For a better understanding of the present invention and to show how the same may be carried into effect, embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
The invention will be described in relation to a 3G-GPRS system. However, it will be understood that the present invention is not limited to this particular implementation.
Referring to
A user equipment (UE) 100 communicates over a radio interface with a UTRAN (UMTS radio access network) 102. As is known in the art, the UTRAN 102 includes a base transceiver station (BTS) 104 and a radio network controller (RNC) 106. In the UMTS network the UTRAN 102 is connected to a serving GPRS support node (SGSN) 108, which in turn is connected to a gateway GPRS support node (GGSN) 110. The GGSN 110 is further connected to at least one external network, e.g. multimedia IP network, represented by reference numeral 112 in
In general terms, a PDP context is activated in order to establish a logical connection between a user equipment and the GGSN.
In known implementations, the UE 100 initiates a logical connection by requesting a PDP context activation by transmitting session management messages to the SGSN 108 via the UTRAN 102. Responsive thereto, the SGSN 108 requests RAB (radio access bearer) establishment from the RNC 106 using the radio access network application protocol (RANAP). The SGSN 108 also requests PDP context creation with GPRS tunneling protocol (GTP) from the GGSN 110. This procedure is repeated for each PDP context which the UE 100 requires.
As well as requesting PDP context activation, the UE 100 may also request secondary PDP context activations, PDP context modifications, or PDP context deactivations. The specific implementation of PDP context activations, secondary PDP context activations, PDP context modifications, and PDP context deactivations is well known in the art.
Embodiments of the present invention which can be implemented in the previously described system are now described in more detail.
In 3GGP TS 23.060, an attachment procedure is described and is illustrated in
However, in the aforementioned arrangement, the rest of the information required at the new control node, including subscriber profiles, is fetched from a centralised node (HLR/HSS). The information elements in the prior art Identification Response are illustrated in
Embodiments of the present invention add new data to existing Identification Request/Response dialog. Instead of only IMSI and Authentication Triplet/Quintuplet, the Identification Response can contain full MM context information elements as well as subscribed PDP context information. The information elements in such an Identification response are illustrated in
Embodiments of the invention propose to add full Mobility Management context to Identification Response messages as well as subscribed PDP context information. It can be considered as an optimization to the current solution while not restricting current behaviour.
Although described above in relation to a 3G-GPRS system, embodiments of the present invention can also be applied in other network systems such as 2G GPRS, Long Term Evolution (LTE), and System Architecture Evolution (SAE) arrangements. SAE provides seamless services to mobile users, beyond mere IP-level connectivity. SAE has three components relevant to the present invention: the registration of application context information with a current Mobility Management Entity (MME); the possible transfer of the context information to a new MME in case of handover; and the appropriate handling of the information at the new MME. The registration protocol establishes the application context information with the current MME. The context transfer protocol facilitates proactive pushing and reactive pulling of the application context information from the old MME to the new MME. Finally, the module in the new MME that is responsible for processing the application context information extracts the relevant information from the received application context information and invokes appropriate actions, which are specific for the application. Embodiments of the present invention may be very useful in this System Architecture Evolution.
The required data processing functions may be provided by means of one or more data processor entities. All required processing may be provided in the control nodes (e.g. the SGSN). Appropriately adapted computer program code product may be used for implementing the embodiments, when loaded to a computer, for example for computations required when monitoring for improperly switched user equipments and analysis of the users thereof. The program code product for providing the operation may be stored on and provided by means of a carrier medium such as a carrier disc, card or tape. A possibility is to download the program code product via a data network. Implementation may be provided with appropriate software in a server.
While this invention has been particularly shown and described with reference to preferred embodiments, it will be understood to those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as defined by the appendant claims.