This application is a national stage application under 35 U.S.C. 371 of PCT Application No. PCT/EP2006/068090 having an international filing date of 3 Nov. 2006, which designated the United States, which PCT application claimed the benefit of European Application No. 05110323.2 filed 3 Nov. 2005, the entire disclosure of each of which are hereby incorporated herein by reference.
There are proposed a method and a clamping device for receiving and exactly fixing hollow bodies for carrying out controlled precision movements. That is intended to provide that the position of the hollow body can be so precisely controlled that digital printing on the outside surface of the wall of the hollow body is possible with a high degree of accuracy. Digital printing is replacing the colouring and decoration of the outside of the hollow body, which hitherto has been applied by a printing blanket method.
The invention concerns the cylindrical clamping device for rotationally symmetrical hollow bodies, in particular for cans or tins comprising a can body and a bottom integrally formed thereon, generally with a bottom which is curved inwardly in a dome shape.
It is known that, for processing (treating), in particular for printing on or decorating the outside surface of such hollow bodies, an exactly controlled, mostly stepwise movement in the form of rotation of the hollow body is extremely important for the accuracy and reliability of the operation of ‘processing’ the outside surface, see in that respect U.S. Pat. No. 6,767,357 (Joe Finan) concerning the printing operation, but not setting forth more detailed information regarding a clamping device.
U.S. Pat. No. 3,960,073 (Rush) describes a decoration apparatus for cans or tins integrally comprising a can body and a bottom, which has a plurality of identical clamping mandrels for the cans. Each clamping mandrel has a plurality of clamping segments with a cylindrical outside surface, which are guided synchronously radially movably by respective radial guide pins and which are biased in the direction of the radially retracted position by springs arranged on the pins.
Provided in the interior of the mandrel is a controlledly axially displaceable shaft, the axial movement of which is converted into the radial movement of the clamping segments by way of first inclined surfaces on the shaft and corresponding second inclined surfaces. The inclined surfaces are joined to the clamping segments. Axial displacement of the shaft is effected by mechanical control elements which are disposed outside the mandrel and which are connected to the shaft by way of suitable intermediate elements. A plurality of ducts open at the end face of the mandrel, which ducts can be connected at the other end to a source (of pressure or vacuum) in order to hold the can in its axial position on the clamping mandrel or however to expel the can from the clamping mandrel. The clamping function of the clamping mandrel is independently achieved and controlled in a purely mechanical fashion. For that purpose a large number of mutually co-operating individual parts which are matched to each other are required, and the pressure (increased pressure or overpressure) does not play a controlling part in that respect.
Achieving accuracy and reliability in the treatment of an outside surface of a clamped hollow body, in the sense of processing, coating, in particular also printing thereon, even with a high speed in respect of rotation and treatment and/or the hollow body change, is the technical object of the claimed invention.
That object is attained by a clamping device in the form of a ‘clamping bar’ (also referred to as a clamping mandrel).
The claimed cylindrical clamping device is of a very simple structure. It comprises only relatively few parts which co-operate very rapidly and precisely. Necessary distances covered by the movable parts are short. In particular control of those parts is operated by way of a reduced pressure and an increased pressure in a very simple and reliable fashion.
The hollow body is gripped by the clamping segments of the cylindrical clamping device over a large area and securely but nonetheless carefully. That can provide for an exactly controlled, generally stepwise movement, in particular in the form of rotation of the gripped hollow body. That is the basis for reliable treatment of the outside surface of the clamped hollow body, in particular for printing thereon.
The clamping and holding forces become operative synchronously (uniformly) from the interior of the hollow body, in particular the can, and thus, with a corresponding radial pressure, the mandrel and the can are united to form a motion unit, the movements of which are controllable with a very high degree of accuracy. Any risk of permanent deformation of the can, as occur when a can is held from the outside or only at the end, is eliminated.
The parts and devices used for the controlled movement of the clamping elements are disposed in the interior of the clamping mandrel.
A reduced pressure and coupling on to the hollow body are particularly advantageous in regard to simplicity, amount of time involved and effectiveness. On the one hand, application and control of a reduced pressure or an increased pressure in the interior of the mandrel are possible without involving a high degree of complication and expenditure and with a great degree of exactitude and at high speed. On the other hand at the same time the hollow body is threaded on to or expelled from the mandrel, without additional means.
In that respect, the bottom of the hollow body, in conjunction with the free end of the mandrel, is used as a kind of valve element which automatically provides that, when the can is threaded on to the mandrel, by means of a reduced pressure, the bottom bears against the end of the mandrel, and the reduced pressure becomes operative to move the clamping segments radially outwardly, whereby they bear under pressure against the inside wall of the can.
The claimed method of accurate positioning and controlled—preferably stepwise—precision movement of rotationally symmetrical hollow bodies which ‘integrally comprise’ a body portion and a bottom (without a folded seam in the bottom region), in particular drinks cans, including those with an inwardly curved bottom, is made possible by the precise clamping action achieved. This involves accurate fixing of the hollow body without the risk of damage to or deformation of the hollow body.
The accuracy of the clamping action can be so paraphrased that a synonymous accuracy in the transmission of movement can also be achieved thereby, in a sense which can be referred to as ‘suitable for digital printing’.
A rest position of the clamping device is achieved by a return force. It pulls the force-transmission device back into a rest position. That is suitable at any event for also compensating for fluctuating diameters of the hollow bodies which can be pushed on to the mandrel, with their fluctuating diameter.
Coupling of the force to the can which is sucked in position and held in place, as an example of a hollow body with a thin wall, is preferably improved in such a way that the clamping mandrel has an end face which is adapted to the shape of the can bottom at least in the region of the outlet of the axial bore. An inwardly directed, dome-shaped curvature (in the case of the can) is a dome-shaped curvature inwardly in the axial direction (in the case of the clamping mandrel).
The clamping mandrel has a shaft which is supported outside the clamping mandrel together with a multiplicity of identical mandrels in a carrier head which is rotatable in indexing steps. Provided at the end of the shaft is a dedicated, controllable drive which operates stepwise. The axial bore of the shaft can be controlledly connected to a source for higher or lower pressure. Both pressures are measured in relation to normal ambient pressure.
The invention is described in greater detail (supplemented and explained) hereinafter by means of a number of embodiments by way of example with reference to diagrammatic drawings in which:
An actual clamping surface 16 of the clamping device in the form of a clamping mandrel 1 is formed by a plurality of preferably identical clamping segments 2a, 2b, 2c and so forth (referred to for brevity by reference numeral 2) which each have a respective part-cylindrical outside surface as clamping surface portions and thus jointly form a cylindrical clamping surface 16. The clamping segments extend practically over the entire length of the clamping device 1 and are guided movably in the radial direction on a main body of the clamping device.
An example is the clamping surface portion 2a′ which is associated with the clamping segment 2a. A corresponding consideration applies to the clamping segment 2c and the clamping surface portion 2c′.
The main body comprises a central shaft 3 which extends over the entire length of the clamping device and beyond one of its ends and on which two end wall elements 6 and 7 are fixed at the appropriate axial spacing, the clamping elements 2 extending between the end wall elements 6 and 7.
The end wall element 7 at the free end f of the clamping mandrel 1 (for brevity also referred to as the ‘mandrel’ 1) has a cylindrical wall 11 which extends axially by a distance into the interior of the mandrel. The axis 100 identifies the axial direction and the centre of the clamping device.
The shaft 3 has an axial opening therethrough, for example in the form of a bore 4, which terminates flush with the free end 5 of the shaft 3 and the outside surface 7a of the end wall element 7. At an axial distance from that end 5 and in the region of the cylindrical wall 11, the shaft has radial openings, for example bores 21, which communicate with the axial bore 4. Arranged somewhat further axially towards the interior of the mandrel and axially limitedly displaceable on the shaft 3 is a disc-shaped wall 10 which is guided sealingly and slidingly against the cylindrical wall 11 by way of a ring portion 12.
A rotationally symmetrical control or actuating portion 13 is fixedly connected to the disc-shaped wall portion 10. In a central cylindrical opening, the wall has a plane sliding bearing which is axially displaceable on the shaft 3.
The clamping mandrel 1 is carried by the shaft 3 which is supported outside the clamping mandrel together with a multiplicity of identical mandrels in a carrier head which is rotatable in indexing steps (this is indicated at the right in
The end wall element 7 of the main body of the clamping mandrel, with the cylindrical wall 11 and the disc-shaped wall 10, forms a chamber 9 for a pressure or a reduced pressure (in relation to the ambient pressure). The control portion 13 is disposed axially outside the pressure chamber 9 but together with the disc-shaped wall 10 forms a force-transmission device as will be described in greater detail below.
The control portion 13 (also referred to as the actuating portion) has an axial opening, for example in the form of a bore 13a, the diameter 14 of which is visibly larger than the outside diameter d3 of the shaft 3. By means of interposed bearing sleeves 20 and 20′, the control portion 13 is axially displaceably guided on the shaft and can thus itself carry and guide the wall 10, as a disc-shaped first control portion 10.
The second control portion 13 has an outside surface which extends in a slightly conical configuration in the axial direction.
As can be seen from
Arranged in the conical intermediate space between the mutually opposite surfaces 17 and 19 are corresponding support and force-transmission elements 18 which are fixedly connected to one of the two portions 2 or 13. If the surface 19 is peripherally continuous, the surface 17 is composed of segments, as is predetermined by the segments 2a, 2b, 2c, or by the clamping wedges 15a, 15c. Then for example the clamping wedge 15c has the conically extending segment surface 15c′ which forms a portion of the conical inside surface 17.
The radial movement of the clamping segments 2 is produced by means of a reduced pressure for the clamping action and by means of an increased pressure for releasing the clamping effect. Both kinds of pressure become operative by way of the axial bore 4 of the shaft 3 (being supplied or discharged therethrough). The pressure-generating device for the respective pressure is not shown.
Both pressures are used to mount a rotationally symmetrical hollow body which comprises a bottom and a body portion, for example a beverage can, axially on to the mandrel, and to expel it from the mandrel. In that situation, the can bottom is used together with the outside surface of the end wall element 7 in order automatically to trigger the clamping movement of the clamping segments 2 only when the can is properly threaded on the mandrel in the axially finished position (completely) and to begin the expulsion operation only when the clamping segments have appropriately released the can.
A front outside surface 7a of the end wall element 7 is so designed that, with the can bottom bearing thereagainst, it has an annular contact in line form or in the form of an area, which stops air from being sucked from the exterior by the reduced pressure applied in the bore 4, so that now the reduced pressure acts by way of the radial bores 21 and the chamber 9 on the disc-shaped wall 10 and moves it together with the control portion 13 towards the left in
Upon an axial advance movement of the control portion, all clamping segments 2 are moved radially outwardly by way of the co-operating conical surfaces. The control portion therefore actuates the clamping segments 2a, 2b, 2c (and so forth) jointly and synchronously outwardly. It is therefore also referred to as the actuating portion 13.
A good coupling effect is achieved if the shape of the dome-shaped bottom of the hollow body which is not shown but which is generally known is matched to the shape of the end of the clamping mandrel. That end is the front outside surface of the front end wall element. Concave/convex adaptation is suitable.
In that respect, as an example,
The above-mentioned convex/concave adaptation of at least an inner region of the end wall 7a (curved inwardly towards the right) and the bottom, curved outwardly towards the right, of the hollow body is not separately shown in
When the hollow body is to be released from the clamping mandrel 1 compressed air is passed into the chamber 9 by way of the axial bore 4. It displaces the controlling first/second portion 10 and 13 as an adjusting device axially towards the end of the shaft (towards the right) and releases the holding force of the clamping segments 2. When that holding force ends the compressed air acts by way of the front end of the bore 4 on the bottom of the hollow body and thus expels it from the mandrel.
A return movement of the control device 10/13 can be achieved by a spring 40. It is arranged between the control portion 13 and the end wall element 6. It provides that, after the hollow body has been blown off the clamping mandrel, the control portion 13 is moved into a rest position, referred to as the neutral position, and does not remain in an undefined axial positional state, as an axial intermediate position. In that way the next hollow body can be satisfactorily axially pushed on to the clamping mandrel.
Diameter fluctuations in the hollow body, which are caused by tolerance, are compensated.
If the hollow body is also to be released from the clamping mandrel 1 in
The procedure in the bracing operation is identified in
(0) suction on/sealing
(1) evacuation of the chamber 9
(2) axial displacement of the control device 10/13
(3) radial expansion of the clamping segments 2/15.
The arrangement is of a very simple structure and nonetheless operates extremely accurately. The hollow bodies are engaged and held from the interior over a large area and securely but also carefully by the clamping segments. The necessary distances to be covered by the movable parts of the mandrel are short. Control by means of a reduced pressure and an increased pressure is simple and reliable, in particular in respect of automatic coupling of the end of the operation of axially sucking the hollow body on to the mandrel and the beginning of radial clamping of the clamping segments.
In the clamping position, the hollow body and the mandrel form a functional unit which can be reliably moved by a controlled movement of the shaft 3 in any direction and with any stepping distance and at any stepping speed. That involves primarily rotational movements for a treatment on the outside surface of the hollow body, for example printing thereon or coating it in the sense of an application procedure which is to be highly accurately controlled in respect of its position.
Number | Date | Country | Kind |
---|---|---|---|
05110323 | Nov 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/068090 | 11/3/2006 | WO | 00 | 5/2/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/051848 | 5/10/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2562021 | Dotten | Jul 1951 | A |
2578953 | Tyrrell | Dec 1951 | A |
2909338 | Cozzo | Oct 1959 | A |
3291427 | Hutchings | Dec 1966 | A |
3356019 | Zurick | Dec 1967 | A |
3548745 | Sirvet et al. | Dec 1970 | A |
3563170 | Cvacho et al. | Feb 1971 | A |
3628451 | McClellan et al. | Dec 1971 | A |
3766851 | Sirvet et al. | Oct 1973 | A |
3828668 | Zugcik | Aug 1974 | A |
3960073 | Rush | Jun 1976 | A |
4067511 | Hermanns | Jan 1978 | A |
4078483 | Gall | Mar 1978 | A |
4086859 | Dondero | May 1978 | A |
4134565 | Carter | Jan 1979 | A |
4151064 | Kuehnle | Apr 1979 | A |
4629528 | Tanaka et al. | Dec 1986 | A |
4672898 | Davidson | Jun 1987 | A |
4889050 | Meador | Dec 1989 | A |
4906170 | Nelson et al. | Mar 1990 | A |
5029523 | Fields | Jul 1991 | A |
5065183 | Morofuji et al. | Nov 1991 | A |
5090315 | Lee et al. | Feb 1992 | A |
5186100 | Turturro et al. | Feb 1993 | A |
5207153 | Thomason | May 1993 | A |
5259913 | Stover | Nov 1993 | A |
5282306 | Katsuhiro et al. | Feb 1994 | A |
5316192 | Ng | May 1994 | A |
5329871 | Gibbs | Jul 1994 | A |
5553547 | Miller | Sep 1996 | A |
5677719 | Granzow | Oct 1997 | A |
5743189 | Compera et al. | Apr 1998 | A |
5799574 | Williams et al. | Sep 1998 | A |
5831641 | Carlson | Nov 1998 | A |
5906304 | Baldacchino | May 1999 | A |
5941109 | Johnson et al. | Aug 1999 | A |
6000329 | Averill | Dec 1999 | A |
6082680 | Woodward et al. | Jul 2000 | A |
6116183 | Crow et al. | Sep 2000 | A |
6135654 | Jennel | Oct 2000 | A |
6178866 | Searle et al. | Jan 2001 | B1 |
6257136 | McLoy et al. | Jul 2001 | B1 |
6367380 | Whelan | Apr 2002 | B1 |
6397740 | Dubuit | Jun 2002 | B1 |
6428639 | Oldenburg et al. | Aug 2002 | B1 |
6563280 | Firehammer et al. | May 2003 | B2 |
6651552 | Didonato | Nov 2003 | B1 |
6695501 | Nedblake, Jr. et al. | Feb 2004 | B2 |
6769357 | Finan | Aug 2004 | B1 |
6786443 | Trutschel | Sep 2004 | B2 |
6920822 | Finan | Jul 2005 | B2 |
7373878 | Finan | May 2008 | B2 |
7377216 | Simon et al. | May 2008 | B2 |
20010042455 | Ackley | Nov 2001 | A1 |
20010054470 | Firehammer et al. | Dec 2001 | A1 |
20020162472 | Liguori et al. | Nov 2002 | A1 |
20030010229 | Fujita et al. | Jan 2003 | A1 |
20030034111 | Oldenburg et al. | Feb 2003 | A1 |
20060201356 | Johnson et al. | Sep 2006 | A1 |
20070169647 | Conrad | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 2004012941 | Feb 2004 | WO |
Entry |
---|
International Search Report prepared by the European Patent Office on Mar. 12, 2007 for International Application No. PCT/EP2006/068090; Applicant, Ball Packaging Europe Holding GmbH & Co. KG. |
Number | Date | Country | |
---|---|---|---|
20080282913 A1 | Nov 2008 | US |