Managing XML documents containing hierarchical database information

Information

  • Patent Grant
  • 7318063
  • Patent Number
    7,318,063
  • Date Filed
    Thursday, February 19, 2004
    20 years ago
  • Date Issued
    Tuesday, January 8, 2008
    16 years ago
Abstract
Systems, methods, and computer program products for management of data that is stored in a hierarchical format such as, e.g., a relational database, when the data is retrieved and manipulated using a schema-driven format such as, e.g., XML are disclosed. In one implementation a copy of the XML data retrieved from the database and is generated and each logical unit in at least one of the original XML data or the copy of the XML data is annotated in a manner that uniquely identifies each logical unit. For example, each XML node may be assigned a unique numerical or string identifier. As the data is manipulated, algorithms may be implemented to use the annotations to track changes to the XML data and to ensure that the manipulated XML data complies with one or more required data formats. When the XML data is ready to be transferred back to the database(s) from which it was obtained, a series of operations are implemented to validate the data and to determine the nature of operation to be performed to restore the data to the databases.
Description
TECHNICAL FIELD

The described subject matter relates to computing, and more particularly to managing XML documents containing hierarchical database information.


BACKGROUND

Extensible markup language (XML) is increasingly becoming the preferred format for transferring data. XML is a tag-based hierarchical language that provides the ability to represent data in diverse formats and contexts. For example, XML can be used to represent data spanning the spectrum from semi-structured data (such as one would find in a word-processing document) to generally structured data. XML is well-suited for many types of communication including business-to-business and client-to-server communication.


Data represented in XML is often created and retained in electronic documents, such as electronic forms. The structure of an electronic form that is written in XML typically is governed by an XML schema (XSD) and this structure can be altered by applying an eXtensible Style-sheet Language Transformation (XSLT) file on the form. For more information on XML, XSLT, and XSD (schemas), the reader is referred to the following documents which are the work of, and available from the W3C (World Wide Web consortium): XML Schema Part 2: Datatypes; XML Schema Part 1: Structures; and XSL Transformations (XSLT) Version 1.0; and XML 1.0 Second Edition Specification.


Databases are computerized information storage and retrieval systems. A Relational Database Management System (RDBMS) is a database management system (DBMS) which uses relational techniques for storing and retrieving data. RDBMS software using a Structured Query Language (SQL) interface is well known in the art. The SQL interface has evolved into a standard language for RDBMS software and has been adopted as such by both the American National Standards Organization (ANSI) and the International Standards Organization (ISO). The information stored in a RDBMS is typically hierarchical in nature. Parent-child relationships are defined through integrity constraints across multiple relational tables. But it frequently makes sense to present this information to humans (or other applications) as hierarchical information, which can be done using XML.


When hierarchical database information is persisted as a structured XML document, a unique set of challenges are created in translating the changes to the XML document back into the database. For example, while XML data is by nature hierarchical, typically the only relationship between a parent and a child is the fact that the child is contained within the parent. By contrast, in a database both parent and child will contain common data kept in sync through referential integrity.


When XML is used as a temporary persistence format for data retrieved from a hierarchical database to be consumed by a wide variety of applications (e.g., web services, internet application, thin client applications), it is important that the retrieved information can be returned to its original storage format (e.g., a database) properly reflecting the changes made by the application(s) that manipulated the data.


SUMMARY

Described herein are systems and methods for managing XML documents containing hierarchical database information. The systems and methods permit hierarchical database information to be downloaded into an XML document for presentation to a user, or to an application, for editing. Changes to the data made during the editing process are tracked, and the data may be uploaded back to the database.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are schematic illustrations of a mapping between hierarchical data such as, e.g., data stored in a relation database and an XML schema.



FIG. 2 is a schematic illustration of an exemplary system for managing structured XML documents containing hierarchical data.



FIG. 3 is a flowchart illustrating operations in an exemplary method for managing XML documents containing hierarchical database information.



FIG. 4 is a flowchart illustrating operations in an exemplary method for preparing XML data retrieved from the database and annotating the XML data.



FIG. 5 is a flowchart illustrating operations in an exemplary method for modifying the XML annotations during editing operations to the XML data.



FIG. 6 is a flowchart illustrating operations in an exemplary method for maintaining the validity of the edited XML data during editing operations.



FIG. 7 is a flowchart illustrating operations in an exemplary method for identifying changes made to the edited XML data.



FIG. 8 is a schematic illustration of an exemplary computer system.





DETAILED DESCRIPTION

The subject matter described herein facilitates management of data that is stored in a hierarchical format such as, e.g., a relational database, when the data is retrieved and manipulated using a schema-driven format such as, e.g., XML. In one implementation this is accomplished by generating a non-editable copy of the XML data retrieved from the database and annotating each logical unit in the original XML data or the copy of the XML data in a manner that uniquely identifies each logical unit and relates it to its corresponding item in the generated copy. For example, each XML node may be assigned a unique numerical or string identifier or a value representing the items original ordinal position. As the data is manipulated, algorithms may be implemented to use the annotations to track changes to the XML data and to ensure that the manipulated XML data complies with one or more required data formats. When the XML data is ready to be transferred back to the database(s) from which it was obtained, a series of operations are implemented to validate the data and to determine the nature of operation to be performed to restore the data to the database(s).


This document provides a description of representing XML data retrieved from a hierarchical data source such as, e.g., a database. This document further provides a description of a computer-based system for managing XML documents containing hierarchical database information, exemplary methods performed by such a system, and an exemplary computer on which the system may be implemented. The methods described herein may be embodied as logic instructions on a computer-readable medium implemented in any suitable software or firmware, or may be reduced to hardware. When executed on a processor, the logic instructions cause a general purpose computing device to be programmed as a special-purpose machine that implements the described methods. The processor, when configured by the logic instructions to execute the methods recited herein, constitutes structure for performing the described methods.


Representation of Hierarchical Data Using XML



FIGS. 1A-1B are schematic illustrations of the mapping between hierarchical data such as, e.g., data stored in a relation database and an XML schema. Referring to FIG. 1A, a conventional relational database may be considered to store data in the form of one or more tables such as customers table 100 and orders table 130. Customers table 100 may include a plurality of fields represented as columns such as, e.g., CustomerID 112, CompanyName 114, ContactName 116, and Title 118. Similarly, orders table 130 may include a plurality of fields represented as columns such as, e.g., CustomerID 132, OrderID 134, OrderDate 136, and DeliveryDate 138. Customers table 100 and orders table 130 may be related by two or more fields (i.e., one in each table). In FIG. 1, customers table 100 and orders table 130 are related by CustomerID field 112 and CustomerID field 132.


Relational data from may be extracted or viewed by way of a hierarchical self-describing format such as extensible markup language (XML). For example, SQL Server 2000 developed by MICROSOFT CORPORATION provides extensive database programming capabilities built on Web standards. XML and Internet standard support in that product provides the ability to store and retrieve data in XML format easily with built-in stored procedures. The data extracted from a relational database is converted to an XML document as defined by way of an XML schema.


An XML Schema is an XML vocabulary for describing XML instance documents. The term “instance” is used because a schema describes a class of documents, of which there can be many different instances.


The elements used in a schema definition come from the http://www.w3.org/2001/XMLSchema namespace. Schema definitions must have a root xsd:schema element. There are a variety of elements that may be nested within xsd:schema including, but not limited to, xsd:element, xsd:attribute, and xsd:complexType, all of which are well known in the art. A schema definition can be processed with standard XML tools and services such as DOM, SAX, XPath, and XSLT.


Definitions placed within the xsd:schema element are automatically associated with the namespace specified in the targetNamespace attribute. The namespace identifier is the key that links XML documents to the corresponding Schema definition. To take advantage of the schema while processing an element, the processor needs to locate the correct schema definition. How schema processors locate the schema definition for a particular namespace is not defined by a standard specification. Most processors, however, allow an in-memory cache loading of schemas that it will use while processing documents.


XML Schema also provides the schemaLocation attribute to provide a hint in the instance document as to the whereabouts of the required schema definitions. The schemaLocation attribute is in the http:H/www.w3.org/2001/XMLSchema-instance namespace, which was set aside specifically for attributes that are only used in instance documents.



FIG. 1B is a schematic representation of the mapping between data in relational tables 100 and 130 to an XML schema. The XML schema includes a root node 150, and customers nodes 150a, 150b, that implicate entries in the customers table 100. The child nodes of the customers nodes 150a, 150b may represent other columns in the customers table 100 or may represent data in a table related to the customers table 100. In the implementation depicted in FIG. 1B the customers nodes include CompanyName child nodes 156a, 156b corresponding to entries in the ComanyName column 114 in customers table 100, ContactName nodes 158a, 158b corresponding to entries in the ContactName column 116 in customers table 100, and orders child nodes 160a, 160b corresponding to orders in the order table 130.


The orders nodes 160a, 160b may have child nodes that correspond to columns in the order table 130. In the embodiment depicted in FIG. 1B the orders nodes 160a, 160b include CustomerID nodes 162a, 162b that correspond to entries in the OrderID column 134 of the orders table 130, OrderID nodes 164a, 164b that correspond to entries in the OrderID column of orders table 130, OrderDate nodes 166a, 166b that correspond to entries in the OrderDate column 136 of orders table 130, and DeliveryDate nodes 168a, 168b that correspond to entries in the DeliveryDate column 138 of orders table 130.


An Exemplary System Architecture



FIG. 2 is a schematic depiction of an exemplary system 200 which may be used to manage XML documents containing hierarchical data. This system 200 includes a display 202 having a screen 204, one or more user-input devices 206, and a computer 208.


The user-input devices 206 can include any device allowing a computer to receive a developer's input, such as a keyboard 210, other device(s) 212, and a mouse 214. The other device(s) 212 can include a touch screen, a voice-activated input device, a track ball, and any other device that allows the system 200 to receive input from a developer. The computer 208 includes a processing unit 216 and random access memory and/or read-only memory 218. Memory 218 includes an operating system 220 for managing operations of computer 208 and one or more application programs, such as database module 220 that interfaces with a database 240 or other source of hierarchical data., an XML processing module 226, an XML editing module 228, an XML conversion module 230, and an XML re-annotation module 232. Memory 218 may further include an XML data store 242. XML data may be persisted (typically temporarily) in XML data store 242. The computer 208 communicates with a user and/or a developer through the screen 204 and the user-input devices 206.


The system 200 enables a user to retrieve hierarchical data from the database 240, display the data on display 202 using XML formatting techniques, manipulate the retrieved data in its XML format, and to return the manipulated XML data back to database 240. System 200 also monitors changes to the data to provide a measure of data integrity. The operation of various modules 224-232 is explained in detail below.


Exemplary Operations



FIG. 3 is a flowchart illustrating operations in an exemplary method for managing XML documents containing hierarchical database information. Referring to FIG. 3, at operation 300 data is retrieved from a database. In an exemplary implementation the database may be a relational database such as database 240, and data may be retrieved by database module 224 using an XML-capable SQL service, as described above. At operation 400 the XML data is annotated and prepared for manipulation by the user(s) of the data, e.g., by XML processing module 226. At operation 500 the annotations are modified during editing operations to the XML data, e.g., by XML editing module 228. At operation 600 the validity of the edited data is maintained during editing operations, e.g., by XML editing module 228. At operation 700 changes to the XML data are identified and the database(s) are updated to reflect changes made to the XML data, e.g., by XML conversion module 230. At operation 800 the XML data is re-annotated for continued editing, if desired, e.g., by XML re-annotation module 232. Operations 400-800 are explained in greater detail below, with reference to FIGS. 4-7.



FIG. 4 is a flowchart illustrating operations in an exemplary method for preparing the XML data retrieved from the database and annotating the XML data and annotating the XML data. In an exemplary implementation the operations of FIG. 4 may be implemented by the XML processing module 226. At operation 410 the XML data is received from the database, e.g., as a result of an SQL query. At operation 415 a copy of the received XML data is generated. To distinguish the copy from the original retrieved XML data, the copy will be referred to herein as the before copy.


At operation 420 the original XML data is annotated in a manner that uniquely identifies each node in the XML data. Optionally, the before copy of the XML data may also be annotated. In an exemplary implementation each node in the XML data is annotated with a name and an identifier that identifies the position of the corresponding node in the before copy of the data. The annotated identifiers may be implemented as a numeric sequence, e.g., a sequential numeric listing, or a predetermined character sequence.


The identifier may be added to the XML data using a node attribute on each node to which an identifier is assigned. To avoid conflicts between the annotated identifier and other XML data the identifier attribute is assigned a namespace that is unique to the update algorithm. In addition, to avoid conflicts between identifiers in multiple XML documents the identifier attribute name is unique across multiple XML documents. In an exemplary implementation the attribute name may be randomly generated each time the XML data is prepared and annotated.


After the XML data is prepared and annotated it may be displayed as an XML document (e.g., on display 202) and modified, either automatically or by a user of system. During modification of the XML document data may be inserted into the XML document in several different ways. By way of example, data may be entered manually, moved (i.e., cut and pasted) from another part of the XML document, or another XML document, or copied and pasted from another part of the XML document, or another XML document.



FIG. 5 is a flowchart illustrating operations in an exemplary method for modifying the XML annotations during editing operations to the XML data. In an exemplary implementation the operations of FIG. 5 may be performed by XML editing module 228. At operation 510 a new node is received in the XML data, e.g., as a result of a copy operation a move operation, or an insert operation. At operation 515 it is determined whether the new node includes an annotated identifier. If the new node does not include an annotated identifier, then the new node is likely to be a newly inserted node, and control is returned to the calling routine at operation 535.


By contrast, if at operation 515 there is an annotated identifier in the new node, then control passes to operation 520, and the XML document is searched for the annotated identifier. The search is performed based on the update algorithm namespace, the unique attribute name and the annotated identifier. If at operation 525 the annotated identifier exists in the XML document, then the new node is likely a copy of an existing node in the XML document. Accordingly, the annotated identifier is removed from the new node at operation 530.


By contrast, if the annotated identifier does not exist elsewhere in the XML document, then the new node likely represents a move operation of the data from elsewhere in the XML document. Accordingly, control can be returned to the calling routine at operation 535.



FIG. 6 is a flowchart illustrating operations in an exemplary method for maintaining the validity of the edited XML data. The operations of FIG. 6 may be performed contemporaneously with the operations of FIG. 5, and may be implemented by XML editing module 228. At operation 610 a new node is received in the XML data, as described above in connection with operation 510. At operation 615 the data changes are validated against the XML schema. If, at operation 620 the data changes are inconsistent with the XML schema, then control passes to operation 635 and the changes are rejected. By contrast, if the data changes are consistent with the XML schema, then control passes to operation 625 and the data changes are validated against database constraints. By way of example, the data may be validated to ensure that PrimaryKey—SecondaryKey constraints between rows in the database are not violated. If the data changes violate one or more database constraints, then control passes to operation 635 and the changes are rejected.


In an exemplary implementation, constraints are checked in a delayed manner before submit on rows with empty values for the Primary Key or the Foreign Key fields. This allows the user the ability to insert new rows with empty values and fill in those values at a later point in time.


Other features may be implemented to help a user enter correct data into an XML document. When the XML is represented hierarchically, with tables in a relation being nested, inserting a row into the child table will automatically populate foreign key values from the primary key of the parent row. For the case where the tables are not nested, if the insert happens from a view that knows the context of the parent row (e.g., the Master-Detail view) the Foreign-Key values may be populated automatically to match the Primary Key values of the current parent row.


Once a series of edits to the XML has been completed and the information is ready to be posted back to the database, the operations of FIG. 7 are performed to identify changes to the data. The operations of FIG. 7 may be implemented by XML conversion module 230. At operation 710 the modified data is searched for duplicate annotated identifiers. In an exemplary implementation the search may be performed by traversing the nodes of the modified data tree and searching the remaining nodes for duplicates of the annotated identifier. If, at operation 715, a duplicate annotated identifier is located, then each duplicate is checked to determine whether it exists at the original location where that identifier was assigned. If one is found in the original position then that node is selected and the annotated identifiers are removed from the remaining matching nodes. If none of the nodes with a duplicate identifier exist at the original location then at operation 725 the first node in the data with the given annotated identifier is selected, and the annotated identifiers from the remaining matching nodes are removed. By contrast, if at operation 715 no duplicate annotated identifiers are located, then at operation 725 the only node in the data with the given annotated identifier is selected.


At operation 735 the before copy of the data is searched for an annotated identifier matching the selected annotated identifier. If, at operation 740, a matching annotated identifier is found in the before copy of the data, then update procedures are invoked to update the corresponding data in the database.


In an exemplary implementation, the update procedures may be implemented as follows. First, if there is no database column associated with the selected data item, it is skipped. Second, if the associated database column represents an identity or a datestamp or timestamp, it is skipped. Third, if the associated database column is part of the relationship between this node and its parent (i.e., a foreign key), then the corresponding value from the parent node is used. Fourth, if the value is empty and the database field is optional, it is updated with a null value. By contrast, if the database field is required, it is updated with an empty string. Fifth, the new value from the selected data item is used to update the row's corresponding column.


By contrast, if at operation 740 there are no matching annotated identifiers, then insert procedures are invoked to write the edited data back to the database(s). In an exemplary implementation, the insert procedures may be implemented as follows. First, if there is no database column associated with the data item, the entry is skipped. Second, if the associated database column is an identity or datestamp or timestamp, then it is skipped. Third, if the associated database column is part of the relationship between this node and its parent (i.e., a foreign key), then the corresponding value from the parent node is used. Fourth, if the value is empty and the database field is optional, then it is skipped. By contrast, if the database field is required, then it is inserted with an empty string. Fifth, the new value from the data item is used to populate the row's corresponding column.


The operations 735-750 may be repeated for each entry in the edited copy of the data to write the entries back to the database(s) from which the data was retrieved. At operation 755 delete procedures are invoked for any entries in the before copy of the data that were not processed as either an update or an insert. The delete procedures may be implemented by deleting the row(s) corresponding to the entry (or entries) in the before copy of the data.


If the XML document is going to continue to be used for editing, then the XML document is updated to reflect the changes that have been made. In an exemplary implementation the following operations may be performed, e.g., by the XML re-annotation module 232, to update the XML document. For each inserted row that contains an identity column (i.e., auto-numbered) the generated identity value may be propagated back into the corresponding node and data item in the XML Document. For each inserted or updated row that contains a date/timestamp column, the new generated value may be propagated back into the corresponding node and data item in the XML document. For any row that had data items updated based upon the relationship with its parent, these new values may be propagated back into the corresponding data items in the XML document. The XML Document may be re-annotated with unique identifiers. And fifth, a new copy of the. XML document is taken to become the new before data.


If the relationship between the querying and submit is not straight forward (such as when tracking changes to database data that is received via web services), the data may be marked as read only to prevent further modifications by the user. After the user refreshes the data explicitly, the lock on editing may be removed. This locking procedure ensures that the user does not work with potentially stale data.


Exemplary Operating Environment


The various components and functionality described herein are implemented with a number of individual computers. FIG. 8 shows components of a typical example of a computer environment 800, including a computer, referred by to reference numeral 802. The computer 802 may be the same as or different from computer 102 of FIG. 1. The components shown in FIG. 8 are only examples, and are not intended to suggest any limitation as to the scope of the functionality of the invention; the invention is not necessarily dependent on the features shown in FIG. 8.


Generally, various different general purpose or special purpose computing system configurations can be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, network-ready devices, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.


The functionality of the computers is embodied in many cases by computer-executable instructions, such as software components, that are executed by the computers. Generally, software components include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network. In a distributed computing environment, software components may be located in both local and remote computer storage media.


The instructions and/or software components are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer. Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory.


For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.


With reference to FIG. 8, the components of computer 802 may include, but are not limited to, a processing unit 804, a system memory 806, and a system bus 808 that couples various system components including the system memory to the processing unit 804. The system bus 808 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISAA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as the Mezzanine bus.


Computer 802 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computer 802 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. “Computer storage media” includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 802. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more if its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.


The system memory 806 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 810 and random access memory (RAM) 812. A basic input/output system 814 (BIOS), containing the basic routines that help to transfer information between elements within computer 802, such as during start-up, is typically stored in ROM 810. RAM 812 typically contains data and/or software components that are immediately accessible to and/or presently being operated on by processing unit 804. By way of example, and not limitation, FIG. 8 illustrates operating system 816, application programs 818, software components 820, and program data 822.


The computer 802 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 8 illustrates a hard disk drive 824 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 826 that reads from or writes to a removable, nonvolatile magnetic disk 828, and an optical disk drive 830 that reads from or writes to a removable, nonvolatile optical disk 832 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 824 is typically connected to the system bus 808 through a non-removable memory interface such as data media interface 834, and magnetic disk drive 826 and optical disk drive 830 are typically connected to the system bus 808 by a removable memory interface.


The drives and their associated computer storage media discussed above and illustrated in FIG. 8 provide storage of computer-readable instructions, data structures, software components, and other data for computer 802. In FIG. 8, for example, hard disk drive 824 is illustrated as storing operating system 816′, application programs 818′, software components 820′, and program data 822′. Note that these components can either be the same as or different from operating system 816, application programs 818, software components 820, and program data 822. Operating system 816′, application programs 818′, software components 820′, and program data 822′are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 802 through input devices such as a keyboard 836, and pointing device (not shown), commonly referred to as a mouse, trackball, or touch pad. Other input devices may include source peripheral devices (such as a microphone 838 or camera 840 which provide streaming data), joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 802 through an input/output (I/O) interface 842 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB). A monitor 844 or other type of display device is also connected to the system bus 808 via an interface, such as a video adapter 846. In addition to the monitor 844, computers may also include other peripheral rendering devices (e.g., speakers) and one or more printers which may be connected through the I/O interface 842.


The computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote device 850. The remote device 850 may be a personal computer, a network-ready device, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 802. The logical connections depicted in FIG. 8 include a local area network (LAN) 852 and a wide area network (WAN) 854. Although the WAN 854 shown in FIG. 8 is the Internet, the WAN 854 may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the like.


When used in a LAN networking environment, the computer 802 is connected to the LAN 852 through a network interface or adapter 856. When used in a WAN networking environment, the computer 802 typically includes a modem 858 or other means for establishing communications over the Internet 854. The modem 858, which may be internal or external, may be connected to the system bus 808 via the I/O interface 842, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 802, or portions thereof, may be stored in the remote device 850. By way of example, and not limitation, FIG. 8 illustrates remote software components 860 as residing on remote device 850. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.


Conclusion


Although the described arrangements and procedures have been described in language specific to structural features and/or methodological operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or operations described. Rather, the specific features and operations are disclosed as preferred forms of implementing the claimed present subject matter.

Claims
  • 1. A method of managing XML documents, comprising: receiving an original XML document that includes information from a hierarchical database, the hierarchical database being distinct from the original XML document;generating a copy of the original XML document;annotating the original XML document with an identifier that uniquely identifies each node in the document and a corresponding node in the copy of the XML document;accepting at least one edit operation to the original XML document;modifying at least one annotation to the original XML document in response to the at least one edit operation;identifying at least one change to the original XML document as a result of the at least one edit operation; andupdating the database to reflect the change to the original XML document.
  • 2. The method of claim 1, wherein annotating the original XML document with an identifier that uniquely identifies each node in the document and a corresponding node in the copy of the XML document comprises assigning an annotated identifier to each node in the original XML document.
  • 3. The method of claim 2, wherein the annotated identifier is characterized by an attribute that is assigned a namespace that uniquely identifies an update process.
  • 4. The method of claim 3, wherein the attribute is characterized by a name that is randomly generated.
  • 5. The method of claim 1, wherein: annotating the original XML document with an identifier that uniquely identifies each node in the document and a corresponding node in the copy of the XML document comprises assigning an annotated identifier to each node in the original XML document; andmodifying at least one annotation to the original XML document in response to the at least one edit operation comprises removing the annotated identifier from one or more nodes that are copies of another node in the document.
  • 6. The method of claim 1, wherein identifying at least one change to the original XML document as a result of the at least one edit operation comprises searching the original XML document for one or more new entries.
  • 7. The method of claim 6, wherein updating the database to reflect the change to the original XML document comprises inserting the new entries into the database.
  • 8. The method of claim 1, wherein updating the database to reflect the change to the original XML document comprises updating database data from the original XML document.
  • 9. The method of claim 1, further comprising re-annotating the original XML document for further processing.
  • 10. The method of claim 9, wherein re-annotating the original XML document comprises updating the XML document to reflect one or more changes to the database data.
  • 11. A system for managing XML documents, comprising: a computing device including a display, a user-input device, and a processing unit, and a memory module the memory module comprising: a database module to retrieve data from a database, and to format and display the data in an original XML document, the database being distinct from the original XML document;an XML processing module to generate a copy of the original XML document and to annotate at least one of the original XML document and the copy of the XML document with an identifier that uniquely identifies each node in the document;an XML editing module to accept edits to the original XML document and to modify at least one annotation to the XML data in response to the at least one edit;an XML conversion module to identify at least one change to the original XML document as a result of the at least one edit operation; and to update the database to reflect the change to the original XML document.
  • 12. The system of claim 11, wherein the XML processing module assigns an annotated identifier to each node in the original XML document.
  • 13. The system of claim 12, wherein the annotated identifier is characterized by an attribute that is assigned a namespace that uniquely identifies an update process.
  • 14. The system of claim 13, wherein the attribute is characterized by a name that is randomly generated.
  • 15. The system of claim 11, wherein: the XML processing module assigns an annotated identifier to each node in the original XML document; andthe XML editing module removes the annotated identifier from one or more nodes that are copies of another node in the document.
  • 16. The system of claim 11, wherein the XML conversion module searches the original XML document for one or more new entries.
  • 17. The system of claim 16, wherein the XML conversion module inserts one or more new entries in the original XML document into the database.
  • 18. The system of claim 11, wherein the XML conversion module updates the database to reflect the changes to the data in the original XML data.
  • 19. The system of claim 11, wherein the XML re-annotation module re-annotates the original XML document for further processing.
  • 20. The system of claim 19, wherein the XML re-annotation module updates the XML document to reflect one or more changes to the database data.
  • 21. One or more computer-readable media comprising computer executable instructions that, when executed on a computer, direct the computer to: receive an original XML document that includes information from a hierarchical database, the hierarchical database being distinct from the original XML document;generate a copy of the XML document;annotate at least one of the original XML document and the copy of the XML document with an identifier that uniquely identifies each node in the document;accept at least one edit operation to the original XML document;modify at least one annotation to the XML in response to the at least one edit operation;identify at least one change to the original XML document as a result of the at least one edit operation; andupdate the database to reflect the change to the original XML document.
  • 22. The one or more computer-readable media of claim 21, further comprising computer executable instruction that, when executed, direct the computer to assign an annotated identifier to each node in the original XML document.
  • 23. The one or more computer-readable media of claim 22, wherein the annotated identifier is characterized by an attribute that is assigned a namespace that uniquely identifies an update process.
  • 24. The one or more computer-readable media of claim 23, wherein the attribute is characterized by a name that is randomly generated.
  • 25. The one or more computer-readable media of claim 21, further comprising computer executable instruction that, when executed, direct the computer to: assign an annotated identifier to each node in the original XML document; andremove the annotated identifier from one or more nodes that are copies of another node in the document.
  • 26. The one or more computer-readable media of claim 21, further comprising computer executable instruction that, when executed, direct the computer to search the original XML document for one or more new entries.
  • 27. The one or more computer-readable media of claim 26, further comprising computer executable instruction that, when executed, direct the computer to insert the new entries into the database.
  • 28. The one or more computer-readable media of claim 21, further comprising computer executable instruction that, when executed, direct the computer to update database data from the original XML document.
  • 29. The one or more computer-readable media of claim 21, further comprising logic instructions that, when executed on a computer, cause the computer to re-annotate the original XML document for further processing.
  • 30. The computer-readable media of claim 29, further comprising computer executable instruction that, when executed, direct the computer to update the XML document to reflect one or more changes to the database data.
  • 31. A method of managing markup language documents, comprising: receiving an original markup language document that includes information from a hierarchical database, the hierarchical database being distinct from the original markup language document;generating a copy of the original markup language document;annotating the original markup language document or the copy of the markup language document with an identifier that uniquely identifies each node in the annotated markup language document and a corresponding node in the other markup language document;accepting at least one edit operation to the annotated markup language document;modifying at least one annotation to the annotated markup language document in response to the at least one edit operation;identifying at least one change to the annotated markup language document as a result of the at least one edit operation; andupdating the database to reflect the change to the annotated markup language document.
US Referenced Citations (473)
Number Name Date Kind
4498147 Agnew et al. Feb 1985 A
4514800 Gruner et al. Apr 1985 A
4641274 Swank Feb 1987 A
4674040 Barker et al. Jun 1987 A
4723211 Barker et al. Feb 1988 A
4739477 Barker et al. Apr 1988 A
4815029 Barker et al. Mar 1989 A
4847749 Collins et al. Jul 1989 A
4910663 Bailey Mar 1990 A
4933880 Borgendale et al. Jun 1990 A
4962475 Hernandez et al. Oct 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5179703 Evans Jan 1993 A
5182709 Makus Jan 1993 A
5187786 Densmore et al. Feb 1993 A
5191645 Carlucci et al. Mar 1993 A
5195183 Miller et al. Mar 1993 A
5204947 Bernstein et al. Apr 1993 A
5206951 Khoyi et al. Apr 1993 A
5218672 Morgan et al. Jun 1993 A
5237680 Adams et al. Aug 1993 A
5249275 Srivastava Sep 1993 A
5274803 Dubin et al. Dec 1993 A
5297249 Bernstein et al. Mar 1994 A
5297283 Kelly, Jr. et al. Mar 1994 A
5313631 Kao May 1994 A
5313646 Hendricks et al. May 1994 A
5317686 Salas et al. May 1994 A
5333317 Dann Jul 1994 A
5339423 Beitel et al. Aug 1994 A
5339424 Fushimi Aug 1994 A
5341478 Travis, Jr. et al. Aug 1994 A
5369766 Nakano et al. Nov 1994 A
5369778 San Soucie et al. Nov 1994 A
5371675 Greif et al. Dec 1994 A
5377323 Vasudevan Dec 1994 A
5379419 Heffernan et al. Jan 1995 A
5381547 Flug et al. Jan 1995 A
5390325 Miller Feb 1995 A
5396623 McCall et al. Mar 1995 A
5408665 Fitzgerald Apr 1995 A
5410646 Tondevold et al. Apr 1995 A
5410688 Williams et al. Apr 1995 A
5412772 Monson May 1995 A
5434975 Allen Jul 1995 A
5436637 Gayraud et al. Jul 1995 A
5438659 Notess et al. Aug 1995 A
5440744 Jacobson et al. Aug 1995 A
5446842 Schaeffer et al. Aug 1995 A
5459865 Heninger et al. Oct 1995 A
5481722 Skinner Jan 1996 A
5497489 Menne Mar 1996 A
5504898 Klein Apr 1996 A
5517655 Collins et al. May 1996 A
5535389 Elder et al. Jul 1996 A
5542070 LeBlanc et al. Jul 1996 A
5550976 Henderson et al. Aug 1996 A
5551035 Arnold et al. Aug 1996 A
5572643 Judson Nov 1996 A
5572648 Bibayan Nov 1996 A
5577252 Nelson et al. Nov 1996 A
5581686 Koppolu et al. Dec 1996 A
5581760 Atkinson et al. Dec 1996 A
5602996 Powers, III et al. Feb 1997 A
5608720 Biegel et al. Mar 1997 A
5625783 Ezekiel et al. Apr 1997 A
5627979 Chang et al. May 1997 A
5630126 Redpath May 1997 A
5634121 Tracz et al. May 1997 A
5640544 Onodera et al. Jun 1997 A
5644738 Goldman et al. Jul 1997 A
5649099 Theimer et al. Jul 1997 A
5659729 Nielsen Aug 1997 A
5664178 Sinofsky Sep 1997 A
5668966 Ono et al. Sep 1997 A
5669005 Curbow et al. Sep 1997 A
5682536 Atkinson et al. Oct 1997 A
5689667 Kurtenbach Nov 1997 A
5689703 Atkinson et al. Nov 1997 A
5704029 Wright, Jr. Dec 1997 A
5706501 Horikiri et al. Jan 1998 A
5717939 Bricklin et al. Feb 1998 A
5721824 Taylor Feb 1998 A
5740439 Atkinson et al. Apr 1998 A
5742504 Meyer et al. Apr 1998 A
5745683 Lee et al. Apr 1998 A
5745712 Turpin et al. Apr 1998 A
5758184 Lucovsky et al. May 1998 A
5758358 Ebbo May 1998 A
5761408 Kolawa et al. Jun 1998 A
5761683 Logan et al. Jun 1998 A
5764984 Loucks Jun 1998 A
5764985 Smale Jun 1998 A
5778372 Cordell et al. Jul 1998 A
5778402 Gipson Jul 1998 A
5784555 Stone Jul 1998 A
5790796 Sadowsky Aug 1998 A
5798757 Smith Aug 1998 A
5801701 Koppolu et al. Sep 1998 A
5802304 Stone Sep 1998 A
5806079 Rivette et al. Sep 1998 A
5815830 Anthony Sep 1998 A
5826265 Van Huben et al. Oct 1998 A
5835777 Staelin Nov 1998 A
5838906 Doyle et al. Nov 1998 A
5842018 Atkinson et al. Nov 1998 A
5845077 Fawcett Dec 1998 A
5845090 Collins, III et al. Dec 1998 A
5854630 Nielsen Dec 1998 A
5859973 Carpenter et al. Jan 1999 A
5862372 Morris et al. Jan 1999 A
5864819 De Armas et al. Jan 1999 A
5907704 Gudmundson et al. May 1999 A
5910895 Proskauer et al. Jun 1999 A
5911776 Guck Jun 1999 A
5915112 Boutcher Jun 1999 A
5922072 Hutchinson et al. Jul 1999 A
5929858 Shibata et al. Jul 1999 A
5940075 Mutschler, III et al. Aug 1999 A
5950010 Hesse et al. Sep 1999 A
5956481 Walsh et al. Sep 1999 A
5960199 Brodsky et al. Sep 1999 A
5963964 Nielsen Oct 1999 A
5974454 Apfel et al. Oct 1999 A
5982370 Kamper Nov 1999 A
5987480 Donohue et al. Nov 1999 A
5991710 Papineni Nov 1999 A
5991877 Luckenbaugh Nov 1999 A
5995103 Ashe Nov 1999 A
5999740 Rowley Dec 1999 A
6005570 Gayraud et al. Dec 1999 A
6014135 Fernandes Jan 2000 A
6016520 Facq et al. Jan 2000 A
6018743 Xu Jan 2000 A
6026379 Haller et al. Feb 2000 A
6026416 Kanerva et al. Feb 2000 A
6031989 Cordell Feb 2000 A
6035309 Dauerer et al. Mar 2000 A
6044205 Reed et al. Mar 2000 A
6052531 Waldin et al. Apr 2000 A
6052710 Saliba et al. Apr 2000 A
6054987 Richardson Apr 2000 A
6072870 Nguyen et al. Jun 2000 A
6078326 Kilmer et al. Jun 2000 A
6078327 Liman et al. Jun 2000 A
6078924 Ainsbury et al. Jun 2000 A
6081610 Dwork et al. Jun 2000 A
6084585 Kraft et al. Jul 2000 A
6088708 Burch et al. Jul 2000 A
6091417 Lefkowitz Jul 2000 A
6094657 Hailpern et al. Jul 2000 A
6098081 Heidorn et al. Aug 2000 A
6108637 Blumenau Aug 2000 A
6108783 Krawczyk et al. Aug 2000 A
6115646 Fiszman et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6122647 Horowitz Sep 2000 A
6144969 Inokuchi et al. Nov 2000 A
6151624 Teare et al. Nov 2000 A
6163772 Kramer et al. Dec 2000 A
6167521 Smith et al. Dec 2000 A
6167523 Strong Dec 2000 A
6182095 Leymaster et al. Jan 2001 B1
6188401 Peyer Feb 2001 B1
6191797 Politis Feb 2001 B1
6192367 Hawley et al. Feb 2001 B1
6195661 Filepp et al. Feb 2001 B1
6199204 Donohue Mar 2001 B1
6209128 Gerard et al. Mar 2001 B1
6216152 Wong et al. Apr 2001 B1
6219698 Iannucci et al. Apr 2001 B1
6225996 Gibb et al. May 2001 B1
6253366 Mutschler, III Jun 2001 B1
6253374 Dresevic et al. Jun 2001 B1
6263313 Milsted et al. Jul 2001 B1
6266810 Tanaka et al. Jul 2001 B1
6268852 Lindhorst et al. Jul 2001 B1
6272506 Bell Aug 2001 B1
6275227 DeStefano Aug 2001 B1
6275599 Adler et al. Aug 2001 B1
6282711 Halpern et al. Aug 2001 B1
6286033 Kishinsky et al. Sep 2001 B1
6292897 Gennaro et al. Sep 2001 B1
6297819 Furst Oct 2001 B1
6300948 Geller et al. Oct 2001 B1
6308179 Petersen et al. Oct 2001 B1
6311271 Gennaro et al. Oct 2001 B1
6321259 Ouellette et al. Nov 2001 B1
6321334 Jerger et al. Nov 2001 B1
6327628 Anuff et al. Dec 2001 B1
6331864 Coco et al. Dec 2001 B1
6342907 Petty et al. Jan 2002 B1
6343302 Graham Jan 2002 B1
6345256 Milsted et al. Feb 2002 B1
6345278 Hitchcock et al. Feb 2002 B1
6345361 Jerger et al. Feb 2002 B1
6347323 Garber et al. Feb 2002 B1
6349408 Smith Feb 2002 B1
6353926 Parthesarathy et al. Mar 2002 B1
6357038 Scouten Mar 2002 B1
6366907 Fanning et al. Apr 2002 B1
6366912 Wallent et al. Apr 2002 B1
6369840 Barnett et al. Apr 2002 B1
6374402 Schmeidler et al. Apr 2002 B1
6381742 Forbes et al. Apr 2002 B2
6381743 Mutschler, III Apr 2002 B1
6389434 Rivette May 2002 B1
6393456 Ambler et al. May 2002 B1
6396488 Simmons et al. May 2002 B1
6408311 Baisley et al. Jun 2002 B1
6414700 Kurtenbach et al. Jul 2002 B1
6421070 Ramos et al. Jul 2002 B1
6421656 Cheng et al. Jul 2002 B1
6425125 Fries et al. Jul 2002 B1
6429885 Saib et al. Aug 2002 B1
6434563 Pasquali et al. Aug 2002 B1
6434564 Ebert Aug 2002 B2
6442563 Bacon et al. Aug 2002 B1
6442755 Lemmons et al. Aug 2002 B1
6446110 Lection et al. Sep 2002 B1
6449617 Quinn et al. Sep 2002 B1
6457009 Bollay Sep 2002 B1
6460058 Koppulu Oct 2002 B2
6463419 Kluss Oct 2002 B1
6470349 Heninger Oct 2002 B1
6473800 Jerger et al. Oct 2002 B1
6476828 Burkett et al. Nov 2002 B1
6476833 Moshfeghi Nov 2002 B1
6477544 Bolosky Nov 2002 B1
6487566 Sundaresan Nov 2002 B1
6490601 Markus et al. Dec 2002 B1
6493702 Adar et al. Dec 2002 B1
6502101 Verprauskus et al. Dec 2002 B1
6502103 Frey et al. Dec 2002 B1
6505230 Mohan et al. Jan 2003 B1
6505300 Chan et al. Jan 2003 B2
6507856 Chen et al. Jan 2003 B1
6516322 Meredith Feb 2003 B1
6519617 Wanderski et al. Feb 2003 B1
RE38070 Spies et al. Apr 2003 E
6546546 Van Doorn Apr 2003 B1
6549221 Brown et al. Apr 2003 B1
6549878 Lowry et al. Apr 2003 B1
6549922 Srivastava et al. Apr 2003 B1
6553402 Makarios et al. Apr 2003 B1
6560620 Ching May 2003 B1
6560640 Smethers May 2003 B2
6563514 Samar May 2003 B1
6571253 Thompson et al. May 2003 B1
6578144 Gennaro et al. Jun 2003 B1
6581061 Graham Jun 2003 B2
6584548 Bourne et al. Jun 2003 B1
6585778 Hind et al. Jul 2003 B1
6589290 Maxwell et al. Jul 2003 B1
6598219 Lau Jul 2003 B1
6603489 Edlund et al. Aug 2003 B1
6604099 Chung et al. Aug 2003 B1
6606606 Starr Aug 2003 B2
6609200 Anderson et al. Aug 2003 B2
6611822 Beams et al. Aug 2003 B1
6611840 Baer et al. Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6615276 Mastrianni et al. Sep 2003 B1
6629109 Koshisaka Sep 2003 B1
6631357 Perkowski Oct 2003 B1
6631497 Jamshidi et al. Oct 2003 B1
6632251 Rutten et al. Oct 2003 B1
6643652 Helgeson et al. Nov 2003 B2
6643684 Malkin et al. Nov 2003 B1
6651217 Kennedy et al. Nov 2003 B1
6654737 Nunez Nov 2003 B1
6654932 Bahrs et al. Nov 2003 B1
6658417 Stakutis et al. Dec 2003 B1
6658622 Aiken et al. Dec 2003 B1
6668369 Krebs et al. Dec 2003 B1
6675202 Perttunen Jan 2004 B1
6678717 Schneider Jan 2004 B1
6691230 Bardon Feb 2004 B1
6691281 Sorge et al. Feb 2004 B1
6697944 Jones et al. Feb 2004 B1
6701434 Rohatgi Mar 2004 B1
6701486 Weber et al. Mar 2004 B1
6704906 Yankovich et al. Mar 2004 B1
6711679 Guski et al. Mar 2004 B1
6720985 Silverbrook et al. Apr 2004 B1
6725426 Pavlov Apr 2004 B1
6735721 Morrow et al. May 2004 B1
6748385 Rodkin Jun 2004 B1
6751777 Bates Jun 2004 B2
6754874 Richman Jun 2004 B1
6757868 Glaser et al. Jun 2004 B1
6760723 Oshinsky et al. Jul 2004 B2
6763343 Brooke et al. Jul 2004 B1
6772139 Smith, III Aug 2004 B1
6772165 O'Carroll Aug 2004 B2
6774926 Ellis et al. Aug 2004 B1
6781609 Barker et al. Aug 2004 B1
6799299 Li et al. Sep 2004 B1
6801929 Donoho et al. Oct 2004 B1
6845380 Su et al. Jan 2005 B2
6847387 Roth Jan 2005 B2
6848078 Birsan et al. Jan 2005 B1
6871220 Rajan et al. Mar 2005 B1
6874130 Baweja et al. Mar 2005 B1
6901403 Bata et al. May 2005 B1
6915454 Moore et al. Jul 2005 B1
6931532 Davis et al. Aug 2005 B1
6941511 Hind et al. Sep 2005 B1
6941521 Lin et al. Sep 2005 B2
6948135 Ruthfield et al. Sep 2005 B1
6950980 Malcolm Sep 2005 B1
6961897 Peel, Jr. et al. Nov 2005 B1
6963875 Moore Nov 2005 B2
6968503 Chang et al. Nov 2005 B1
6968505 Stoll et al. Nov 2005 B2
6993714 Kaler et al. Jan 2006 B2
6996776 Makely et al. Feb 2006 B1
7024417 Russakovsky et al. Apr 2006 B1
7032170 Poulose Apr 2006 B2
7036072 Sulistio et al. Apr 2006 B1
7039875 Khalfay et al. May 2006 B2
7051273 Holt et al. May 2006 B1
7058663 Johnston et al. Jun 2006 B2
7062764 Cohen et al. Jun 2006 B2
7065493 Homsi Jun 2006 B1
7080325 Treibach-Heck et al. Jul 2006 B2
7086009 Resnick et al. Aug 2006 B2
7088374 David et al. Aug 2006 B2
7103611 Murthy et al. Sep 2006 B2
7106888 Silverbrook et al. Sep 2006 B1
7107282 Yalamanchi Sep 2006 B1
7107521 Santos Sep 2006 B2
7152205 Day et al. Dec 2006 B2
7190376 Tonisson Mar 2007 B1
7191394 Ardeleanu et al. Mar 2007 B1
20010007109 Lange Jul 2001 A1
20010024195 Hayakawa Sep 2001 A1
20010054004 Powers Dec 2001 A1
20010056429 Moore Dec 2001 A1
20010056460 Sahota et al. Dec 2001 A1
20020010743 Ryan et al. Jan 2002 A1
20020010746 Jilk et al. Jan 2002 A1
20020013788 Pennell et al. Jan 2002 A1
20020026441 Kutay Feb 2002 A1
20020026461 Kutay et al. Feb 2002 A1
20020032590 Anand et al. Mar 2002 A1
20020032692 Suzuki et al. Mar 2002 A1
20020032706 Perla et al. Mar 2002 A1
20020032768 Voskuil Mar 2002 A1
20020035579 Wang et al. Mar 2002 A1
20020057297 Grimes et al. May 2002 A1
20020065798 Bostleman et al. May 2002 A1
20020070973 Croley Jun 2002 A1
20020078074 Cho et al. Jun 2002 A1
20020078103 Gorman et al. Jun 2002 A1
20020129056 Conant Sep 2002 A1
20020152244 Dean et al. Oct 2002 A1
20020156846 Rawat et al. Oct 2002 A1
20020169752 Kusama et al. Nov 2002 A1
20020169789 Kutay Nov 2002 A1
20020174147 Wang et al. Nov 2002 A1
20020174417 Sijacic et al. Nov 2002 A1
20020188597 Kern et al. Dec 2002 A1
20020188613 Chakraborty et al. Dec 2002 A1
20020194219 Bradley et al. Dec 2002 A1
20020196281 Audleman et al. Dec 2002 A1
20020196288 Emrani Dec 2002 A1
20030004951 Chokshi Jan 2003 A1
20030020746 Chen et al. Jan 2003 A1
20030023641 Gorman et al. Jan 2003 A1
20030025732 Prichard Feb 2003 A1
20030037303 Bodlaender Feb 2003 A1
20030048301 Menninger Mar 2003 A1
20030051243 Lemmons et al. Mar 2003 A1
20030055811 Stork et al. Mar 2003 A1
20030055828 Koch et al. Mar 2003 A1
20030061567 Brown et al. Mar 2003 A1
20030084424 Reddy et al. May 2003 A1
20030120578 Newman Jun 2003 A1
20030120651 Bernstein et al. Jun 2003 A1
20030120659 Sridhar Jun 2003 A1
20030120671 Kim et al. Jun 2003 A1
20030126555 Aggarwal et al. Jul 2003 A1
20030128196 Lapstun et al. Jul 2003 A1
20030135825 Gertner et al. Jul 2003 A1
20030140132 Champagne et al. Jul 2003 A1
20030158897 Ben-Natan Aug 2003 A1
20030182327 Ramanujam et al. Sep 2003 A1
20030187756 Klivington et al. Oct 2003 A1
20030188260 Jensen et al. Oct 2003 A1
20030189593 Yarvin Oct 2003 A1
20030192008 Lee Oct 2003 A1
20030204814 Elo et al. Oct 2003 A1
20030212664 Breining et al. Nov 2003 A1
20030217053 Bachman et al. Nov 2003 A1
20030225469 DeRemer et al. Dec 2003 A1
20030225829 Pena et al. Dec 2003 A1
20030233374 Spinola et al. Dec 2003 A1
20030236859 Vaschillo et al. Dec 2003 A1
20030237046 Parker et al. Dec 2003 A1
20030237047 Borson Dec 2003 A1
20040003031 Brown et al. Jan 2004 A1
20040003353 Rivera et al. Jan 2004 A1
20040003389 Reynar et al. Jan 2004 A1
20040010752 Chan et al. Jan 2004 A1
20040024842 Witt Feb 2004 A1
20040030991 Hepworth et al. Feb 2004 A1
20040039990 Bakar et al. Feb 2004 A1
20040039993 Kougiouris et al. Feb 2004 A1
20040044961 Pesenson Mar 2004 A1
20040044965 Toyama et al. Mar 2004 A1
20040054966 Busch et al. Mar 2004 A1
20040059754 Barghout et al. Mar 2004 A1
20040073868 Easter et al. Apr 2004 A1
20040078756 Napper et al. Apr 2004 A1
20040083426 Sahu Apr 2004 A1
20040088647 Miller et al. May 2004 A1
20040093596 Koyano May 2004 A1
20040107367 Kisters Jun 2004 A1
20040117769 Lauzon et al. Jun 2004 A1
20040123277 Schrader et al. Jun 2004 A1
20040172442 Ripley Sep 2004 A1
20040189716 Paoli et al. Sep 2004 A1
20040194035 Chakraborty Sep 2004 A1
20040205473 Fisher et al. Oct 2004 A1
20040205525 Murren et al. Oct 2004 A1
20040205534 Koelle Oct 2004 A1
20040205571 Adler Oct 2004 A1
20040205653 Hadfield et al. Oct 2004 A1
20040205671 Sukehiro et al. Oct 2004 A1
20040221238 Cifra et al. Nov 2004 A1
20040237030 Malkin Nov 2004 A1
20040268229 Paoli et al. Dec 2004 A1
20050004893 Sangroniz Jan 2005 A1
20050005248 Rockey et al. Jan 2005 A1
20050015732 Vedula et al. Jan 2005 A1
20050027757 Kiessig et al. Feb 2005 A1
20050038711 Marlelo Feb 2005 A1
20050055627 Lloyd et al. Mar 2005 A1
20050060324 Johnson et al. Mar 2005 A1
20050065933 Goering Mar 2005 A1
20050065936 Goering Mar 2005 A1
20050066287 Tattrie et al. Mar 2005 A1
20050071752 Marlatt Mar 2005 A1
20050076049 Qubti et al. Apr 2005 A1
20050091285 Krishnan et al. Apr 2005 A1
20050091305 Lange et al. Apr 2005 A1
20050102370 Lin et al. May 2005 A1
20050102612 Allan et al. May 2005 A1
20050108104 Woo May 2005 A1
20050108624 Carrier May 2005 A1
20050114757 Sahota et al. May 2005 A1
20050138086 Pecht-Seibert Jun 2005 A1
20050198086 Moore Sep 2005 A1
20050198247 Perry et al. Sep 2005 A1
20050223063 Chang et al. Oct 2005 A1
20050268222 Cheng Dec 2005 A1
20060020586 Prompt et al. Jan 2006 A1
20060026534 Ruthfield et al. Feb 2006 A1
20060031757 Vincent, III Feb 2006 A9
20060041838 Khan Feb 2006 A1
20060059434 Boss et al. Mar 2006 A1
20060069605 Hatoun Mar 2006 A1
20060085409 Rys et al. Apr 2006 A1
20060143220 Spencer, Jr. Jun 2006 A1
20070036433 Teutsch Feb 2007 A1
20070050719 Lui et al. Mar 2007 A1
20070061467 Essey Mar 2007 A1
20070061706 Cupala Mar 2007 A1
20070074106 Ardeleanu Mar 2007 A1
20070094589 Paoli Apr 2007 A1
20070100877 Paoli May 2007 A1
20070101280 Paoli May 2007 A1
Foreign Referenced Citations (20)
Number Date Country
0841615 Nov 1999 EP
0961197 Dec 1999 EP
1076290 Feb 2001 EP
1221661 Jul 2002 EP
63085960 Apr 1988 JP
401173140 Jul 1989 JP
4225466 Aug 1992 JP
5314152 Nov 1993 JP
406014105 Jan 1994 JP
6139241 May 1994 JP
6180697 Jun 1994 JP
6180698 Jun 1994 JP
3191429 Jan 2000 JP
2000132436 May 2000 JP
2002183652 Jun 2002 JP
2003173288 Jun 2003 JP
WO 9924945 May 1999 WO
WO 9956207 Nov 1999 WO
WO 0144934 Jun 2001 WO
WO0157720 Sep 2006 WO
Related Publications (1)
Number Date Country
20050187973 A1 Aug 2005 US