010 B2
7676570 Levy et al. Mar 2010 B2
7680897 Carter et al. Mar 2010 B1
7684394 Cutbill et al. Mar 2010 B1
7685109 Ransil et al. Mar 2010 B1
7685251 Houlihan et al. Mar 2010 B2
7693813 Cao et al. Apr 2010 B1
7693959 Leighton et al. Apr 2010 B2
7702724 Brydon et al. Apr 2010 B1
7706740 Collins et al. Apr 2010 B2
7707314 McCarthy et al. Apr 2010 B2
7711647 Gunaseelan et al. May 2010 B2
7711788 Lev Ran et al. May 2010 B2
7716367 Leighton et al. May 2010 B1
7725602 Liu et al. May 2010 B2
7730187 Raciborski et al. Jun 2010 B2
7739400 Lindbo et al. Jun 2010 B2
7747720 Toebes et al. Jun 2010 B2
7756913 Day Jul 2010 B1
7756965 Joshi Jul 2010 B2
7757202 Dahlsted et al. Jul 2010 B2
7761572 Auerbach Jul 2010 B1
7765304 Davis et al. Jul 2010 B2
7769823 Jenny et al. Aug 2010 B2
7773596 Marques Aug 2010 B1
7774342 Virdy Aug 2010 B1
7783727 Foley et al. Aug 2010 B1
7787380 Aggarwal et al. Aug 2010 B1
7792989 Toebes et al. Sep 2010 B2
7805516 Kettler et al. Sep 2010 B2
7809597 Das et al. Oct 2010 B2
7813308 Reddy et al. Oct 2010 B2
7814229 Cabrera et al. Oct 2010 B1
7818454 Kim et al. Oct 2010 B2
7827256 Phillips et al. Nov 2010 B2
7836177 Kasriel et al. Nov 2010 B2
7853719 Cao et al. Dec 2010 B1
7865594 Baumback et al. Jan 2011 B1
7865953 Hsieh et al. Jan 2011 B1
7873065 Mukerji et al. Jan 2011 B1
7890612 Todd et al. Feb 2011 B2
7899899 Joshi Mar 2011 B2
7904875 Hegyi Mar 2011 B2
7912921 O'Rourke et al. Mar 2011 B2
7925782 Sivasubramanian et al. Apr 2011 B2
7930393 Baumback et al. Apr 2011 B1
7930402 Swildens et al. Apr 2011 B2
7930427 Josefsberg et al. Apr 2011 B2
7933988 Nasuto et al. Apr 2011 B2
7937477 Day et al. May 2011 B1
7945693 Farber et al. May 2011 B2
7949779 Farber et al. May 2011 B2
7958222 Pruitt et al. Jun 2011 B1
7958258 Yeung et al. Jun 2011 B2
7962597 Richardson et al. Jun 2011 B2
7966404 Hedin et al. Jun 2011 B2
7970816 Chess et al. Jun 2011 B2
7970940 van de Ven et al. Jun 2011 B1
7979509 Malmskog et al. Jul 2011 B1
7991910 Richardson et al. Aug 2011 B2
7996533 Leighton et al. Aug 2011 B2
7996535 Auerbach Aug 2011 B2
8000724 Rayburn et al. Aug 2011 B1
8001187 Stochosky Aug 2011 B2
8010707 Elzur et al. Aug 2011 B2
8019869 Kriegsman Sep 2011 B2
8024441 Kommula et al. Sep 2011 B2
8028090 Richardson et al. Sep 2011 B2
8041773 Abu-Ghazaleh et al. Oct 2011 B2
8041809 Sundaram et al. Oct 2011 B2
8041818 Gupta et al. Oct 2011 B2
8042054 White et al. Oct 2011 B2
8065275 Eriksen et al. Nov 2011 B2
8069231 Schran et al. Nov 2011 B2
8073940 Richardson et al. Dec 2011 B1
8082348 Averbuj et al. Dec 2011 B1
8108623 Krishnaprasad et al. Jan 2012 B2
8117306 Baumback et al. Feb 2012 B1
8122098 Richardson et al. Feb 2012 B1
8122124 Baumback et al. Feb 2012 B1
8132242 Wu Mar 2012 B1
8135820 Richardson et al. Mar 2012 B2
8156199 Hoche-Mong et al. Apr 2012 B1
8156243 Richardson et al. Apr 2012 B2
8175863 Ostermeyer et al. May 2012 B1
8190682 Paterson-Jones et al. May 2012 B2
8195837 McCarthy et al. Jun 2012 B2
8224971 Miller et al. Jul 2012 B1
8224986 Liskov et al. Jul 2012 B1
8224994 Schneider Jul 2012 B1
8234403 Richardson et al. Jul 2012 B2
8239530 Sundaram et al. Aug 2012 B2
8250135 Driesen et al. Aug 2012 B2
8250211 Swildens et al. Aug 2012 B2
8250219 Raciborski et al. Aug 2012 B2
8266288 Banerjee et al. Sep 2012 B2
8266327 Kumar et al. Sep 2012 B2
8271471 Kamvar et al. Sep 2012 B1
8280998 Joshi Oct 2012 B2
8281035 Farber et al. Oct 2012 B2
8291046 Farber et al. Oct 2012 B2
8291117 Eggleston et al. Oct 2012 B1
8296393 Alexander et al. Oct 2012 B2
8301600 Helmick et al. Oct 2012 B1
8301645 Crook Oct 2012 B1
8321568 Sivasubramanian et al. Nov 2012 B2
8380831 Barber Feb 2013 B2
8402137 Sivasuramanian et al. Mar 2013 B2
8423408 Barnes et al. Apr 2013 B1
8433749 Wee et al. Apr 2013 B2
8447831 Sivasubramanian et al. May 2013 B1
8447876 Verma et al. May 2013 B2
8452745 Ramakrishna May 2013 B2
8452874 MacCarthaigh et al. May 2013 B2
8463877 Richardson Jun 2013 B1
8468222 Sakata et al. Jun 2013 B2
8468245 Farber et al. Jun 2013 B2
8473613 Farber et al. Jun 2013 B2
8478903 Farber et al. Jul 2013 B2
8504721 Hsu et al. Aug 2013 B2
8510428 Joshi Aug 2013 B2
8510807 Elazary et al. Aug 2013 B1
8521851 Richardson et al. Aug 2013 B1
8521880 Richardson et al. Aug 2013 B1
8521908 Holmes et al. Aug 2013 B2
8526405 Curtis et al. Sep 2013 B2
8527639 Liskov et al. Sep 2013 B1
8527658 Holmes et al. Sep 2013 B2
8549646 Stavrou et al. Oct 2013 B2
8572208 Farber et al. Oct 2013 B2
8572210 Farber et al. Oct 2013 B2
8577992 Richardson et al. Nov 2013 B1
8589996 Ma et al. Nov 2013 B2
8606996 Richardson et al. Dec 2013 B2
8612565 Schneider Dec 2013 B2
8615549 Knowles et al. Dec 2013 B2
8619780 Brandwine Dec 2013 B1
8626950 Richardson et al. Jan 2014 B1
8635340 Schneider Jan 2014 B1
8639817 Sivasubramanian et al. Jan 2014 B2
8645539 McCarthy et al. Feb 2014 B2
8676918 Richardson et al. Mar 2014 B2
8683023 Brandwine et al. Mar 2014 B1
8683076 Farber et al. Mar 2014 B2
8688837 Richardson et al. Apr 2014 B1
8712950 Smith et al. Apr 2014 B2
8732309 Richardson et al. May 2014 B1
8745177 Kazerani et al. Jun 2014 B1
8756322 Lynch Jun 2014 B1
8756325 Sivasubramanian et al. Jun 2014 B2
8756341 Richardson et al. Jun 2014 B1
8782236 Marshall et al. Jul 2014 B1
8782279 Eggleston et al. Jul 2014 B2
8819283 Richardson et al. Aug 2014 B2
8826032 Yahalom et al. Sep 2014 B1
8904009 Marshall et al. Dec 2014 B1
8914514 Jenkins Dec 2014 B1
8924528 Richardson et al. Dec 2014 B1
8930513 Richardson et al. Jan 2015 B1
8930544 Richardson et al. Jan 2015 B2
8938526 Richardson et al. Jan 2015 B1
8949459 Scholl Feb 2015 B1
8966318 Shah Feb 2015 B1
9003035 Richardson et al. Apr 2015 B1
9003040 MacCarthaigh et al. Apr 2015 B2
9009286 Sivasubramanian et al. Apr 2015 B2
9009334 Jenkins Apr 2015 B1
9021127 Richardson Apr 2015 B2
9021128 Sivasubramanian et al. Apr 2015 B2
9021129 Richardson et al. Apr 2015 B2
9026616 Sivasubramanian et al. May 2015 B2
9037975 Taylor May 2015 B1
9075893 Jenkins Jul 2015 B1
9083675 Richardson et al. Jul 2015 B2
9083743 Patel et al. Jul 2015 B1
9106701 Richardson et al. Aug 2015 B2
9116803 Agrawal et al. Aug 2015 B1
9130756 Richardson et al. Sep 2015 B2
9130977 Zisapel et al. Sep 2015 B2
9137302 Makhijani et al. Sep 2015 B1
9154551 Watson Oct 2015 B1
9160703 Richardson et al. Oct 2015 B2
9172674 Patel et al. Oct 2015 B1
9176894 Marshall et al. Nov 2015 B2
9185012 Richardson et al. Nov 2015 B2
9191338 Richardson et al. Nov 2015 B2
9191458 Richardson et al. Nov 2015 B2
9195996 Walsh et al. Nov 2015 B1
9208097 Richardson et al. Dec 2015 B2
9210235 Sivasubramanian et al. Dec 2015 B2
9237087 Risbood et al. Jan 2016 B1
9237114 Richardson et al. Jan 2016 B2
9240954 Ellsworth et al. Jan 2016 B1
9246776 Ellsworth et al. Jan 2016 B2
9251112 Richardson et al. Feb 2016 B2
9253065 Richardson et al. Feb 2016 B2
9294391 Mostert Mar 2016 B1
9323577 Marr et al. Apr 2016 B2
9332078 Sivasubramanian et al. May 2016 B2
9386038 Martini Jul 2016 B2
9391949 Richardson et al. Jul 2016 B1
9407681 Richardson et al. Aug 2016 B1
9407699 Sivasubramanian et al. Aug 2016 B2
9444718 Khakpour et al. Sep 2016 B2
9444759 Richardson et al. Sep 2016 B2
9479476 Richardson et al. Oct 2016 B2
9495338 Hollis et al. Nov 2016 B1
9497259 Richardson et al. Nov 2016 B1
9515949 Richardson et al. Dec 2016 B2
9525659 Sonkin et al. Dec 2016 B1
9544394 Richardson et al. Jan 2017 B2
9571389 Richardson et al. Feb 2017 B2
9590946 Richardson et al. Mar 2017 B2
9608957 Sivasubramanian et al. Mar 2017 B2
9621660 Sivasubramanian et al. Apr 2017 B2
9628554 Marshall et al. Apr 2017 B2
9705922 Foxhoven et al. Jul 2017 B2
9712325 Richardson et al. Jul 2017 B2
9712484 Richardson et al. Jul 2017 B1
9734472 Richardson et al. Aug 2017 B2
9742795 Radlein et al. Aug 2017 B1
9774619 Radlein et al. Sep 2017 B1
9787599 Richardson et al. Oct 2017 B2
9787775 Richardson et al. Oct 2017 B1
9794216 Richardson et al. Oct 2017 B2
9794281 Radlein et al. Oct 2017 B1
20010000811 May et al. May 2001 A1
20010025305 Yoshiasa et al. Sep 2001 A1
20010032133 Moran Oct 2001 A1
20010034704 Farhat et al. Oct 2001 A1
20010049741 Skene et al. Dec 2001 A1
20010052016 Skene et al. Dec 2001 A1
20010056416 Garcia-Luna-Aceves Dec 2001 A1
20010056500 Farber et al. Dec 2001 A1
20020002613 Freeman et al. Jan 2002 A1
20020004846 Garcia-Luna-Aceves et al. Jan 2002 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020010783 Primak et al. Jan 2002 A1
20020010798 Ben-Shaul et al. Jan 2002 A1
20020035624 Jun-hyeong Mar 2002 A1
20020048269 Hong et al. Apr 2002 A1
20020049608 Hartsell et al. Apr 2002 A1
20020049857 Farber et al. Apr 2002 A1
20020052942 Swildens et al. May 2002 A1
20020062372 Hong et al. May 2002 A1
20020068554 Dusse Jun 2002 A1
20020069420 Russell et al. Jun 2002 A1
20020078233 Biliris et al. Jun 2002 A1
20020082858 Heddaya et al. Jun 2002 A1
20020083118 Sim Jun 2002 A1
20020083148 Shaw et al. Jun 2002 A1
20020083178 Brothers Jun 2002 A1
20020087374 Boubez et al. Jul 2002 A1
20020091786 Yamaguchi et al. Jul 2002 A1
20020091801 Lewin et al. Jul 2002 A1
20020092026 Janniello et al. Jul 2002 A1
20020099616 Sweldens Jul 2002 A1
20020099850 Farber et al. Jul 2002 A1
20020101836 Dorenbosch Aug 2002 A1
20020103820 Cartmell et al. Aug 2002 A1
20020103972 Satran et al. Aug 2002 A1
20020107944 Bai et al. Aug 2002 A1
20020112049 Elnozahy et al. Aug 2002 A1
20020116481 Lee Aug 2002 A1
20020116491 Boyd et al. Aug 2002 A1
20020116582 Copeland et al. Aug 2002 A1
20020120666 Landsman et al. Aug 2002 A1
20020120782 Dillon et al. Aug 2002 A1
20020124047 Gartner et al. Sep 2002 A1
20020124098 Shaw Sep 2002 A1
20020129123 Johnson et al. Sep 2002 A1
20020131428 Pecus et al. Sep 2002 A1
20020133741 Maeda et al. Sep 2002 A1
20020135611 Deosaran et al. Sep 2002 A1
20020138286 Engstrom Sep 2002 A1
20020138437 Lewin et al. Sep 2002 A1
20020138443 Schran et al. Sep 2002 A1
20020143675 Orshan Oct 2002 A1
20020143989 Huitema et al. Oct 2002 A1
20020145993 Chowdhury et al. Oct 2002 A1
20020147770 Tang Oct 2002 A1
20020147774 Lisiecki et al. Oct 2002 A1
20020150094 Cheng et al. Oct 2002 A1
20020150276 Chang Oct 2002 A1
20020152326 Orshan Oct 2002 A1
20020154157 Sherr et al. Oct 2002 A1
20020156884 Bertram et al. Oct 2002 A1
20020156911 Croman et al. Oct 2002 A1
20020161745 Call Oct 2002 A1
20020161767 Shapiro et al. Oct 2002 A1
20020163882 Bornstein et al. Nov 2002 A1
20020165912 Wenocur et al. Nov 2002 A1
20020169890 Beaumont et al. Nov 2002 A1
20020184368 Wang Dec 2002 A1
20020188722 Banerjee et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20020194382 Kausik et al. Dec 2002 A1
20020198953 O'Rourke et al. Dec 2002 A1
20030002484 Freedman Jan 2003 A1
20030005111 Allan Jan 2003 A1
20030007482 Khello et al. Jan 2003 A1
20030009488 Hart, III Jan 2003 A1
20030009591 Hayball et al. Jan 2003 A1
20030026410 Lumsden Feb 2003 A1
20030028642 Agarwal et al. Feb 2003 A1
20030033283 Evans et al. Feb 2003 A1
20030037108 Peiffer et al. Feb 2003 A1
20030037139 Shteyn Feb 2003 A1
20030041094 Lara et al. Feb 2003 A1
20030046343 Krishnamurthy et al. Mar 2003 A1
20030065739 Shnier Apr 2003 A1
20030074401 Connell et al. Apr 2003 A1
20030074471 Anderson et al. Apr 2003 A1
20030074472 Lucco et al. Apr 2003 A1
20030079027 Slocombe et al. Apr 2003 A1
20030093523 Cranor et al. May 2003 A1
20030099202 Lear et al. May 2003 A1
20030099237 Mitra et al. May 2003 A1
20030101278 Garcia-Luna-Aceves et al. May 2003 A1
20030112792 Cranor et al. Jun 2003 A1
20030120741 Wu et al. Jun 2003 A1
20030126387 Watanabe Jul 2003 A1
20030133554 Nykanen et al. Jul 2003 A1
20030135467 Okamoto Jul 2003 A1
20030135509 Davis et al. Jul 2003 A1
20030140087 Lincoln et al. Jul 2003 A1
20030145038 Tariq et al. Jul 2003 A1
20030145066 Okada et al. Jul 2003 A1
20030149581 Chaudhri et al. Aug 2003 A1
20030154239 Davis et al. Aug 2003 A1
20030154284 Bernardin et al. Aug 2003 A1
20030163722 Anderson, IV Aug 2003 A1
20030172145 Nguyen Sep 2003 A1
20030172183 Anderson, IV et al. Sep 2003 A1
20030172291 Judge et al. Sep 2003 A1
20030174648 Wang et al. Sep 2003 A1
20030177321 Watanabe Sep 2003 A1
20030182305 Balva et al. Sep 2003 A1
20030182413 Allen et al. Sep 2003 A1
20030182447 Schilling Sep 2003 A1
20030187935 Agarwalla et al. Oct 2003 A1
20030187970 Chase et al. Oct 2003 A1
20030191822 Leighton et al. Oct 2003 A1
20030200394 Ashmore et al. Oct 2003 A1
20030204602 Hudson et al. Oct 2003 A1
20030229682 Day Dec 2003 A1
20030233423 Dilley et al. Dec 2003 A1
20030233445 Levy et al. Dec 2003 A1
20030233455 Leber et al. Dec 2003 A1
20030236700 Arning et al. Dec 2003 A1
20030236779 Choi et al. Dec 2003 A1
20040003032 Ma et al. Jan 2004 A1
20040010563 Forte et al. Jan 2004 A1
20040010588 Slater et al. Jan 2004 A1
20040010621 Afergan et al. Jan 2004 A1
20040015584 Cartmell et al. Jan 2004 A1
20040019518 Abraham et al. Jan 2004 A1
20040024841 Becker et al. Feb 2004 A1
20040030620 Benjamin et al. Feb 2004 A1
20040034744 Karlsson et al. Feb 2004 A1
20040039798 Hotz et al. Feb 2004 A1
20040044731 Chen et al. Mar 2004 A1
20040044791 Pouzzner Mar 2004 A1
20040054757 Ueda et al. Mar 2004 A1
20040059805 Dinker et al. Mar 2004 A1
20040064335 Yang Apr 2004 A1
20040064501 Jan et al. Apr 2004 A1
20040068542 Lalonde et al. Apr 2004 A1
20040073596 Kloninger et al. Apr 2004 A1
20040073707 Dillon Apr 2004 A1
20040073867 Kausik et al. Apr 2004 A1
20040078468 Hedin et al. Apr 2004 A1
20040078487 Cernohous et al. Apr 2004 A1
20040083283 Sundaram et al. Apr 2004 A1
20040083307 Uysal Apr 2004 A1
20040117455 Kaminksy et al. Jun 2004 A1
20040128344 Trossen Jul 2004 A1
20040128346 Melamed et al. Jul 2004 A1
20040148520 Talpade et al. Jul 2004 A1
20040167981 Douglas et al. Aug 2004 A1
20040167982 Cohen et al. Aug 2004 A1
20040172466 Douglas et al. Sep 2004 A1
20040194085 Beaubien et al. Sep 2004 A1
20040194102 Neerdaels Sep 2004 A1
20040203630 Wang Oct 2004 A1
20040205149 Dillon et al. Oct 2004 A1
20040205162 Parikh Oct 2004 A1
20040215823 Kleinfelter et al. Oct 2004 A1
20040221019 Swildens et al. Nov 2004 A1
20040221034 Kausik et al. Nov 2004 A1
20040246948 Lee et al. Dec 2004 A1
20040249939 Amini et al. Dec 2004 A1
20040249971 Klinker Dec 2004 A1
20040249975 Tuck et al. Dec 2004 A1
20040250119 Shelest et al. Dec 2004 A1
20040254921 Cohen et al. Dec 2004 A1
20040267906 Truty Dec 2004 A1
20040267907 Gustafsson Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050021706 Maggi et al. Jan 2005 A1
20050021862 Schroeder et al. Jan 2005 A1
20050027882 Sullivan et al. Feb 2005 A1
20050038967 Umbehocker et al. Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050102683 Branson et al. May 2005 A1
20050108169 Balasubramanian et al. May 2005 A1
20050108262 Fawcett May 2005 A1
20050108529 Juneau May 2005 A1
20050114296 Farber et al. May 2005 A1
20050117717 Lumsden Jun 2005 A1
20050132083 Raciborski et al. Jun 2005 A1
20050147088 Bao et al. Jul 2005 A1
20050157712 Rangarajan et al. Jul 2005 A1
20050160133 Greenlee et al. Jul 2005 A1
20050163168 Sheth et al. Jul 2005 A1
20050168782 Kobashi et al. Aug 2005 A1
20050171959 Deforche et al. Aug 2005 A1
20050181769 Kogawa Aug 2005 A1
20050188073 Nakamichi et al. Aug 2005 A1
20050192008 Desai et al. Sep 2005 A1
20050198170 LeMay et al. Sep 2005 A1
20050198334 Farber et al. Sep 2005 A1
20050198453 Osaki Sep 2005 A1
20050198571 Kramer et al. Sep 2005 A1
20050216483 Armstrong et al. Sep 2005 A1
20050216569 Coppola et al. Sep 2005 A1
20050216674 Robbin et al. Sep 2005 A1
20050223095 Volz et al. Oct 2005 A1
20050228856 Swildens et al. Oct 2005 A1
20050229119 Torvinen Oct 2005 A1
20050232165 Brawn et al. Oct 2005 A1
20050234864 Shapiro Oct 2005 A1
20050240574 Challenger et al. Oct 2005 A1
20050256880 Nam Koong et al. Nov 2005 A1
20050259645 Chen et al. Nov 2005 A1
20050259672 Eduri Nov 2005 A1
20050262248 Jennings, III et al. Nov 2005 A1
20050266835 Agrawal et al. Dec 2005 A1
20050267937 Daniels et al. Dec 2005 A1
20050267991 Huitema et al. Dec 2005 A1
20050267992 Huitema et al. Dec 2005 A1
20050267993 Huitema et al. Dec 2005 A1
20050278259 Gunaseelan et al. Dec 2005 A1
20050283759 Peteanu et al. Dec 2005 A1
20050283784 Suzuki Dec 2005 A1
20060013158 Ahuja et al. Jan 2006 A1
20060020596 Liu et al. Jan 2006 A1
20060020684 Mukherjee et al. Jan 2006 A1
20060020714 Girouard et al. Jan 2006 A1
20060020715 Jungck Jan 2006 A1
20060021001 Giles et al. Jan 2006 A1
20060026067 Nicholas et al. Feb 2006 A1
20060026154 Altinel et al. Feb 2006 A1
20060031239 Koenig Feb 2006 A1
20060031319 Nelson et al. Feb 2006 A1
20060031503 Gilbert Feb 2006 A1
20060034494 Holloran Feb 2006 A1
20060036720 Faulk, Jr. Feb 2006 A1
20060036966 Yevdayev Feb 2006 A1
20060037037 Miranz Feb 2006 A1
20060039352 Karstens Feb 2006 A1
20060041614 Oe Feb 2006 A1
20060045005 Blackmore et al. Mar 2006 A1
20060047787 Aggarwal et al. Mar 2006 A1
20060047813 Aggarwal et al. Mar 2006 A1
20060059246 Grove Mar 2006 A1
20060063534 Kokkonen et al. Mar 2006 A1
20060064476 Decasper et al. Mar 2006 A1
20060064500 Roth et al. Mar 2006 A1
20060070060 Tantawi et al. Mar 2006 A1
20060074750 Clark et al. Apr 2006 A1
20060075084 Lyon Apr 2006 A1
20060075139 Jungck Apr 2006 A1
20060083165 McLane et al. Apr 2006 A1
20060085536 Meyer et al. Apr 2006 A1
20060088026 Mazur et al. Apr 2006 A1
20060112066 Hamzy May 2006 A1
20060112176 Liu et al. May 2006 A1
20060120385 Atchison et al. Jun 2006 A1
20060129665 Toebes et al. Jun 2006 A1
20060136453 Kwan Jun 2006 A1
20060143293 Freedman Jun 2006 A1
20060146820 Friedman et al. Jul 2006 A1
20060149529 Nguyen et al. Jul 2006 A1
20060155823 Tran et al. Jul 2006 A1
20060155862 Kathi et al. Jul 2006 A1
20060161541 Cencini Jul 2006 A1
20060165051 Banerjee et al. Jul 2006 A1
20060168088 Leighton et al. Jul 2006 A1
20060173957 Robinson Aug 2006 A1
20060179080 Meek et al. Aug 2006 A1
20060184936 Abels et al. Aug 2006 A1
20060190605 Franz et al. Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060195866 Thukral Aug 2006 A1
20060206568 Verma et al. Sep 2006 A1
20060206586 Ling et al. Sep 2006 A1
20060218265 Farber et al. Sep 2006 A1
20060218304 Mukherjee et al. Sep 2006 A1
20060224752 Parekh et al. Oct 2006 A1
20060227740 McLaughlin et al. Oct 2006 A1
20060227758 Rana et al. Oct 2006 A1
20060230137 Gare et al. Oct 2006 A1
20060230265 Krishna Oct 2006 A1
20060233155 Srivastava Oct 2006 A1
20060253546 Chang et al. Nov 2006 A1
20060253609 Andreev et al. Nov 2006 A1
20060259581 Piersol Nov 2006 A1
20060259690 Vittal et al. Nov 2006 A1
20060259984 Juneau Nov 2006 A1
20060265497 Ohata et al. Nov 2006 A1
20060265508 Angel et al. Nov 2006 A1
20060265516 Schilling Nov 2006 A1
20060265720 Cai et al. Nov 2006 A1
20060271641 Stavrakos et al. Nov 2006 A1
20060282522 Lewin et al. Dec 2006 A1
20060288119 Kim et al. Dec 2006 A1
20070005689 Leighton et al. Jan 2007 A1
20070005801 Kumar et al. Jan 2007 A1
20070005892 Mullender et al. Jan 2007 A1
20070011267 Overton et al. Jan 2007 A1
20070014241 Banerjee et al. Jan 2007 A1
20070021998 Laithwaite et al. Jan 2007 A1
20070028001 Phillips et al. Feb 2007 A1
20070038729 Sullivan et al. Feb 2007 A1
20070038994 Davis et al. Feb 2007 A1
20070041393 Westhead et al. Feb 2007 A1
20070043859 Ruul Feb 2007 A1
20070050522 Grove et al. Mar 2007 A1
20070050703 Lebel Mar 2007 A1
20070055764 Dilley et al. Mar 2007 A1
20070061440 Sundaram et al. Mar 2007 A1
20070064610 Khandani Mar 2007 A1
20070076872 Juneau Apr 2007 A1
20070086429 Lawrence et al. Apr 2007 A1
20070094361 Hoynowski et al. Apr 2007 A1
20070101061 Baskaran et al. May 2007 A1
20070101377 Six et al. May 2007 A1
20070118667 McCarthy et al. May 2007 A1
20070118668 McCarthy et al. May 2007 A1
20070134641 Lieu Jun 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070162331 Sullivan Jul 2007 A1
20070168336 Ransil et al. Jul 2007 A1
20070168517 Weller Jul 2007 A1
20070174426 Swildens et al. Jul 2007 A1
20070174442 Sherman et al. Jul 2007 A1
20070174490 Choi et al. Jul 2007 A1
20070183342 Wong et al. Aug 2007 A1
20070198982 Bolan et al. Aug 2007 A1
20070204107 Greenfield et al. Aug 2007 A1
20070208737 Li et al. Sep 2007 A1
20070219795 Park et al. Sep 2007 A1
20070220010 Ertugrul Sep 2007 A1
20070233705 Farber et al. Oct 2007 A1
20070233706 Farber et al. Oct 2007 A1
20070233846 Farber et al. Oct 2007 A1
20070233884 Farber et al. Oct 2007 A1
20070243860 Aiello et al. Oct 2007 A1
20070244964 Challenger et al. Oct 2007 A1
20070245022 011Iphant et al. Oct 2007 A1
20070250467 Mesnik et al. Oct 2007 A1
20070250560 Wein et al. Oct 2007 A1
20070250601 Amlekar et al. Oct 2007 A1
20070250611 Bhogal et al. Oct 2007 A1
20070253377 Janneteau et al. Nov 2007 A1
20070255843 Zubev Nov 2007 A1
20070263604 Tal Nov 2007 A1
20070266113 Koopmans et al. Nov 2007 A1
20070266311 Westphal Nov 2007 A1
20070266333 Cossey et al. Nov 2007 A1
20070270165 Poosala Nov 2007 A1
20070271375 Hwang Nov 2007 A1
20070271385 Davis et al. Nov 2007 A1
20070271560 Wahlert et al. Nov 2007 A1
20070271608 Shimizu et al. Nov 2007 A1
20070280229 Kenney Dec 2007 A1
20070288588 Wein et al. Dec 2007 A1
20070291739 Sullivan et al. Dec 2007 A1
20080005057 Ozzie et al. Jan 2008 A1
20080008089 Bornstein et al. Jan 2008 A1
20080016233 Schneider Jan 2008 A1
20080025304 Venkataswami et al. Jan 2008 A1
20080037536 Padmanabhan et al. Feb 2008 A1
20080046550 Mazur et al. Feb 2008 A1
20080046596 Afergan et al. Feb 2008 A1
20080056207 Eriksson et al. Mar 2008 A1
20080065724 Seed et al. Mar 2008 A1
20080065745 Leighton et al. Mar 2008 A1
20080071859 Seed et al. Mar 2008 A1
20080071987 Karn et al. Mar 2008 A1
20080072264 Crayford Mar 2008 A1
20080082551 Farber et al. Apr 2008 A1
20080082662 Dandliker et al. Apr 2008 A1
20080086434 Chesla Apr 2008 A1
20080086559 Davis et al. Apr 2008 A1
20080086574 Raciborski et al. Apr 2008 A1
20080092242 Rowley Apr 2008 A1
20080101358 Van Ewijk et al. May 2008 A1
20080103805 Shear et al. May 2008 A1
20080104268 Farber et al. May 2008 A1
20080109679 Wright et al. May 2008 A1
20080114829 Button et al. May 2008 A1
20080125077 Velazquez et al. May 2008 A1
20080126706 Newport et al. May 2008 A1
20080134043 Georgis et al. Jun 2008 A1
20080140800 Farber et al. Jun 2008 A1
20080147866 Stolorz et al. Jun 2008 A1
20080147873 Matsumoto Jun 2008 A1
20080155059 Hardin et al. Jun 2008 A1
20080155061 Afergan et al. Jun 2008 A1
20080155613 Benya et al. Jun 2008 A1
20080155614 Cooper et al. Jun 2008 A1
20080162667 Verma et al. Jul 2008 A1
20080162821 Duran et al. Jul 2008 A1
20080162843 Davis et al. Jul 2008 A1
20080172488 Jawahar et al. Jul 2008 A1
20080189437 Halley Aug 2008 A1
20080201332 Souders et al. Aug 2008 A1
20080215718 Stolorz et al. Sep 2008 A1
20080215730 Sundaram et al. Sep 2008 A1
20080215735 Farber et al. Sep 2008 A1
20080215747 Menon et al. Sep 2008 A1
20080215750 Farber et al. Sep 2008 A1
20080215755 Farber et al. Sep 2008 A1
20080222281 Dilley et al. Sep 2008 A1
20080222291 Weller et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080228574 Stewart et al. Sep 2008 A1
20080228920 Souders et al. Sep 2008 A1
20080235400 Slocombe et al. Sep 2008 A1
20080256087 Piironen et al. Oct 2008 A1
20080256175 Lee et al. Oct 2008 A1
20080263135 Olliphant Oct 2008 A1
20080275772 Suryanarayana et al. Nov 2008 A1
20080281946 Swildens et al. Nov 2008 A1
20080281950 Wald et al. Nov 2008 A1
20080288722 Lecoq et al. Nov 2008 A1
20080301670 Gouge et al. Dec 2008 A1
20080312766 Couckuyt Dec 2008 A1
20080319862 Golan et al. Dec 2008 A1
20080320123 Houlihan et al. Dec 2008 A1
20080320269 Houlihan et al. Dec 2008 A1
20090013063 Soman Jan 2009 A1
20090016236 Alcala et al. Jan 2009 A1
20090029644 Sue et al. Jan 2009 A1
20090031367 Sue Jan 2009 A1
20090031368 Ling Jan 2009 A1
20090031376 Riley et al. Jan 2009 A1
20090049098 Pickelsimer et al. Feb 2009 A1
20090063038 Shrivathsan et al. Mar 2009 A1
20090063704 Taylor et al. Mar 2009 A1
20090070533 Elazary et al. Mar 2009 A1
20090083228 Shatz et al. Mar 2009 A1
20090083279 Hasek Mar 2009 A1
20090086728 Gulati et al. Apr 2009 A1
20090086741 Zhang Apr 2009 A1
20090089869 Varghese Apr 2009 A1
20090094252 Wong et al. Apr 2009 A1
20090103707 McGary et al. Apr 2009 A1
20090106381 Kasriel et al. Apr 2009 A1
20090112703 Brown Apr 2009 A1
20090125393 Hwang et al. May 2009 A1
20090125934 Jones et al. May 2009 A1
20090132368 Cotter et al. May 2009 A1
20090132648 Swildens et al. May 2009 A1
20090138533 Iwasaki et al. May 2009 A1
20090144411 Winkler et al. Jun 2009 A1
20090144412 Ferguson et al. Jun 2009 A1
20090150926 Schlack Jun 2009 A1
20090157850 Gagliardi et al. Jun 2009 A1
20090158163 Stephens et al. Jun 2009 A1
20090164331 Bishop et al. Jun 2009 A1
20090164614 Christian et al. Jun 2009 A1
20090177667 Ramos et al. Jul 2009 A1
20090182815 Czechowski et al. Jul 2009 A1
20090182837 Rogers Jul 2009 A1
20090182945 Aviles et al. Jul 2009 A1
20090187575 DaCosta Jul 2009 A1
20090198817 Sundaram et al. Aug 2009 A1
20090204682 Jeyaseelan et al. Aug 2009 A1
20090210549 Hudson et al. Aug 2009 A1
20090233623 Johnson Sep 2009 A1
20090241167 Moore Sep 2009 A1
20090248697 Richardson et al. Oct 2009 A1
20090248786 Richardson et al. Oct 2009 A1
20090248787 Sivasubramanian et al. Oct 2009 A1
20090248852 Fuhrmann et al. Oct 2009 A1
20090248858 Sivasubramanian et al. Oct 2009 A1
20090248893 Richardson Oct 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090253435 Olofsson Oct 2009 A1
20090254661 Fullagar et al. Oct 2009 A1
20090259588 Lindsay Oct 2009 A1
20090259971 Rankine et al. Oct 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090271498 Cable Oct 2009 A1
20090271577 Campana et al. Oct 2009 A1
20090271730 Rose et al. Oct 2009 A1
20090279444 Ravindran et al. Nov 2009 A1
20090282038 Subotin et al. Nov 2009 A1
20090287750 Banavar et al. Nov 2009 A1
20090307307 Igarashi Dec 2009 A1
20090327489 Swildens et al. Dec 2009 A1
20090327517 Sivasubramanian Dec 2009 A1
20090327914 Adar et al. Dec 2009 A1
20100005175 Swildens et al. Jan 2010 A1
20100011061 Hudson et al. Jan 2010 A1
20100011126 Hsu et al. Jan 2010 A1
20100020699 On Jan 2010 A1
20100023601 Lewin et al. Jan 2010 A1
20100030662 Klein Feb 2010 A1
20100030914 Sparks et al. Feb 2010 A1
20100034470 Valencia-Campo et al. Feb 2010 A1
20100036944 Douglis et al. Feb 2010 A1
20100042725 Jeon et al. Feb 2010 A1
20100057894 Glasser Mar 2010 A1
20100070603 Moss et al. Mar 2010 A1
20100082320 Wood et al. Apr 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100088367 Brown et al. Apr 2010 A1
20100088405 Huang et al. Apr 2010 A1
20100095008 Joshi Apr 2010 A1
20100100629 Raciborski et al. Apr 2010 A1
20100103837 Jungck et al. Apr 2010 A1
20100111059 Bappu et al. May 2010 A1
20100115133 Joshi May 2010 A1
20100115342 Shigeta et al. May 2010 A1
20100121953 Friedman et al. May 2010 A1
20100121981 Drako May 2010 A1
20100122069 Gonion May 2010 A1
20100125626 Lucas et al. May 2010 A1
20100125673 Richardson May 2010 A1
20100125675 Richardson May 2010 A1
20100131646 Drako May 2010 A1
20100138559 Sullivan et al. Jun 2010 A1
20100150155 Napierala Jun 2010 A1
20100161799 Maloo Jun 2010 A1
20100169392 Lev Ran et al. Jul 2010 A1
20100169452 Atluri et al. Jul 2010 A1
20100174811 Musiri et al. Jul 2010 A1
20100192225 Ma et al. Jul 2010 A1
20100217801 Leighton et al. Aug 2010 A1
20100217856 Falkena Aug 2010 A1
20100223364 Wei Sep 2010 A1
20100226372 Watanabe Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100257024 Holmes et al. Oct 2010 A1
20100257266 Holmes et al. Oct 2010 A1
20100257566 Matila Oct 2010 A1
20100268789 Yoo et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100281482 Pike et al. Nov 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100293479 Rousso et al. Nov 2010 A1
20100299427 Joshi Nov 2010 A1
20100299438 Zimmerman et al. Nov 2010 A1
20100299439 McCarthy et al. Nov 2010 A1
20100312861 Kolhi et al. Dec 2010 A1
20100318508 Brawer et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100325365 Colglazier et al. Dec 2010 A1
20100332595 Fullagar et al. Dec 2010 A1
20110010244 Hatridge Jan 2011 A1
20110029598 Arnold et al. Feb 2011 A1
20110040893 Karaoguz et al. Feb 2011 A1
20110051738 Xu Mar 2011 A1
20110055386 Middleton et al. Mar 2011 A1
20110055714 Vemulapalli Mar 2011 A1
20110055921 Narayanaswamy et al. Mar 2011 A1
20110058675 Brueck et al. Mar 2011 A1
20110072138 Canturk et al. Mar 2011 A1
20110072366 Spencer Mar 2011 A1
20110078000 Ma et al. Mar 2011 A1
20110078230 Sepulveda Mar 2011 A1
20110085654 Jana et al. Apr 2011 A1
20110087769 Holmes et al. Apr 2011 A1
20110096987 Morales et al. Apr 2011 A1
20110113467 Agarwal et al. May 2011 A1
20110153938 Verzunov et al. Jun 2011 A1
20110153941 Spatscheck et al. Jun 2011 A1
20110154318 Oshins Jun 2011 A1
20110161461 Niven-Jenkins Jun 2011 A1
20110166935 Armentrout et al. Jul 2011 A1
20110182290 Perkins Jul 2011 A1
20110191445 Dazzi Aug 2011 A1
20110191449 Swildens et al. Aug 2011 A1
20110191459 Joshi Aug 2011 A1
20110196892 Xia Aug 2011 A1
20110208876 Richardson et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen Aug 2011 A1
20110219120 Farber et al. Sep 2011 A1
20110219372 Agarwal et al. Sep 2011 A1
20110238501 Almeida Sep 2011 A1
20110238793 Bedare et al. Sep 2011 A1
20110239215 Sugai Sep 2011 A1
20110252142 Richardson et al. Oct 2011 A1
20110252143 Baumback et al. Oct 2011 A1
20110258049 Ramer et al. Oct 2011 A1
20110258614 Tamm Oct 2011 A1
20110270964 Huang et al. Nov 2011 A1
20110276623 Girbal Nov 2011 A1
20110296053 Medved et al. Dec 2011 A1
20110302304 Baumback et al. Dec 2011 A1
20110320522 Endres et al. Dec 2011 A1
20110320559 Foti Dec 2011 A1
20120011190 Driesen et al. Jan 2012 A1
20120023090 Holloway et al. Jan 2012 A1
20120036238 Sundaram et al. Feb 2012 A1
20120066360 Ghosh Mar 2012 A1
20120072600 Richardson et al. Mar 2012 A1
20120078998 Son et al. Mar 2012 A1
20120079115 Richardson et al. Mar 2012 A1
20120089972 Scheidel et al. Apr 2012 A1
20120096065 Suit et al. Apr 2012 A1
20120110515 Abramoff et al. May 2012 A1
20120124184 Sakata et al. May 2012 A1
20120131177 Brandt et al. May 2012 A1
20120136697 Peles et al. May 2012 A1
20120143688 Alexander Jun 2012 A1
20120159476 Ramteke et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120169646 Berkes et al. Jul 2012 A1
20120173677 Richardson Jul 2012 A1
20120173760 Jog et al. Jul 2012 A1
20120179796 Nagaraj et al. Jul 2012 A1
20120179817 Bade et al. Jul 2012 A1
20120179839 Raciborski et al. Jul 2012 A1
20120198043 Hesketh et al. Aug 2012 A1
20120198071 Black et al. Aug 2012 A1
20120224516 Stojanovski et al. Sep 2012 A1
20120226649 Kovacs et al. Sep 2012 A1
20120233522 Barton et al. Sep 2012 A1
20120233668 Leafe et al. Sep 2012 A1
20120246129 Rothschild et al. Sep 2012 A1
20120254961 Kim et al. Oct 2012 A1
20120257628 Bu et al. Oct 2012 A1
20120278831 van Coppenolle et al. Nov 2012 A1
20120303785 Sivasubramanian Nov 2012 A1
20120303804 Sundaram et al. Nov 2012 A1
20120311648 Swildens et al. Dec 2012 A1
20120324089 Joshi Dec 2012 A1
20130003735 Chao et al. Jan 2013 A1
20130007100 Trahan Jan 2013 A1
20130007101 Trahan Jan 2013 A1
20130007102 Trahan Jan 2013 A1
20130007241 Trahan Jan 2013 A1
20130007273 Baumback et al. Jan 2013 A1
20130019311 Swildens et al. Jan 2013 A1
20130034099 Hikichi et al. Feb 2013 A1
20130041872 Aizman et al. Feb 2013 A1
20130046869 Jenkins Feb 2013 A1
20130054675 Jenkins Feb 2013 A1
20130055374 Kustarz et al. Feb 2013 A1
20130067530 Spektor et al. Mar 2013 A1
20130080420 Taylor Mar 2013 A1
20130080421 Taylor Mar 2013 A1
20130080576 Taylor Mar 2013 A1
20130080577 Taylor Mar 2013 A1
20130080623 Thireault Mar 2013 A1
20130086001 Bhogal et al. Apr 2013 A1
20130117282 Mugali, Jr. et al. May 2013 A1
20130117849 Golshan May 2013 A1
20130130221 Kortemeyer et al. May 2013 A1
20130133057 Yoon et al. May 2013 A1
20130151646 Chidambaram et al. Jun 2013 A1
20130198341 Kim Aug 2013 A1
20130212300 Eggleston et al. Aug 2013 A1
20130227165 Liu Aug 2013 A1
20130246567 Green et al. Sep 2013 A1
20130254269 Sivasubramanian et al. Sep 2013 A1
20130263256 Dickinson et al. Oct 2013 A1
20130268616 Sakata et al. Oct 2013 A1
20130279335 Ahmadi Oct 2013 A1
20130305046 Mankovski Nov 2013 A1
20130311583 Humphreys et al. Nov 2013 A1
20130311605 Richardson et al. Nov 2013 A1
20130311989 Ota et al. Nov 2013 A1
20130318153 Sivasubramanian et al. Nov 2013 A1
20130339429 Richardson et al. Dec 2013 A1
20130346567 Richardson et al. Dec 2013 A1
20140006577 Joe et al. Jan 2014 A1
20140007239 Sharpe et al. Jan 2014 A1
20140019605 Boberg Jan 2014 A1
20140036675 Wang et al. Feb 2014 A1
20140040478 Hsu et al. Feb 2014 A1
20140053022 Forgette Feb 2014 A1
20140059120 Richardson et al. Feb 2014 A1
20140059198 Richardson et al. Feb 2014 A1
20140059379 Ren et al. Feb 2014 A1
20140089917 Attalla et al. Mar 2014 A1
20140108672 Ou et al. Apr 2014 A1
20140137111 Dees et al. May 2014 A1
20140143320 Sivasubramanian et al. May 2014 A1
20140149601 Carney et al. May 2014 A1
20140164817 Bartholomy et al. Jun 2014 A1
20140165061 Greene et al. Jun 2014 A1
20140215019 Ahrens Jul 2014 A1
20140257891 Richardson et al. Sep 2014 A1
20140280679 Dey et al. Sep 2014 A1
20140297870 Eggleston et al. Oct 2014 A1
20140310402 Giaretta et al. Oct 2014 A1
20140310811 Hentunen Oct 2014 A1
20140325155 Marshall et al. Oct 2014 A1
20140331328 Wang et al. Nov 2014 A1
20140337472 Newton et al. Nov 2014 A1
20140365666 Richardson et al. Dec 2014 A1
20150006615 Wainner et al. Jan 2015 A1
20150019686 Backholm Jan 2015 A1
20150067171 Yum Mar 2015 A1
20150081842 Richardson et al. Mar 2015 A1
20150088972 Brand et al. Mar 2015 A1
20150089621 Khalid Mar 2015 A1
20150172379 Richardson et al. Jun 2015 A1
20150172407 MacCarthaigh et al. Jun 2015 A1
20150172414 Richardson et al. Jun 2015 A1
20150172415 Richardson et al. Jun 2015 A1
20150180988 Sivasubramanian et al. Jun 2015 A1
20150188734 Petrov Jul 2015 A1
20150188994 Marshall et al. Jul 2015 A1
20150189042 Sun et al. Jul 2015 A1
20150195244 Richardson et al. Jul 2015 A1
20150207733 Richardson et al. Jul 2015 A1
20150215270 Sivasubramanian et al. Jul 2015 A1
20150215656 Pulung et al. Jul 2015 A1
20150229710 Sivasubramanian et al. Aug 2015 A1
20150244580 Saavedra Aug 2015 A1
20150256647 Richardson et al. Sep 2015 A1
20150288647 Chhabra et al. Oct 2015 A1
20150319194 Richardson et al. Nov 2015 A1
20150319260 Watson Nov 2015 A1
20150334082 Richardson et al. Nov 2015 A1
20160006672 Saavedra Jan 2016 A1
20160021197 Pogrebinsky et al. Jan 2016 A1
20160026568 Marshall et al. Jan 2016 A1
20160028644 Richardson et al. Jan 2016 A1
20160028755 Vasseur et al. Jan 2016 A1
20160036857 Foxhoven et al. Feb 2016 A1
20160041910 Richardson et al. Feb 2016 A1
20160065665 Richardson et al. Mar 2016 A1
20160072720 Richardson et al. Mar 2016 A1
20160134492 Ellsworth et al. May 2016 A1
20160142367 Richardson et al. May 2016 A1
20160182454 Phonsa et al. Jun 2016 A1
20160182542 Staniford Jun 2016 A1
20160241637 Marr et al. Aug 2016 A1
20160241639 Brookins et al. Aug 2016 A1
20160241651 Sivasubramanian et al. Aug 2016 A1
20160294678 Khakpour et al. Oct 2016 A1
20160308959 Richardson et al. Oct 2016 A1
20170041428 Katsev Feb 2017 A1
20170085495 Richardson et al. Mar 2017 A1
20170126557 Richardson et al. May 2017 A1
20170126796 Hollis et al. May 2017 A1
20170142062 Richardson et al. May 2017 A1
20170180217 Puchala et al. Jun 2017 A1
20170180267 Puchala et al. Jun 2017 A1
20170214755 Sivasubramanian et al. Jul 2017 A1
20170250821 Richardson et al. Aug 2017 A1
20170257340 Richardson et al. Sep 2017 A1
Foreign Referenced Citations (31)
Number Date Country
2741 895 May 2010 CA
2741895 May 2010 CA
1422468 Jun 2003 CN
1605182 Apr 2005 CN
101189598 May 2008 CN
101460907 Jun 2009 CN
103731481 Apr 2014 CN
1603307 Dec 2005 EP
1351141 Oct 2007 EP
2008167 Dec 2008 EP
2001-0506093 May 2001 JP
2001-249907 Sep 2001 JP
2002-044137 Feb 2002 JP
2003-167810 Jun 2003 JP
2003-167813 Jun 2003 JP
2003-522358 Jul 2003 JP
2003188901 Jul 2003 JP
2004-533738 Nov 2004 JP
2005-537687 Dec 2005 JP
2007-133896 May 2007 JP
2009-071538 Apr 2009 JP
2012-509623 Apr 2012 JP
WO 2002069608 Sep 2002 WO
WO 2005071560 Aug 2005 WO
WO 2007007960 Jan 2007 WO
WO 2007126837 Nov 2007 WO
WO 2009124006 Oct 2009 WO
WO 2010002603 Jan 2010 WO
WO 2012044587 Apr 2012 WO
WO 2012065641 May 2012 WO
WO 2017106455 Jun 2017 WO
Non-Patent Literature Citations (149)
Entry
“Non-Final Office Action dated Jan. 3, 2012,” U.S. Appl. No. 12/652,541; dated Jan. 3, 2012; 35 pages.
“Final Office Action dated Sep. 5, 2012,” U.S. Appl. No. 12/652,541; dated Sep. 5, 2012; 40 pages.
“Notice of Allowance dated Jan. 4, 2013,” U.S. Appl. No. 12/652,541; dated Jan. 4, 2013; 11 pages.
“Non-Final Office Action dated Apr. 30, 2014,” U.S. Appl. No. 13/842,970; 20 pages.
“Final Office Action dated Aug. 19, 2014,” U.S. Appl. No. 13/842,970; 13 pages.
“Notice of Allowance dated Dec. 5, 2014,” U.S. Appl. No. 13/842,970; 6 pages.
Canonical Name (CNAME) DNS Records, domainavenue.com, Feb. 1, 2001, XP055153783, Retrieved from the Internet: URL:http://www.domainavenue.com/cname.htm [retrieved on Nov. 18, 2014].
“Content delivery network”, Wikipedia, the free encyclopedia, Retrieved from the Internet: URL:http://en.wikipedia.org/w/index.php?title=Contentdelivery network&oldid=601009970, XP055153445, Mar. 24, 2008.
“Global Server Load Balancing with ServerIron,” Foundry Networks, retrieved Aug. 30, 2007, from http://www.foundrynet.com/pdf/an-global-server-load-bal.pdf, 7 pages.
“Grid Computing Solutions,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/grid, 3 pages.
“Grid Offerings,” Java.net, retrieved May 3, 2006, from http://wiki.java.net/bin/view/Sungrid/OtherGridOfferings, 8 pages.
“Recent Advances Boost System Virtualization,” eWeek.com, retrieved from May 3, 2006, http://www.eWeek.com/article2/0,1895,1772626.00.asp, 5 pages.
“Scaleable Trust of Next Generation Management (STRONGMAN),” retrieved May 17, 2006, from http://www.cis.upenn.edu/˜dsl/STRONGMAN/, 4 pages.
“Sun EDA Compute Ranch,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://sun.com/processors/ranch/brochure.pdf, 2 pages.
“Sun Microsystems Accelerates UltraSP ARC Processor Design Program With New Burlington, Mass. Compute Ranch,” Nov. 6, 2002, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2002-11/sunflash.20021106.3 .xml, 2 pages.
“Sun N1 Grid Engine 6,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/gridware/index.xml, 3 pages.
“Sun Opens New Processor Design Compute Ranch,” Nov. 30, 2001, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2001-11/sunflash.20011130.1.xml, 3 pages.
“The Softricity Desktop,” Softricity, Inc., retrieved May 3, 2006, from http://www.softricity.com/products/, 3 pages.
“Xen—The Xen virtual Machine Monitor,” University of Cambridge Computer Laboratory, retrieved Nov. 8, 2005, from http://www.cl.cam.ac.uk/Research/SRG/netos/xen/, 2 pages.
“XenFaq,” retrieved Nov. 8, 2005, from http://wiki.xensource.com/xenwiki/XenFaq?action=print, 9 pages.
Abi, Issam, et al., “A Business Driven Management Framework for Utility Computing Environments,” Oct. 12, 2004, HP Laboratories Bristol, HPL-2004-171, retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2004/HPL-2004-171.pdf, 14 pages.
American Bar Association; Digital Signature Guidelines Tutorial [online]; Feb. 10, 2002 [retrieved on Mar. 2, 2010]; American Bar Association Section of Science and Technology Information Security Committee; Retrieved from the internet: (URL: http://web.archive.org/web/20020210124615/www.abanet.org/scitech/ec/isc/dsg-tutorial.html; pp. 1-8.
Armour et al.: “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities”; Management Science, vol. 9, No. 2 (Jan. 1963); pp. 294-309.
Baglioni et al., “Preprocessing and Mining Web Log Data for Web Personalization”, LNAI 2829, 2003, pp. 237-249.
Barbir, A., et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt).
Bellovin, S., “Distributed Firewalls,”;login;:37-39, Nov. 1999, http://www.cs.columbia.edu/-smb/papers/distfw. html, 10 pages, retrieved Nov. 11, 2005.
Blaze, M., “Using the KeyNote Trust Management System,” Mar. 1, 2001, from http://www.crypto.com/trustmgt/kn.html, 4 pages, retrieved May 17, 2006.
Brenton, C., “What is Egress Filtering and How Can I Implement It?—Egress Filtering v 0.2,” Feb. 29, 2000, SANS Institute, http://www.sans.org/infosecFAQ/firewall/egress.htm, 6 pages.
Byun et al., “A Dynamic Grid Services Deployment Mechanism for On-Demand Resource Provisioning”, IEEE International Symposium on Cluster Computing and the Grid:863-870, 2005.
Chipara et al, “Realtime Power-Aware Routing in Sensor Network”, IEEE, 2006, 10 pages.
Clark, C., “Live Migration of Virtual Machines,” May 2005, NSDI '05: 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, May 2-4, 2005, retrieved from http://www.usenix.org/events/nsdi05/tech/full_papers/clark/clark.pdf, 14 pages.
Coulson, D., “Network Security Iptables,” Apr. 2003, Linuxpro, Part 2, retrieved from http://davidcoulson.net/writing/Ixf/38/iptables.pdf, 4 pages.
Coulson, D., “Network Security Iptables,” Mar. 2003, Linuxpro, Part 1, retrieved from http://davidcoulson.net/writing/Ixf/39/iptables.pdf, 4 pages.
Deleuze, C., et al., A DNS Based Mapping Peering System for Peering CDNs, draft-deleuze-cdnp-dnsmap-peer-00.txt, Nov. 20, 2000, 20 pages.
Demers, A., “Epidemic Algorithms for Replicated Database Maintenance,” 1987, Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, Aug. 10-12, 1987, 12 pages.
Gruener, J., “A Vision of Togetherness,” May 24, 2004, NetworkWorld, retrieved May 3, 2006, from, http://www.networkworld.com/supp/2004/ndc3/0524virt.html, 9 pages.
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”,May 2005, In Proc. of Networking 2005, all pages.
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”, Dec. 18, 2004, Technical University Berlin, all pages.
Hartung et al.; Digital rights management and watermarking of multimedia content for m-commerce applications; Published in: Communications Magazine, IEEE (vol. 38, Issue: 11 ); Date of Publication: Nov. 2000; pp. 78-84; IEEE Xplore.
Horvath et al., “Enhancing Energy Efficiency in Multi-tier Web Server Clusters via Prioritization,” in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International , vol., No., pp. 1-6, Mar. 26-30, 2007.
Ioannidis, S., et al., “Implementing a Distributed Firewall,” Nov. 2000, (ACM) Proceedings of the ACM Computer and Communications Security (CCS) 2000, Athens, Greece, pp. 190-199, retrieved from http://www.cis.upenn.edu/˜dls/STONGMAN/Papers/df.pdf, 10 pages.
Joseph, Joshy, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages.
Kalafut et al., Understanding Implications of DNS Zone Provisioning., Proceeding IMC '08 Proceedings of the 8th ACM SIGCOMM conference on Internet measurement., pp. 211-216., ACM New York, NY, USA., 2008.
Kato, Yoshinobu , Server load balancer—Difference in distribution technique and supported protocol—Focus on function to meet the needs, Nikkei Communications, Japan, Nikkei Business Publications, Inc., Mar. 20, 2000, vol. 314, pp. 114 to 123.
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/Iptables_Basics.html, 4 pages.
Liu et al., “Combined mining of Web server logs and web contents for classifying user navigation patterns and predicting users' future requests,” Data & Knowledge Engineering 61 (2007) pp. 304-330.
Maesono, et al., “A Local Scheduling Method considering Data Transfer in Data Grid,” Technical Report of IEICE, vol. 104, No. 692, pp. 435-440, The Institute of Electronics, Information and Communication Engineers, Japan, Feb. 2005.
Meng et al., “Improving the Scalability of Data Center Networks with Traffic-Aware Virtual Machine Placement”; Proceedings of the 29th Conference on Information Communications, INFOCOM'10, pp. 1154-1162. Piscataway, NJ. IEEE Press, 2010.
Mulligan et al.; How DRM-based content delivery systems disrupt expectations of “personal use”; Published in: Proceeding DRM '03 Proceedings of the 3rd ACM workshop on Digital rights management; 2003; pp. 77-89; ACM Digital Library.
Shankland, S., “Sun to buy start-up to bolster N1 ,” Jul. 30, 2003, CNet News.com, retrieved May 3, 2006, http://news.zdnet.com/2100-3513_22-5057752.html, 8 pages.
Sharif et al, “Secure In-VM Monitoring Using Hardware Virtualization”, Microsoft, Oct. 2009 http://research.microsoft.com/pubs/153179/sim-ccs09.pdf; 11 pages.
Strand, L., “Adaptive distributed firewall using intrusion detection,” Nov. 1, 2004, University of Oslo Department of Informatics, retrieved Mar. 8, 2006, from http://gnist.org/˜lars/studies/master/StrandLars-master.pdf, 158 pages.
Takizawa, et al., “Scalable MultiReplication Framework on The Grid,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2004, No. 81, pp. 247-252, Japan, Aug. 1, 2004.
Tan et al., “Classification: Basic Concepts, Decision Tree, and Model Evaluation”, Introduction in Data Mining; http://www-users.cs.umn.edu/˜kumar/dmbook/ch4.pdf, 2005, pp. 245-205.
Van Renesse, R., “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining,” May 2003, ACM Transactions on Computer Systems (TOCS), 21 (2): 164-206, 43 pages.
Vijayan, J., “Terraspring Gives Sun's N1 a Boost,” Nov. 25, 2002, Computerworld, retrieved May 3, 2006, from http://www.computerworld.com/printthis/2002/0,4814, 76159,00.html, 3 pages.
Virtual Iron Software Home, Virtual Iron, retrieved May 3, 2006, from http://www.virtualiron.com/, 1 page.
Waldspurger, CA., “Spawn: A Distributed Computational Economy,” Feb. 1992, IEEE Transactions on Software Engineering, 18(2): 103-117, 15 pages.
Watanabe, et al., “Remote Program Shipping System for GridRPC Systems,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2003, No. 102, pp. 73-78, Japan, Oct. 16, 2003.
Xu et al., “Decision tree regression for soft classification of remote sensing data”, Remote Sensing of Environment 97 (2005) pp. 322-336.
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006.
Zhu, Xiaoyun, et al., “Utility-Driven Workload Management Using Nested Control Design,” Mar. 29, 2006, HP Laboratories Palo Alto, HPL-2005-193(R.1), retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2005/HPL-2005-193R1.pdf, 9 pages.
Supplementary European Search Report in Application No. 09729072.0 2266064 dated Dec. 10, 2014.
First Singapore Written Opinion in Application No. 201006836-9, dated Oct. 12, 2011 in 12 pages.
Singapore Written Opinion in Application No. 201006836-9, dated Apr. 30, 2012 in 10 pages.
First Office Action in Chinese Application No. 200980111422.3 dated Apr. 13, 2012.
First Office Action in Japanese Application No. 2011-502138 dated Feb. 1, 2013.
Singapore Written Opinion in Application No. 201006837-7, dated Oct. 12, 2011 in 11 pages.
Supplementary European Search Report in Application No. 09727694.3 dated Jan. 30, 2012 in 6 pages.
Singapore Examination Report in Application No. 201006837-7 dated Mar. 16, 2012.
First Office Action in Chinese Application No. 200980111426.1 dated Feb. 16, 2013.
Second Office Action in Chinese Application No. 200980111426.1 dated Dec. 25, 2013.
Third Office Action in Chinese Application No. 200980111426.1 dated Jul. 7, 2014.
Fourth Office Action in Chinese Application No. 200980111426.1 dated Jan. 15, 2015.
Fifth Office Action in Chinese Application No. 200980111426.1 dated Aug. 14, 2015.
First Office Action in Japanese Application No. 2011-502139 dated Nov. 5, 2013.
Decision of Rejection in Application No. 2011-502139 dated Jun. 30, 2014.
Singapore Written Opinion in Application No. 201006874-0, dated Oct. 12, 2011 in 10 pages.
First Office Action in Japanese Application No. 2011-502140 dated Dec. 7, 2012.
First Office Action in Chinese Application No. 200980119995.0 dated Jul. 6, 2012.
Second Office Action in Chinese Application No. 200980119995.0 dated Apr. 15, 2013.
Examination Report in Singapore Application No. 201006874-0 dated May 16, 2012.
Search Report for European Application No. 09839809.2 dated May 11, 2015.
Supplementary European Search Report in Application No. 09728756.9 dated Jan. 8, 2013.
First Office Action in Chinese Application No. 200980119993.1 dated Jul. 4, 2012.
Second Office Action in Chinese Application No. 200980119993.1 dated Mar. 12, 2013.
Third Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013.
First Office Action in Japanese Application No. 2011-503091 dated Nov. 18, 2013.
Office Action in Japanese Application No. 2014-225580 dated Oct. 26, 2015.
Search Report and Written Opinion issued in Singapore Application No. 201006873-2 dated Oct. 12, 2011.
First Office Action is Chinese Application No. 200980125551.8 dated Jul. 4, 2012.
First Office Action in Japanese Application No. 2011-516466 dated Mar. 6, 2013.
Second Office Action in Japanese Application No. 2011-516466 dated Mar. 17, 2014.
Decision of Refusal in Japanese Application No. 2011-516466 dated Jan. 16, 2015.
Office Action in Canadian Application No. 2726915 dated May 13, 2013.
First Office Action in Korean Application No. 10-2011-7002461 dated May 29, 2013.
First Office Action in Chinese Application No. 200980145872.4 dated Nov. 29, 2012.
First Office Action in Canadian Application No. 2741895 dated Feb. 25, 2013.
Second Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013.
Search Report and Written Opinion in Singapore Application No. 201103333-9 dated Nov. 19, 2012.
Examination Report in Singapore Application No. 201103333-9 dated Aug. 13, 2013.
International Search Report and Written Opinion in PCT/US2011/053302 dated Nov. 28, 2011 in 11 pages.
International Preliminary Report on Patentability in PCT/US2011/053302 dated Apr. 2, 2013.
First Office Action in Japanese Application No. 2013-529454 dated Feb. 3, 2014 in 6 pages.
Office Action in Japanese Application No. 2013-529454 dated Mar. 9, 2015 in 8 pages.
First Office Action issued in Australian Application No. 2011307319 dated Mar. 6, 2014 in 5 pages.
Search Report and Written Opinion in Singapore Application No. 201301573-0 dated Jul. 1, 2014.
First Office Action in Chinese Application No. 201180046104.0 dated Nov. 3, 2014.
Second Office Action in Chinese Application No. 201180046104.0 dated Sep. 29, 2015.
Examination Report in Singapore Application No. 201301573-0 dated Dec. 22, 2014.
International Preliminary Report on Patentability in PCT/US2011/061486 dated May 22, 2013.
International Search Report and Written Opinion in PCT/US2011/061486 dated Mar. 30, 2012 in 11 pages.
Office Action in Canadian Application No. 2816612 dated Nov. 3, 2015.
First Office Action in Chinese Application No. 201180053405.6 dated May 3, 2015.
Second Office Action in Chinese Application No. 201180053405.6 dated Dec. 4, 2015.
Office Action in Japanese Application No. 2013-540982 dated Jun. 2, 2014.
Written Opinion in Singapore Application No. 201303521-7 dated May 20, 2014.
International Search Report and Written Opinion in PCT/US07/07601 dated Jul. 18, 2008 in 11 pages.
International Preliminary Report on Patentability in PCT/US2007/007601 dated Sep. 30, 2008 in 8 pages.
Supplementary European Search Report in Application No. 07754164.7 dated Dec. 20, 2010 in 7 pages.
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013.
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013.
Office Action in Japanese Application No. 2012-052264 dated Dec. 11, 2012 in 26 pages.
Office Action in Japanese Application No. 2013-123086 dated Apr. 15, 2014 in 3 pages.
Office Action in Japanese Application No. 2013-123086 dated Dec. 2, 2014 in 2 pages.
Office Action in European Application No. 07754164.7 dated Dec. 14, 2015.
Office Action in Japanese Application No. 2011-502139 dated Aug. 17, 2015.
Third Office Action in Chinese Application No. 201180046104.0 dated Apr. 14, 2016.
Office Action in Japanese Application No. 2015-533132 dated Apr. 25, 2016.
Office Action in Canadian Application No. 2884796 dated Apr. 28, 2016.
Office Action in Japanese Application No. 2015-075644 dated Apr. 5, 2016 in 8 pages.
Office Action in Japanese Application No. 2011-516466 dated May 30, 2016.
Office Action in Russian Application No. 2015114568 dated May 16, 2016.
Office Action in Chinese Application No. 201310537815.9 dated Jul. 5, 2016.
Office Action in Chinese Application No. 201310717573.1 dated Jul. 29, 2016.
Office Action in Japanese Application No. 2014-225580 dated Oct. 3, 2016.
Partial Supplementary Search Report in European Application No. 09826977.2 dated Oct. 4, 2016.
Decision of Rejection in Chinese Application No. 201180046104.0 dated Oct. 17, 2016.
Office Action in Canadian Application No. 2816612 dated Oct. 7, 2016.
Guo, F., Understanding Memory Resource Management in Vmware vSphere 5.0, Vmware, 2011, pp. 1-29.
Hameed, CC, “Disk Fragmentation and System Performance”, Mar. 14, 2008, 3 pages.
Liu, “The Ultimate Guide to Preventing DNS-based DDoS Attacks”, Retrieved from http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html, Published Oct. 30, 2013.
Ragan, “Three Types of DNS Attacks and How to Deal with Them”, Retrieved from http://www.csoonline.com/article/2133916/malware-cybercrime/three-types-of-dns-attacks-and-how-to-deal-with-them.html, Published Aug. 28, 2013.
Office Action in European Application No. 11767118.0 dated Feb. 3, 2017.
Supplementary Examination Report in Singapore Application No. 11201501987U dated May 17, 2017.
International Search Report and Written Opinion in PCT/US/2016/ 066848 dated May 1, 2017.
Office Action in European Application No. 09839809.2 dated Dec. 8, 2016.
Office Action in Canadian Application No. 2816612 dated Aug. 8, 2017.
Office Action in Chinese Application No. 201310537815.9 dated Jun. 2, 2017.
Related Publications (1)
Number Date Country
20160205062 A1 Jul 2016 US
Continuations (1)
Number Date Country
Parent 13909705 Jun 2013 US
Child 15075728 US