The present invention relates generally to an aircraft stringer lay-up assembly and more particularly to an apparatus and method for reducing the presence of wrinkles in a primary lay-up surface of a composite aircraft stringer.
Aircraft components such as stringers have become complex in design and shape due to developing aircraft designs. The complexity of shape in combination with a need for decreased weight/strength ratios requires the use of alternate construction technologies. For this reason, aircraft designers have turned to the use of composite ply assemblies for the manufacture of aircraft stringers. In these manufacturing scenarios, a material ply impregnated with epoxy or similar substance is layed-up onto a mandrel shaped to generated the complex shape. The composite ply assembly is then cured to generate a composite component with the desired complex shape.
The nature of laying up material plies onto complex shaped mandrels, however, generates a plurality of manufacturing concerns and issues. One of such issues is the generation of wrinkles in the lay-up surfaces of the final component. These wrinkles can interfere with final assembly and may even in some circumstances weaken the strength of the final component. This is clearly undesirable. In addition, the complex shaping of the mandrels often places limits on the mandrel construction techniques. Standard metal fabrication of mandrels often is overly costly and cannot reliably result in the precise complex structures required for modern aircraft design requirements. The use of composite mandrel assemblies partially alleviates these concerns, but in turn results in costly mandrels that are easily damaged and do not have the lifespan of the metal fabricated counterparts.
It would, therefore, be highly desirable to have an aircraft stringer lay-up assembly with improved removal of wrinkles from the lay-up surfaces. It would additionally be highly desirable to have such an apparatus and method that was compatible with inexpensive and increased lifespan mandrels.
It is therefore an object to the present invention to provide an aircraft stringer lay-up assembly with improved wrinkle removal characteristics. It is further object of the present invention to provide an apparatus and method for the removal of wrinkles in aircraft stringer lay-up assemblies with improvements to cost and lifespan.
In accordance with the objects of the present invention an aircraft stringer lay-up assembly is provided comprising a first mandrel element having a first mandrel material with a first mandrel coefficient of thermal expansion. A composite ply assembly is laid up onto the first mandrel element to generate a primary lay-up surface. The composite ply assembly comprises a first primary fold-over portion folded onto to the first mandrel right end surface. A second primary fold over portion folds over to the first mandrel left end surface. The first mandrel coefficient of thermal expansion is adapted such that the first mandrel is movable between a first mandrel normal condition and a first mandrel heated condition where the first mandrel right end surface and the first mandrel left end surface move away from each other. The first primary fold-over portion and the secondary primary fold over portion are thereby moved such that wrinkles are pulled out of said primary lay-up surface.
Other objects and features of the present invention will become apparent when viewed in light of the detailed description and preferred embodiment when taken in conjunction with the attached drawings and claims.
Referring now to
The first mandrel element 12 is comprised of a first mandrel vertical upper surface 26, a first mandrel vertical lower surface 28, two first mandrel side surfaces 30, a first mandrel right end surface 32 located at a first mandrel right end 34 and a first mandrel left end surface 36 located at a first mandrel left end 38. A composite ply assembly 40 is laid-up onto said first mandrel element 12 to generate a primary lay-up surface 42. Although a variety of primary lay-up surfaces 42 are contemplated, one embodiment contemplates the primary lay-up surface 42 to be coincident with the first mandrel vertical upper surface 26. The composite ply assembly 40 further includes a first primary excess portion 44 (also referred to as a fold-over portion) and a second primary fold over portion 46. The first primary excess portion 44 is affixed to the first mandrel right end 34. In the case of using fold over embodiment, the first primary fold-over portion 44 is folded over to engage the first mandrel right end surface. Similarly the second primary excess portion 46 is affixed to the first mandrel left end 38 by folding over the second primary fold-over portion 46 onto the first mandrel left end surface 36.
The present invention contemplates that the fist mandrel element 12 is comprised of a first mandrel material 48 having a first mandrel coefficient of thermal expansion (COE) 50. The composite ply assembly 40 is preferably comprised of a composite COE 52 significantly less than the first mandrel COE 50. This allows the first mandrel 12 to be moved between a first mandrel normal condition 54 (
The heat required to move the first mandrel element 12 from the first mandrel normal condition 54 to the first mandrel heated condition 56 may be introduced in a variety of fashions. In one embodiment, the heat is provided through the curing heat 58 used to cure the composite ply assembly 40. In other embodiments, however, such as the example shown in
The present invention may be further improved by including a secondary lay-up surface 62 coincident with the first mandrel vertical lower surface 32. The composite ply assembly 40 thereby includes a first secondary excess (fold-over) portion 64 and a second secondary excess (fold-over) portion 66 affixed/folded over the first mandrel right end surface 32 and fist mandrel left end surface 36 respectively. The secondary excess portions 64,66 engage the primary excess portions 44,46 such that a stronger stretching force can be induced in the primary lay up surface 42 and the secondary lay-up surface 62. Although using fold-over technology may be utilized to secure excess portions, the present invention may further utilize a clamping assembly 68 (see
The second mandrel element 16 should similarly have a second mandrel coefficient of thermal expansion 72 which preferably matches said first mandrel COE 50. The second mandrel element 16 is preferably placed adjacent the first mandrel element 12 such that the composite ply assembly 40 may be laid up between the two mandrels 12,16 in addition to over the first mandrel upper vertical surface 26 and a second mandrel upper vertical surface 74, and over a first mandrel lower vertical surface 28 and a second mandrel lower vertical surface 76. In this fashion, a contoured I-beam element 78 is formed. The fold-over portions 44,46,64,66 (or excess portions) can be removed (trimmed) after curing such that a pristine contoured I-beam element 78 is produced (see
In still another embodiment, the composite ply assembly 40 may further include a first perpendicular fold-over portion 80 and a second perpendicular fold-over portion 82 perpendicular to the primary fold over portions 44,46. These perpendicular fold over portions 80,82 are folded over or affixed to the first mandrel side surfaces 30 opposing each other. This results in the primary lay-up surface 42 being stretched in a first planar direction 84 and a second planar direction 86 such that addition wrinkle removal is provided.
While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.