1. Field
The subject disclosure relates to mandrels. More particularly, the subject disclosure relates to a mandrel that grabs and holds wires or filaments to the mandrel around which the wire or filament is wound.
2. State of the Art
U.S. Pat. No. 2,634,922 to Taylor describes the winding of flexible wire, cable or filamentary material (hereinafter “wire”, which is to be broadly understood in the specification and claims) around a mandrel in a figure-eight pattern such that a package of material is obtained having a plurality of layers surrounding a central core space. By rotating the mandrel and by controllably moving a traverse that guides the wire laterally relative to mandrel, the layers of the figure-eight pattern are provided with aligned holes (cumulatively a “pay-out hole”) such that the inner end of the flexible material may be drawn out through the payout hole. When a package of wire is wound in this manner, the wire may be unwound through the payout hole without rotating the package and without kinking This provides a major advantage to the users of the wire.
Over the past fifty-plus years, improvements have been made to the original invention described in U.S. Pat. No. 2,634,922. For example, U.S. Pat. No. 5,470,026 to Kotzur describes means for controlling the reciprocating movement of the traverse with respect to the rotation of the mandrel in order to wind the filamentary materials on the mandrel to form a radial payout hole having a substantially constant diameter. In addition, over the past fifty-plus years, an increasing number of different types of wires with different characteristics are being wound using the systems and methods described in U.S. Pat. No. 2,635,922 and the subsequent improvements. For example, the figure-eight type winding has been used for Category 5 type cable, drop cable, fiber-optic cable, electronic building wire (THHN), etc. Despite the widespread applicability of the technology, challenges remain in applying the technology to different wires.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one embodiment, a mandrel useful for winding wire thereabout is provided with a central element and a plurality of radially attached bowed segments that are movable from a first collapsed position where the segments are closer to the central element and to each other to a second expanded or extended position where the segments are further from the central element and are spaced further from each other. One or more movable arms couple each segment to the central element in order to move the segments back and forth between the first and second positions, and the segments each define at least one horizontal interior slot in which the arm of that segment is accommodated as it rotates into the first collapsed position. At least one of the segments is provided with a radially extending groove that extends radially across a substantial portion of the bowed segment along the outer surface of the segment. The radially extending groove intersects the interior slot, thereby providing an opening from the exterior of that segment to the interior of that segment. A resilient pad is fixed in the slot of the segment provided with the radial groove and is located adjacent the opening where the slot and groove intersect. The arm of the segment is located so that when the arm is an extended position, the arm either contacts the resilient pad or is within a distance of less than a diameter of a wire that is to wound around the mandrel. When the arm is rotated towards a collapsed position, the arm moves away from the resilient pad.
In one aspect, with the provided arrangement, the end of a wire that is to be wound around the mandrel can be inserted from the radial groove side into the opening defined by the radial groove and the slot of the segment when the segment is in its collapsed position. The segment may then be moved into its extended position, and the wire will be squeezed between the resilient pad and the arm and will extend along the radial groove until it reaches the surface of the segment. The wire can then be wound around the mandrel by placing the central element on a motor shaft, and running the motor which rotates the mandrel, and by controllably moving a traverse that guides the wire laterally relative to mandrel. When a desired length of wire is wound, the package on the mandrel can be removed from the mandrel by cutting the wire (if necessary), collapsing the mandrel from its extended position into the collapsed position, thereby releasing the wire from between the resilient pad and the arm, and lifting the package off of the mandrel.
In one aspect, the provided mandrel is particularly useful with brittle wire.
In one embodiment, the resilient pad is fixed in the slot by attaching the pad to a non-resilient support element that is fixed in the slot. The non-resilient support element may be a metal spacer that is screwed onto the segment. In one embodiment, the metal spacer may be movable in the slot to a plurality of different locations and then fixed at a desired one of the plurality of different locations.
In one embodiment, the slot mandrel segments are curved in two directions so that the segments form a barrel-shaped form.
Additional aspects of the subject disclosure will become evident to those of ordinary skill in the art upon reference to the drawings, specification, and claims hereof.
A mandrel 10 with a wire retainer is seen in
As shown in
As seen best in
Also as seen best in
As seen in
As seen best in
In one embodiment, arms 25 have ends 25b that are rounded in one direction with the rounded ends of the arms defining the holes 30. In one embodiment, as seen in
In one aspect, the mandrel 10 may be of any size. By way of example and not by way of limitation, the mandrel may have a diameter of 10 inches at the middle, 8.5 inches at the top and bottom (or right and left sides), and the segments may be between 8 and 8.5 inches long.
In one aspect, the resilient pad 70 may be made of any resilient material. By way of example and not by way of limitation, the resilient pad 70 may be made of rubber or synthetic rubber. In one aspect, the resilient pad 70 may be of any thickness and any height provided it fits inside the slot 55 defined in the inner side of the segment 20X. By way of example and not by way of limitation, a rubber pad may be between 0.0625 and 0.5 inches thick and between 0.25 and 0.5 inches high.
In one aspect, the opening 65 defined by the radially extending groove 60 and the slot 55 may be of any reasonable size provided it will accommodate the wire material that is extending therethrough. By way of example and not by way of limitation, for a wire of between 0.04 inches and 0.1 inches in diameter the opening may be between 0.375 inches and 0.75 inches long and between 0.15 and 0.35 inches wide.
In one aspect, the radially extending groove 60 may have a flat bottom profile such that the groove is deeper in the middle (where it forms the opening 65 with the slot 55) and tapers as it extends radially to where it stops on each side. With such an arrangement, only a portion of the groove 60 forms an opening 65 with the slot 55. The remainder of the groove permits a wire 100 (seen in
In one aspect, the width of the groove 60 can be approximately twice the width of the wire 100 being wound the mandrel, or smaller, but is larger than the diameter of the wire 100.
In one aspect, with the provided mandrel 10, the end of a wire 100 that is to be wound around the mandrel can be inserted from the radial groove side into the opening 65 defined by the radial groove 60 and the slot 55a, 55 of the segment 20X when the segment is in its collapsed position. The segment may then be moved into its extended position, and the wire will be squeezed (pinched) between the resilient pad 70 and the contact surface 25a of arm 25X and will extend along the radial groove 60 until it reaches the surface 22 of the segment 20X. The wire 100 can then be wound around the mandrel by placing the central element 15 on a motor shaft (not shown), fixing the mandrel to the shaft using a set screw 94 extending through a hole 96 of the central element (seen in
In one aspect, the provided mandrel is particularly useful with brittle wire.
In one embodiment, the metal spacer 75 to which the resilient pad 70 is fixed in the slot 55 of segment 20X is movable in the slot to a plurality of different locations and then fixed at a desired one of the plurality of different locations.
In one embodiment, the slot mandrel segments are curved in two directions so that the segments form a barrel-shaped form.
There have been described and illustrated herein several embodiments of an mandrel with a wire retainer and a method of using the same. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while a mandrel with a particular number of segments has been disclosed, it will be appreciated that the mandrel could have a different number of segments. Also, while each segment is shown as being connected to the central cylinder by two arms, it will be appreciated that a different number of arms could be utilized. In addition, while particular angles of movement have been disclosed, it will be understood that the segments can move through different angles of movement. Further, while a hollow cylindrical central element is shown, it will be appreciated that the central element may assume different shapes. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.