Field of the Invention
The present invention relates generally to computer networks and, more particularly, to an application that is run by multiple users on a computer network.
Description of the Related Art
Computer networks, such as local area networks and the Internet, are increasingly being used as the backbone for various transactions and interactions between parties. From online banking, where bank customers can initiate financial transactions on a computer network, to online gaming, where garners can participate in various games over the Internet, service providers are increasingly providing a variety of services over computer networks. There are currently a variety of different computer network configurations that facilitate the transactions and interactions that take place.
One type of configuration is a classic client-server configuration, such as is illustrated in
For example, where the client-server configuration is operated in an online gaming environment, the server computer 110 can be responsible for maintaining the various states that are associated with the online game. The server computer can be connected to other computers, such as a memory engine 140 that maintains one or more instances of a game, while the server computer 110 manages administrative matters such as player matching and account management. A game player on the client computer 120 can log onto the server computer 110 and receive a list of available games and participating players. The player chooses a game to start or join, thereby identifying a memory engine with which the player's computer establishes a client-server connection. In this manner, the server computer 110 and the memory engine 140 collectively administer the gaming environment for one or more client computers 120.
Another type of configuration is referred to as an integrated server configuration, such as is shown in
In yet another type of communication configuration, the various computers are arranged in a peer-to-peer configuration, such as is shown in
The various configurations described above enable computer users to interact over a computer network, such as in an online game environment where game players can play computer games on a computer network. In such a scenario, at least one of the computers typically functions as a game manager that manages various aspects of the game, such as coordinating the number of players, keeping track of game state, and sending out updates to the users regarding game state. It can be appreciated that continuity of game play can be highly dependent on all of the users in a game continuing to play throughout the entire game period. Game play can be interrupted or even halted if one of the game players exits during the middle of a game, particularly where the exited player was managing a portion of the game.
For example, sports games typically have a fixed start and a fixed finish for the game, with at least two players competing in a game. In current configurations, there are often several players that participate in an online sporting contest, with each one of the players assuming the role of a player on a sporting team. For example, in an online football game, players can assume the roles of quarterback, receiver, defensive back, running back, etc. If one of the players were to suddenly leave during the middle of the game, then the game play would be interrupted or halted. This could also be the case in other types of games, where continuity of game play is dependent on each of the players in the game environment continuing to play throughout a particular scenario.
Unfortunately, current multi-user applications are not configured to account for when a participant in an online session suddenly or unexpectedly leaves the online session. If a player does leave an online session, then the session is unduly interrupted or terminated. In view of the foregoing, there is a need for a multi-user application that overcomes the aforementioned shortcomings.
The present invention relates to an application that is configured to be operated in a multi-participant environment on a computer network. The application manages participants in an online session of a multi-user application so that if one of the participants exits the session, the session can continue without interruption. In accordance with one aspect of the invention, the application initiates an online session of the multi-user application, wherein the online session includes two or more participants comprised of network computers that are communicatively linked to a computer network. If the application detects that a first participant has disconnected from the online session, wherein the first participant is responsible for managing certain managerial functionality associated with the running of the multi-user application, then the application broadcasts a notification to existing participants of the online session over the communication network, thereby notifying the existing participants that the first participant has disconnected from the online session. The initiating application then re-assigns the functionality associated with the first participant to an existing participant of the online session. The participants can be communicating in a peer-to-peer arrangement or can be performing server duties in a client-server arrangement.
Other features and advantages of the present invention should be apparent from the following description of the preferred embodiment, which illustrates, by way of example, the principles of the invention.
Embodiments
The client computers 410, 412 can transmit requests for data over the network 430 to one of the server computers 420, 422, which are configured to serve data over the network 430 to the client computers in a well-known manner. The server computers 420, 422 can include or can be communicatively linked to each other and to other servers, such as a data base server and/or an application server, as will be known to those skilled in the art. Although
The network system 400 supports a multi-user application 440 comprised of a computer program with which multiple users can interact in online sessions using network devices (such as the client computers 410, 412) that are linked to the computer network 430. The application 440 is installed at each of the client computers, meaning that an operational instance of the application is stored in memory of each of the client computers 410, 412 that run (execute) the application 440. Each server computer that will be participating in an online session of the multi-user application also stores an instance of the application 440. For purposes of this description, the first server computer 420 will be assumed to be a server for the multi-user application being executed by the client machines 410, 412, although both servers 420, 422 are shown with installed applications 440. An exchange of data occurs between instances of the application 440 during execution and is enabled through the establishment of network sockets 445 at each of the network computers. The sockets are represented in
The application 440 can be run on the network devices of the network system 400 according to a variety of communication configurations and the responsibilities for various application-related processes can be assigned to different computing devices of the network 430, as described in more detail below. An application development interface is preferably used to develop the application 440, as is also described in more detail below. The application can be operated such that the associated network computer can use a communications configuration to implement any of the communication modes illustrated in
The multi-user application 440 can be any type of application that a user can run on a network computer that is linked to the computer network 430. When the application 440 is run on a client computer 410, 412, the user can interact with other users through other network computers that are also running the application 440. The server computer 420 can function as a central network “meeting point” through which the users can establish contact, maintain data, and initiate an online session of the application 440. Typically, the application 440 causes the network device in which it is operating to establish communications with another network device, such as the devices 410, 412, 420, thereby initiating an online session. During the online session, the network computers will interact and exchange data pursuant to the programmed features of the application 440.
When the application 440 is launched and an online session is established among suitably configured computers, the application enables the computers to interact in a variety of configurations. Throughout this description, the application 440 is sometimes described in an online-gaming scenario, wherein the application 440 comprises a computer game that multiple users can access and run using the client computers 410, 412. In such a case, the application 440 establishes an online session comprised of a game in which the network computers participate. However, it should be appreciated that the application 440 may also relate to other scenarios besides gaming, such as, for example, online banking or online travel planning, that involve interactions between multiple computers on a computer network.
When an application 440 executes, it identifies a session master, which is a network computer that performs a variety of managerial and administrative functions for the application with respect to interactions between computers that occur during an online session. An online session of the application uses a registration or logon process with a data store containing information such as user identification. The logon process authorizes further participation in the network environment of the application. Preferably, the session master function is assigned when a client computer running the application 440, such as the client computer 410, logs onto the server computer 420 to initiate an online session. The application itself, however, determines the details of when and how such assignments are made, so that a variety of session master assignment schemes can be implemented without departing from the teachings of the present invention.
The operating instance of the application on the client computer 410 that initiates an online session of the application is referred to as the host computer. The application at the host computer assigns the session master function to either the server computer 420 or to the host computer 410. As new client computers log-on (register) with the server computer 420 to join the online session, the server computer 420 notifies the new clients of the already-assigned identity of the session master computer.
As described more fully below, the session master functionality enables a smooth transition between the various network communication configurations in which the application 440 can operate. The session master function also enables the application 440 to concentrate responsibility for application-related tasks in a specific network computer, or to distribute such responsibility among two or more network computers. The assignment of tasks can be performed by an instance of the application 440 on one of the network computers, at the same time when the session master function is assigned, and the session master tasks can be assigned to one or more of the computers on the network 430 for providing the requisite functionality. The computer or computers that are assigned responsibility of the session master are referred to herein as the “owners’ of the respective session master functions. References to a solitary session master will be understood to apply to a group of computers, if those computers are collectively performing the session master functions. Thus, the assignment of session master tasks is performed in the manner specified by the application, in accordance with the dictates of the application developer.
One category of responsibilities assigned to the session master relates to application-specific functions, which are functions that are peculiar to the particular type of application 440 being executed. For example, if the application 440 is a game-type application, then the session master or a group of session masters can keep track of game-type data, such as the game score and the time remaining in the game, and can perform game functions, such as terminating the online session when a game ends. A session master computer can also be assigned the responsibility of keeping track of specific game data, such as the state of an object in the game environment, such as a football, aircraft, ocean, tree, and so forth. Each of these responsibilities can be concentrated in a single session master computer or can be divided up among several session master computers, in accordance with the operation of the application.
The host computer performs managerial functions related to the computers that are participating in the online session. For example, whenever a network computer joins an online session of the application 440, the host computer assigns an identification index number to the computer joining the session. The host computer maintains a list of the identification index numbers and their associated network computers. The index number is used when sending messages and is also used to maintain ownership records regarding the session master functionality.
As noted above, there can be more than one session master in an online session. The way in which a session master is assigned can be determined by the application in accordance with the operation of the application. The application 440 can also assign the session master with responsibility for sending out update messages to update the network computers regarding the status of all network computers that are participating in the online session. This responsibility entails the session master notifying the participating network computers when a new network computer joins the online session, or when a current participant exits the online session of the application 440, as described more fully below.
The host computer that assigns the aforementioned index number to each of the computers also maintains a list of all network computers that are participating in the online session. The application 440 then keeps track of session master ownership according to the index number assigned to the computer. To keep track of the index number and responsibility assignments, the application 440 can maintain a data structure such as in the form of a table comprised of a network computer index list, such as the table 500 shown in
In addition to specifying the communication protocol, the data structure also specifies, for each network computer, the port for which the communication protocol is associated. Each instance of the application 440 enables the associated network computer that is participating in the online session to open multiple communication ports, with each port being associated with a particular communication protocol. The network computers communicate with other network computers using a particular port and a particular protocol, which is specified in the data structure comprised of the table 500 shown in
Preferably, all of the computers that are participating in the online session keep their own copy of the table 500 index list. It should be appreciated that the table 500 is merely exemplary and that the initiating host application 440 could keep track of client index numbers and session master ownership in other manners using a wide variety of data structure formats. Alternatively, the session computers can share one or more copies of the table.
The initiating application 440 can operate in various communication configurations depending on how the application 440 assigns ownership of the session master. In a first configuration, shown in
It should be appreciated that any of the computers that are participating in the online session of the application 440 could have ownership of one or more of the session master tasks, such as where one of the client computers 410 is shown owning a session master 600a, which is shown in
In another scheme, shown in
This is described in more detail with reference to the flow diagram shown in
In the next operation, represented by the flow diagram box numbered 820, the instance of the application 440 in one of the computers causes a notification message to be broadcast to all of the participants in the online session notifying them that a participant (the “exited participant”) has exited the session. Only one of the network computers, such as, for example, the session master computer, broadcasts the notification message to all of the participants. If the session master computer is the exited computer, then one of the other network computers broadcasts the message, such as the computer with the next consecutive index after the session master computer. The notification message preferably includes the index that was previously assigned to the network computer for the exited participant. In this manner, the other participants can identify the exited participant by consulting the index table that was discussed above with respect to
The next operation differs based upon whether the participant that exited the session was responsible for performing any session managerial functions that would affect the other participants of the online session, as represented by the decision box numbered 830. The managerial functions include functions such as filtering communication messages, assigning identification indices, score-keeping, keeping track of session times, keeping track of items that are located in an online world, keeping track of participant locations in an online world, etc. If the participant that exited the session was responsible for performing any such functions, a “Yes” result from the decision box 830, then the process proceeds to the operation represented by the flow diagram box numbered 840. In this operation, the application 440 reassigns the managerial responsibilities of the exited participant to a network computer of another participant that is still present in the online session. The reassignment of managerial responsibilities is preferably performed by an instance of the application 440 on a specific computer, such as the computer that has the next consecutive index after the index of the computer that exited the online session. For example, a computer with a first index may exit the session. The instance of the application on computer with the next consecutive index (as specified in the table 500 shown in
The manner in which the application 440 re-assigns the responsibilities can vary. In one embodiment, the application 440 automatically selects the participant that is re-assigned the responsibilities based on certain factors, some of which are related to the conditions of the network computers of the participants. The conditions can include, for example, the communication environment, geographical location, and hardware specification of the network computers, as well as user-specified preferences.
The communication environment relates to whether the network computer of the participant has large bandwidth capabilities, such as through a cable-modem or DSL. Preferably, those participants with higher bandwidth capabilities are given higher preference for assuming the responsibilities of the exited participant. The geographic location of the participants can also be a factor in deciding which participant is re-assigned the responsibilities of the exited participant. For example, a participant that is centrally located to the other participants may be given a higher priority in order to minimize the latency for communications. The hardware specifications of the network computers that are participating in the online session are also a factor. The application 440 may give higher priority to network computers that have hardware capabilities that are most highly suited for the responsibilities that are being re-assigned, such as computers with powerful data processing capabilities.
In another embodiment of the operations of flow diagram box 840, the application 440 simply randomly re-assigns the responsibilities of the exited participant to another of the participants of the online session. The application 440 can also consider user-specified preferences. Some users may specify to the application 440 that they do not want to be assigned the responsibility of managing any application functionality. The users may also specify that a particular participant should be re-assigned responsibilities should another participant exit the online session. Alternately, the application 440 may cause a message to be broadcast to all of the participants of the online session asking whether any of the participants would like to take over the responsibilities that were previously assigned to the exited participant.
The next operation is represented by the flow diagram box numbered 850. This operation occurs after the application 440 has re-assigned the responsibilities of the exited participant. The operation of flow diagram box 850 also occurs if the exited participant did not have any responsibilities that needed re-assignment, which would have resulted in a “No” outcome from the decision box numbered 830. In this operation, the application 440 attempts to obtain a new participant to replace the exited participant. The attempt is preferably performed by the instance of the application 440 on a specific computer, such as the session master computer. It should be appreciated that this operation differs from the operation of flow diagram box 840 in that this operation relates to obtaining a replacement participant for the online session to take the place of the exited participant, rather than re-assigning the managerial functions of the exited participant.
For example, the online session may be an online football game, where the participants are each a player on a common team. One of the participants may have been assigned managerial functions comprised of keeping track of the score and of the game time. That same participant may have played the role of the quarterback in the game. If the participant exits the online game during the game, then the application 440 re-assigns the managerial functions (i.e., score keeping and game time responsibilities) of the exited participant to another participant in the operation 840 and then, in operation 850, attempts to obtain a new participant to replace the exited participant's role as quarterback.
The manner in which the application 440 attempts to obtain a replacement participant for the online session may vary. In one embodiment, the application 440 automatically assigns a network computer, rather than a human, as a replacement for the exited participant. The network computer thereby would perform the functions of the exited participant. In another embodiment, the application 440 maintains a list of network computer that might be able to participate in the online session and then sends a message to those computers inviting them to participate in the session. The application 440 may put the online session in a pause mode while a replacement participant is obtained.
The application 440 is preferably developed using a software development kit (SDK) that provides a library of object and communication message definitions that are used in the application 440. The software development kit includes an application interface through which applications that are developed using the SDK can run on a network system, such as the network system 400. The application interface can reside in a central network server, such as the server 420, to which network computers that have the application 440 can log onto in order to operate an online session of the application. By using the object and message types provided by the SDK, the application 440 can be developed to include the features described above. The SDK preferably includes an object definition structure that provides a client-based definition of objects that are utilized by the application 440. The object definition includes a plurality of characteristics associated with each object and utilized by the application to effect interaction with clients over the computer network.
Once the application 440 has been developed using the SDK, the application 440 can be loaded onto one or more network computers and an online session can be established according to the operations shown in the flow diagram box of
In the next operation, represented by the flow diagram box numbered 920, the application 440 registers objects according to the object definitions that are available in the library of the application interface. The application 440 also registers any message filters that will be utilized during the online session, as represented by the flow diagram box numbered 930.
In the next operation, represented by the flow diagram box numbered 940, the application 440 defines the session master and assigns ownership of the session master to one of the network computers. The ownership of the session master can be assigned to one computer or can be assigned to plural computers. The application 440 also specifies whether the ownership of the session master is dedicated to a particular computer or whether ownership can migrate to other computers.
During this operation, the application 440 assigns client indices to each of the network computers that will participate in the online session and also establishes the index table described above. The application 440 can be configured such that the first network computer to log onto the server computer will be the session master and also receive an initial index, such as an index of one or zero. It should be appreciated that the initial index may vary. Subsequent network computers to log on will then receive the next available index. After the ownership of the session master or session masters has been established, the online session of the application 440 is commenced, as represented by the flow diagram box numbered 950.
As noted above, the network computers shown in the block diagram of
Each computer 1000 can communicate with the others over a computer network 1020 (such as the Internet or an intranet) through a network interface 1018 that enables communication over a connection 1022 between the network 1020 and the computer. The network interface 1018 typically comprises, for example, a Network Interface Card (NIC) or a modem that permits communications over a variety of networks.
The CPU 1002 operates under control of programming steps that are temporarily stored in the memory 1010 of the computer 1000. When the programming steps are executed, the computer performs its functions. Thus, the programming steps implement the functionality of the application 440. The programming steps can be received from the DASD 1008, through the program product storage device 1014, or through the network connection 1022. The program product storage drive 1012 can receive a program product 1014, read programming steps recorded thereon, and transfer the programming steps into the memory 1010 for execution by the CPU 1002. As noted above, the program product storage device can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation in accordance with the invention can be embodied on a program product.
Alternatively, the program steps can be received into the operating memory 1010 over the network 1020. In the network method, the computer receives data including program steps into the memory 1010 through the network interface 1018 after network communication has been established over the network connection 1022 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by the CPU 1002 thereby comprising a computer process.
It should be understood that all of the network computers of the network system 400 illustrated in
For example, with reference to
The video game system 1100 includes a central processing unit (CPU) 1100 that is associated with a main memory 1105. The CPU 1100 operates under control of programming steps that are stored in the OS-ROM 1160 or transferred from a game program storage medium to the main memory 1105. The CPU 1100 is configured to process information and to execute instructions in accordance with the programming steps.
The CPU 1100 is communicatively coupled to an input/output processor (IOP) 1120 via a dedicated bus 1125. The IOP 1120 couples the CPU 1100 to an OS ROM 1160 comprised of a non-volatile memory that stores program instructions, such as an operating system. The instructions are preferably transferred to the CPU via the IOP 1120 at start-up of the main unit 1100.
The CPU 1100 is communicatively coupled to a graphics processing unit (GPU) 1110 via a dedicated bus 1115. The GPU 1110 is a drawing processor that is configured to perform drawing processes and formulate images in accordance with instructions received from the CPU 1100. For example, the GPU 1110 may render a graphics image based on display lists that are generated by and received from the CPU 1100. The GPU may include a buffer for storing graphics data. The GPU 1110 outputs images to an audio-visual output device.
The IOP 1120 controls the exchange of data among the CPU 1100 and a plurality of peripheral components in accordance with instructions that are stored in an IOP memory 1130. The peripheral components may include one or more input controllers 1122, a memory card 1140, a USB 1145, and an IEEE 1394 serial bus 1150. Additionally, a bus 1155 is communicatively coupled to the IOP 1120. The bus 1155 is linked to several additional components, including the OS ROM 1160, a sound processor unit (SPU) 1165, an optical disc control unit 1175, and a hard disk drive (HDD) 1180.
The SPU 1165 is configured to generate sounds, such as music, sound effects, and voices, in accordance with commands received from the CPU 1100 and the IOP 1120. The SPU 1165 may include a sound buffer in which waveform data is stored. The SPU 1165 generates sound signals and transmits the signals to speakers.
The disc control unit 1175 is configured to control a program reader, which can comprise, for example, an optical disk drive that accepts removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, a DVD disk, or the like.
The memory card 1140 may comprise a storage medium to which the CPU 1100 may write and store data. Preferably, the memory card 1140 can be inserted and removed from the IOP 1120. A user can store or save data using the memory card 1140. In addition, the video game system 1100 is preferably provided with at least one hard disk drive (HDD) 1180 to which data may be written and stored.
A data I/O interface, such as an IEEE 1394 serial bus 1150 or a universal serial bus (USB) 1145 interface, is preferably communicatively coupled to the IOP 1120 in order to allow data to be transferred into and out of the video game system 1100, such as to the network 430 of
The system and method described above improve on the situation where a network user of an application, such as a game player, is performing as an Integrated Server (IS) for the application, thereby maintaining an application environment, so that the application would end for a conventional implementation of the application when that IS user wishes to log off. As described above, some applications (such as multi-user gaming applications) alternatively permit the functions (and data) of the departing user to be migrated from the departing user to a different user, who will continue with the online session and will take over the duties of the IS. This type of hand-off is typically rather cumbersome and might not be accomplished smoothly. In the case of a gaming environment, for example, a departing player might abruptly disappear from the game environment, thereby disrupting the gaming experience of the other players. The multi-user application in accordance with the invention permits continued use of the application, even with users departing and joining, by notifying all user machines when another user has departed from the session. Suitable adjustments can be made for a more pleasing application environment. The notification occurs through a Disconnect function that ensures proper IS operation and communications. That is, an application server or IS of the application can broadcast a message to all clients in an application environment to notify them that a user has departed or has joined, and can ensure appropriate functionality, if necessary, of the users.
For a system with a network device operating as an Integrated Server (IS) as described above by serving application data to other users, the failure or departure of an IS from the application environment is responded to by assigning a different user as a new IS. The application can assign a new IS by automatically carrying out a replacement process, or by sending a broadcast message to all users and awaiting replies. For automatic selection, the application can assign the new IS in accordance with considerations that include the bandwidth available to the user, the geographic location of the potential new IS, a user's indicated preference for consideration as an IS, the technical specification and resources available at the user's machine, or through a random selection process. If the application is designed so that it sends a broadcast message, then the message will typically solicit voluntary agreement to operate as the new IS.
In addition, a new user who logs in to the system after an IS failure and who otherwise might have been registered with the failed IS can instead be diverted to a different IS, reducing the workload of the group being served by the now-unavailable IS. In this way, newcomers who wish to join the application environment of an IS can instead be moved to a different IS and different user group. Alternatively, the application can respond to a failed IS by dissolving or disbanding the online session of the group administered by the unavailable IS and forming a new online group with a new IS. These alternatives can be selected by an application developer who is configuring an application for operation in accordance with the present invention.
If an individual user leaves during an online session, the result can be somewhat more problematic. In the online gaming context, for example, a certain minimum number of users (players) are required for a game to proceed. In accordance with the invention, the application can respond by sending a message to other users on the network, inviting others to join the online session and participate in the multi-user application (such as a game). Alternatively, the application can be configured so as to invoke an Artificial Intelligence module to carry out the duties of the Integrated Server.
The present invention has been described above in terms of a presently preferred embodiment so that an understanding of the present invention can be conveyed. There are, however, many configurations for the system and application not specifically described herein but with which the present invention is applicable. The present invention should therefore not be seen as limited to the particular embodiment described herein, but rather, it should be understood that the present invention has wide applicability with respect to multi-user applications generally. All modifications, variations, or equivalent arrangements and implementations that are within the scope of the attached claims should therefore be considered within the scope of the invention.
The present application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 12/840,977 filed Jul. 21, 2010, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 11/375,526 filed Mar. 13, 2006, now U.S. Pat. No. 7,792,902, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 10/221,128 filed Jul. 31, 2002, now abandoned, which claims the priority benefit of U.S. provisional application No. 60/381,736 filed May 17, 2002. The disclosure of these commonly owned applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5630757 | Gagin et al. | May 1997 | A |
5634129 | Dickinson | May 1997 | A |
5682139 | Pradeep | Oct 1997 | A |
5704032 | Badovinatz et al. | Dec 1997 | A |
5823879 | Goldberg | Oct 1998 | A |
5826085 | Bennett | Oct 1998 | A |
5838909 | Roy et al. | Nov 1998 | A |
5841980 | Waters et al. | Nov 1998 | A |
5893106 | Brobst et al. | Apr 1999 | A |
5941947 | Brown | Aug 1999 | A |
5956485 | Perlman | Sep 1999 | A |
5984787 | Redpath | Nov 1999 | A |
5987376 | Olson et al. | Nov 1999 | A |
6041312 | Bickerton et al. | Mar 2000 | A |
6050898 | Vange | Apr 2000 | A |
6098091 | Kisor | Aug 2000 | A |
6106569 | Bohrer | Aug 2000 | A |
6108569 | Shen | Aug 2000 | A |
6142472 | Kliebisch | Nov 2000 | A |
6151632 | Chaddha et al. | Nov 2000 | A |
6152824 | Rothschild et al. | Nov 2000 | A |
6154782 | Kawaguchi et al. | Nov 2000 | A |
6203433 | Kume | Mar 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6247017 | Martin | Jun 2001 | B1 |
6311209 | Olson et al. | Oct 2001 | B1 |
6345297 | Grimm | Feb 2002 | B1 |
6352479 | Sparks | Mar 2002 | B1 |
6363416 | Naeimi et al. | Mar 2002 | B1 |
6446113 | Ozzie | Sep 2002 | B1 |
6470022 | Rochberger | Oct 2002 | B1 |
6487583 | Harvey | Nov 2002 | B1 |
6487678 | Briskey et al. | Nov 2002 | B1 |
6519629 | Harvey | Feb 2003 | B2 |
6530840 | Cuomo | Mar 2003 | B1 |
6539494 | Abramson et al. | Mar 2003 | B1 |
6549946 | Fisher | Apr 2003 | B1 |
6560636 | Cohen et al. | May 2003 | B2 |
6561811 | Rapoza et al. | May 2003 | B2 |
6577628 | Hejza | Jun 2003 | B1 |
6587874 | Golla | Jul 2003 | B1 |
6607444 | Takahashi et al. | Aug 2003 | B2 |
6631412 | Glasser et al. | Oct 2003 | B1 |
6654831 | Otterness et al. | Nov 2003 | B1 |
6676521 | La Mura et al. | Jan 2004 | B1 |
6704885 | Salas-Meza et al. | Mar 2004 | B1 |
6748420 | Quatrano et al. | Jun 2004 | B1 |
6761636 | Chung et al. | Jul 2004 | B2 |
6763371 | Jandel | Jul 2004 | B1 |
6769990 | Cohen | Aug 2004 | B2 |
6799255 | Blumenau | Sep 2004 | B1 |
6839435 | Lijima et al. | Jan 2005 | B1 |
6844893 | Miller et al. | Jan 2005 | B1 |
6931446 | Cox et al. | Aug 2005 | B1 |
7003550 | Cleasby et al. | Feb 2006 | B1 |
7016942 | Odom | Mar 2006 | B1 |
7018295 | Sakaguchi et al. | Mar 2006 | B2 |
7025675 | Fogel | Apr 2006 | B2 |
7035919 | Lee et al. | Apr 2006 | B1 |
7056217 | Pelkey et al. | Jun 2006 | B1 |
7089301 | Labio et al. | Aug 2006 | B1 |
7107312 | Hackbarth et al. | Sep 2006 | B2 |
7165107 | Pouyoul et al. | Jan 2007 | B2 |
7177950 | Narayan et al. | Feb 2007 | B2 |
7188145 | Lowery et al. | Mar 2007 | B2 |
7203755 | Zhu et al. | Apr 2007 | B2 |
7290264 | Powers et al. | Oct 2007 | B1 |
7366185 | Bush | Apr 2008 | B2 |
7454458 | Islam et al. | Nov 2008 | B2 |
7523163 | Zhu et al. | Apr 2009 | B2 |
7539216 | Johns et al. | May 2009 | B2 |
7587465 | Muchow | Sep 2009 | B1 |
7613800 | Dhupelia | Nov 2009 | B2 |
7640298 | Berg | Dec 2009 | B2 |
7680908 | Gates, III et al. | Mar 2010 | B2 |
7711847 | Dhupelia | May 2010 | B2 |
7720908 | Newson et al. | May 2010 | B1 |
7730206 | Newson et al. | Jun 2010 | B2 |
7792902 | Chatani | Sep 2010 | B2 |
7822809 | Dhupelia | Oct 2010 | B2 |
7831666 | Chatani et al. | Nov 2010 | B2 |
7877509 | Dhupelia | Jan 2011 | B2 |
7908393 | Marr et al. | Mar 2011 | B2 |
7930345 | Dhupelia | Apr 2011 | B2 |
7962549 | Dhupelia | Jun 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8131802 | Jacob | Mar 2012 | B2 |
8335813 | Sun et al. | Dec 2012 | B2 |
8402124 | Barillaud et al. | Mar 2013 | B1 |
8554842 | Maehiro | Oct 2013 | B2 |
8560707 | Jacob | Oct 2013 | B2 |
8719375 | Hildreth et al. | May 2014 | B2 |
8725874 | Keohane et al. | May 2014 | B2 |
8856233 | Lacapra et al. | Oct 2014 | B2 |
8972548 | Jacob | Mar 2015 | B2 |
9032248 | Petty et al. | May 2015 | B1 |
9369540 | Lowery | Jun 2016 | B2 |
9516068 | Jacob | Dec 2016 | B2 |
20010009868 | Sakaguchi et al. | Jul 2001 | A1 |
20010024974 | Cohen | Sep 2001 | A1 |
20010037466 | Fukutake et al. | Nov 2001 | A1 |
20010044339 | Cordero et al. | Nov 2001 | A1 |
20020023117 | Bernardin et al. | Feb 2002 | A1 |
20020035604 | Cohen et al. | Mar 2002 | A1 |
20020042830 | Bose et al. | Apr 2002 | A1 |
20020049086 | Otsu | Apr 2002 | A1 |
20020062348 | Maehiro | May 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020082077 | Johnson | Jun 2002 | A1 |
20020107934 | Lowery et al. | Aug 2002 | A1 |
20020107935 | Lowery et al. | Aug 2002 | A1 |
20020115488 | Berry | Aug 2002 | A1 |
20020133707 | Newcombe | Sep 2002 | A1 |
20020142842 | Easley et al. | Oct 2002 | A1 |
20020156917 | Nye | Oct 2002 | A1 |
20020169889 | Yang et al. | Nov 2002 | A1 |
20020178260 | Chang | Nov 2002 | A1 |
20020184070 | Chen et al. | Dec 2002 | A1 |
20030018719 | Ruths et al. | Jan 2003 | A1 |
20030073494 | Kalpakian et al. | Apr 2003 | A1 |
20030126245 | Feltin et al. | Jul 2003 | A1 |
20030167343 | Furuno | Sep 2003 | A1 |
20030190960 | Jokipii | Oct 2003 | A1 |
20030204566 | Dhupelia | Oct 2003 | A1 |
20030204593 | Brown et al. | Oct 2003 | A1 |
20030217135 | Chatani | Nov 2003 | A1 |
20030217158 | van Datta | Nov 2003 | A1 |
20040001476 | Islam et al. | Jan 2004 | A1 |
20040024879 | Dingman | Feb 2004 | A1 |
20040030787 | Jandel | Feb 2004 | A1 |
20040031052 | Wannamaker et al. | Feb 2004 | A1 |
20040053690 | Fogel | Mar 2004 | A1 |
20040059711 | Jandel | Mar 2004 | A1 |
20040117443 | Barsness | Jun 2004 | A1 |
20040139228 | Takeda | Jul 2004 | A1 |
20050038836 | Wang | Feb 2005 | A1 |
20050068894 | Yu et al. | Mar 2005 | A1 |
20050105526 | Stiemerling | May 2005 | A1 |
20050144521 | Werner | Jun 2005 | A1 |
20050245317 | Arthur et al. | Nov 2005 | A1 |
20050251577 | Guo | Nov 2005 | A1 |
20050259637 | Chu | Nov 2005 | A1 |
20050262411 | Vertes | Nov 2005 | A1 |
20060015560 | MacAuley et al. | Jan 2006 | A1 |
20060047836 | Rao et al. | Mar 2006 | A1 |
20060069752 | Chatani | Mar 2006 | A1 |
20060075127 | Juncker | Apr 2006 | A1 |
20060085792 | Traut | Apr 2006 | A1 |
20060100020 | Kasai | May 2006 | A1 |
20060164974 | Ramalho et al. | Jul 2006 | A1 |
20060168107 | Balan et al. | Jul 2006 | A1 |
20060190540 | Chatani | Aug 2006 | A1 |
20060200551 | Bali et al. | Sep 2006 | A1 |
20060218274 | Labio et al. | Sep 2006 | A1 |
20060218275 | Labio et al. | Sep 2006 | A1 |
20060247011 | Gagner | Nov 2006 | A1 |
20060248144 | Zhu et al. | Nov 2006 | A1 |
20060253595 | van Datta | Nov 2006 | A1 |
20060258463 | Cugno et al. | Nov 2006 | A1 |
20060288103 | Gobara | Dec 2006 | A1 |
20070058792 | Chaudhari | Mar 2007 | A1 |
20070061460 | Khan | Mar 2007 | A1 |
20070076729 | Takeda | Apr 2007 | A1 |
20070094325 | Ih et al. | Apr 2007 | A1 |
20070165629 | Chaturvedi | Jul 2007 | A1 |
20070174399 | Ogle et al. | Jul 2007 | A1 |
20070191109 | Crowder | Aug 2007 | A1 |
20070208748 | Li | Sep 2007 | A1 |
20070217436 | Markley | Sep 2007 | A1 |
20070233865 | Garbow et al. | Oct 2007 | A1 |
20070288598 | Edeker et al. | Dec 2007 | A1 |
20070291706 | Miller et al. | Dec 2007 | A1 |
20080049755 | Gannon et al. | Feb 2008 | A1 |
20080189365 | Narayanaswami et al. | Aug 2008 | A1 |
20080243953 | Wu et al. | Oct 2008 | A1 |
20080280686 | Dhupelia et al. | Nov 2008 | A1 |
20080291839 | Hooper et al. | Nov 2008 | A1 |
20090006545 | Dhupelia | Jan 2009 | A1 |
20090006604 | Dhupelia | Jan 2009 | A1 |
20090077245 | Smelyansky | Mar 2009 | A1 |
20090089363 | Keohane et al. | Apr 2009 | A1 |
20090094370 | Jacob | Apr 2009 | A1 |
20090113060 | Jacob | Apr 2009 | A1 |
20090138610 | Gobara | May 2009 | A1 |
20090157882 | Kashyap | Jun 2009 | A1 |
20090240821 | Juncker | Sep 2009 | A1 |
20090287828 | Wei et al. | Nov 2009 | A1 |
20100153496 | Heinla | Jun 2010 | A1 |
20100279767 | Dhupelia | Nov 2010 | A1 |
20100285872 | Dhupelia | Nov 2010 | A1 |
20100287239 | Chatani | Nov 2010 | A1 |
20120166651 | Jacob | Jun 2012 | A1 |
20130304931 | Jacob | Nov 2013 | A1 |
20150180958 | Jacob | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
104069637 | Oct 2014 | CN |
1125617 | Aug 2001 | EP |
1499987 | Jan 2005 | EP |
2360874 | Aug 2011 | EP |
2360875 | Aug 2011 | EP |
2325543 | Nov 1998 | GB |
269863 | Dec 2015 | IN |
05-022346 | Jan 1993 | JP |
63-32725 | Sep 1998 | JP |
11-234326 | Aug 1999 | JP |
2000-124939 | Apr 2000 | JP |
2000-157724 | Jun 2000 | JP |
2001-187273 | Jul 2001 | JP |
2001-314657 | Nov 2001 | JP |
2002-011251 | Jan 2002 | JP |
2003-099337 | Apr 2003 | JP |
201347493 | Nov 2013 | TW |
I491229 | Jul 2015 | TW |
WO 0005854 | Feb 2000 | WO |
WO 0010099 | Feb 2000 | WO |
WO 0068864 | Nov 2000 | WO |
WO 0163423 | Aug 2001 | WO |
WO 0182678 | Nov 2001 | WO |
WO 0235769 | May 2002 | WO |
WO 03091894 | Nov 2003 | WO |
WO 03100643 | Dec 2003 | WO |
WO 2004063843 | Jul 2004 | WO |
WO 2005088466 | Sep 2005 | WO |
WO 2006023508 | Mar 2006 | WO |
WO 2009045475 | Apr 2009 | WO |
Entry |
---|
U.S. Appl. No. 13/918,809 Office Action mailed Apr. 29, 2015. |
“Brief for Appellee,” in re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circuit (2007-1150) (May 21, 2007). |
“Brief of Appellants,” in re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circui (2007-1150) (Mar. 23, 2007). |
“In Re Masayuki Chatani and Glen Van Datta,” United States Court of Appeals for the Federal Circuit, 2007-1150 (U.S. Appl. No. 11/211,128), Nov. 19, 2007. |
“Petition for Panel Rehearing,” In Re Masayuki Chatani and Glen Van Datta, Appeal From the United States Patent and Trademark Office, Board of Patent Appeals and Interferences, in the United States Court of Appeals for the Federal Circuit, 2007-1150 (U.S. Appl. No. 10/211,128), Jan. 3, 2008. |
“Reply Brief of Appellants,” In re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circuit (2007-1150) (Jun. 4, 2007). |
“Technical Issues of establishing any-to-any 2-way real-time communications over the internet,” Apr. 24, 2005, URL http://web.archive.org/web/20050424081036/. |
Aronson, Jesse. “Using Groupings for Networked Gaming,” Gamasutra.com, Jun. 21, 2000. |
Audet, F. Nat Behavioral Requirements for Unicast UDP, BEHAVE Internet-Draft, Jul. 15, 2005. |
Boulic, Ronan etl al. “Integration of Motion Control Techniques for Virtual Human and Avatar Real-Time Animation,” Swiss Fedl Inst. of Tech., Lausanne, Switzerland, Sep. 1997. |
Chiueh, Tzi-cker, “Distributed Systems Support for Networked Games,” Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY, May 1997. |
Cisco Systems Inc., “Network Flow Management: Resource Reservation for Multimedia Flows,” Mar. 19, 1999. |
Diot et al., “A Distributed Architecture for Multiplayer Interactive Applications on the Internet”, Aug. 1999, Network, IEEE, vol. 13, Issue 4, Jul.-Aug. 1999, pp. 6-15. |
ECC Report 50. “Technical Issues of Establishing Any-to-Any-2-Way Real-Time Communications over the Internet.” Electronic Communications Committee (ECC). Gothenburg, Jul. 2004. |
Festa and Borland, “Netscape alumni to launch P2P company”, Aug. 2, 2001, (avaiable at http://news.cnet.com/news/0-1005-202-6766377.html). |
Hagsand O: Interactive Multiuser Ves in the DIVE System: IEEE Multimedia, IEEE Service Center, New York, NY, US vol. 3, No. 1, 21 Mar. 21, 1996, pp. 30-39, XP000582951 ISSN: 1070-986X. |
Hanada, S. “The Design of Network Game and DirectPlay,” Inside Windows, Softbank K.K., vol. 4, pp. 42-57, Apr. 1, 1998. |
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Multimedia Session Establishment Protocols, Mmusic Internet-Draft, Jul. 19, 2004. |
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Offer/Answer Protocols, Mmusic Internet-Draft, Jul. 17, 2005. |
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Multimedia Session Establishment Protocols, Mmusic Internet-Draft, Oct. 25, 2004. |
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Off/Answer Protocols, Mmusic Internet-Draft, Jan. 16, 2007. |
Rosenberg, J. “Simple Traversal of UDP Through Network Address Translators (NAT),” BEHAVE Internet-Draft, Jul. 17, 2005. |
Rosenberg, J. STUN—Simple Traversal of User Datagram Protocols (UDP) Throught Network Address Translators (NATs), Network Working Group, Mar. 2003. |
Rosenberg, J. Traversal using Relay NAT (TURN), MIDCOM Internet-Draft, Oct. 20, 2003. |
Takeda, Y. Symmetric NAT Traversal Using STUN, Internet Engineering Task Force, Jun. 2003. |
PCT/US03/08682 International Search Report mailed Oct. 14, 2003. |
PCT/US03/12668 International Search Report mailed Jul. 17, 2003. |
PCT/US08/11415 Search Report and Written Opinion mailed Dec. 5, 2008. |
EP 03 721 1413, European Search Report dated Jun. 30, 2005. |
Chinese Application No. 03801033, Office Action mailed Jun. 9, 2006. |
Chinese Application No. 03801033, Office Action mailed Jul. 5, 2011. |
Chinese Application No. 03801033, Office Action mailed Sep. 25, 2009. |
European Application No. 03724201.3, Office Action mailed Dec. 13, 2013. |
European Application No. 03724201.3, Office Action mailed Jul. 3, 2012. |
Chinese Application No. 200810168739.8, Decision of Rejection dated Dec. 11, 2012. |
Chinese Application No. 200810168739.8, Office Action dated May 11, 2012. |
Chinese Application No. 200810168739.8, Office Action dated May 19, 2011. |
Chinese Application No. 20088011547.1, Decision of Rejection dated Jul. 5, 2013. |
Chinese Application No. 20088011547.1, Office Action dated Oct. 12, 2012. |
Chinese Application No. 20088011547.1, Office Action dated Mar. 7, 2012. |
Chinese Application No. 20088011547.1, Office Action dated Aug. 10, 2012. |
EP 08014892.7 Office Action mailed Jul. 20, 2011. |
Taiwan Application No. 097138349, Office Action dated Mar. 26, 2014. |
Taiwan Application No. 097138349, Office Action dated Feb. 8, 2013. |
EP 08835745.4 Extended European Search Report dated Jul. 22, 2011. |
EP 11004182.9 Extended European Search Report dated Jul. 14, 2011. |
EP 11004181.1 Extended European Search Report dated Jul. 22, 2011. |
U.S. Appl. No. 10/211,128 Final Office Action mailed Feb. 2, 2004. |
U.S. Appl. No. 10/211,128 Office Action mailed Nov. 10, 2003. |
U.S. Appl. No. 11/375,526 Office Action mailed Apr. 8, 2008. |
U.S. Appl. No. 11/375,526 Final Office Action mailed Jul. 3, 2007. |
U.S. Appl. No. 11/375,526 Final Office Action mailed Mar. 2, 2007. |
U.S. Appl. No. 11/375,526 Office Action mailed Oct. 24, 2006. |
U.S. Appl. No. 11/403,623 Office Action mailed Jun. 25, 2009. |
U.S. Appl. No. 11/403,623 Office Action mailed Apr. 9, 2008. |
U.S. Appl. No. 11/403,623 Final Office Action mailed Jul. 3, 2007. |
U.S. Appl. No. 11/403,623 Final Office Action mailed Mar. 5, 2007. |
U.S. Appl. No. 11/403,623 Office Action mailed Oct. 24, 2006. |
U.S. Appl. No. 12/840,977 Office Action mailed Jul. 30, 2013. |
U.S. Appl. No. 12/840,977 Final Office Action mailed Jun. 18, 2012. |
U.S. Appl. No. 12/840,977 Final Office Action mailed Oct. 19, 2011. |
U.S. Appl. No. 12/840,977 Office Action mailed May 16, 2011. |
U.S. Appl. No. 12/840,977 Final Office Action mailed Dec. 3, 2010. |
U.S. Appl. No. 10/359,359 Final Office Action mailed Nov. 27, 2009. |
U.S. Appl. No. 10/359,359 Office Action mailed Mar. 31, 2009. |
U.S. Appl. No. 10/359,359 Office Action mailed Aug. 27, 2007. |
U.S. Appl. No. 10/359,359 Final Office Action mailed Feb. 9, 2007. |
U.S. Appl. No. 10/359,359 Office Action mailed Aug. 8, 2006. |
U.S. Appl. No. 12/839,306 Office Action mailed Nov. 12, 2010. |
U.S. Appl. No. 12/839,311 Office Action mailed Nov. 12, 2010. |
U.S. Appl. No. 12/218,581 Office Action mailed Sep. 2, 2010. |
U.S. Appl. No. 12/218,581 Office Action mailed Feb. 1, 2010. |
U.S. Appl. No. 12/218,581 Office Action mailed Oct. 2, 2009. |
U.S. Appl. No. 12/218,591 Office Action mailed Feb. 25, 2009. |
U.S. Appl. No. 12/049,954 Final Office Action mailed Dec. 14, 2010. |
U.S. Appl. No. 12/049,954 Office Action mailed Jun. 24, 2010. |
U.S. Appl. No. 12/235,438 Final Office Action mailed Jan. 4, 2012. |
U.S. Appl. No. 12/235,438 Office Action mailed Aug. 8, 2011. |
U.S. Appl. No. 12/235,438 Final Office Action mailed Aug. 31, 2010. |
U.S. Appl. No. 12/235,438 Office Action mailed Apr. 15, 2010. |
U.S. Appl. No. 13/412,361 Final Office Action mailed Nov. 28, 2012. |
U.S. Appl. No. 13/412,361 Office Action mailed Jul. 30, 2012. |
U.S. Appl. No. 13/941,436 Office Action mailed Jun. 22, 2015. |
U.S. Appl. No. 13/918,809 Office Action mailed Jun. 10, 2014. |
U.S. Appl. No. 13/412,361 Office Action mailed Jun. 17, 2014. |
U.S. Appl. No. 13/941,436 Final Office Action mailed Oct. 7, 2015. |
U.S. Appl. No. 13/918,809 Final Office Action mailed Nov. 18, 2015. |
U.S. Appl. No. 13/918,809, filed Jun. 14, 2013, Shekhar V. Dhupelia, Method for Ladder Ranking in a Game. |
Chinese Application No. 201410266012.9, Office Action mailed Jul. 27, 2016. |
U.S. Appl. No. 14/637,182 Office Action mailed Sep. 9, 2016. |
U.S. Appl. No. 13/918,809 Final Office Action mailed Oct. 20, 2016. |
U.S. Appl. No. 13/918,809 Final Office Action dated May 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20140256449 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
60381736 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12840977 | Jul 2010 | US |
Child | 14283959 | US | |
Parent | 11375526 | Mar 2006 | US |
Child | 12840977 | US | |
Parent | 10211128 | Jul 2002 | US |
Child | 11375526 | US |