Preferred embodiments of the present invention will now be described hereinbelow by way of example only with reference to the accompanying drawings, in which:
The electroforming system comprises a bath 103 which contains an electrolyte solution 105, a mandrel unit 107 which is disposed in the bath 103 and onto which a printing screen S is to be electroformed, an anode unit 109 which is disposed in the bath 103 such as to provide a source of ions of the metal to be deposited, and a power supply unit 111 which is electrically connected to the mandrel unit 107 and the anode unit 109 and operable to drive an electric current through the electrolyte solution 105, with the negative supply of the power supply unit 111 being connected to the mandrel unit 107 and the positive supply of the power supply unit 111 being connected to the anode unit 109.
The electrolyte solution 105 is typically an aqueous solution which contains a dissolved salt of the metal to be deposited, commonly nickel, and levellers which provide for control of the hardness of the deposited metal.
The mandrel unit 107 comprises a mandrel 115 onto which the printing screen S is to be electroformed, a supporting member 117, in this embodiment a supporting bar, for supporting the mandrel 115 in the bath 103 and providing an electrical connection therewith, and an interconnecting member 118 for mechanically and electrically interconnecting the mandrel 115 to the supporting member 117.
The mandrel 115 comprises a flat metal mandrel plate 119 which includes first and second oppositely-directed flat, major surfaces 121, 125, where one major surface 121 is a deposition surface onto which metal is deposited to form the printing screen S, as will be described in more detail hereinbelow.
In this embodiment the mandrel plate 119 comprises a substantially rectangular metal plate which includes first to fourth substantially straight outer edge sections 127a-d and first to fourth corner sections 129a-d, here of arcuate shape, which connect respective ones of the edge sections 127a-d. In this embodiment the edge and corner sections 127a-d, 129a-d define a continuous peripheral section.
Referring particularly to
The mandrel 115 further comprises a plurality of non-conductive aperture-defining elements 141, in this embodiment formed of resist, disposed on the deposition surface 121 which shield regions of the deposition surface 121 onto which metal is not to be deposited, with these elements 141 corresponding to the apertures to be formed in the printing screen S, in this embodiment printing apertures through which a pattern of a printing medium is to be printed.
Referring particularly to
Referring particularly to
Referring particularly to
Referring particularly to
The anode unit 109 comprises an anode plate 151, in this embodiment of the same rectangular shape as the mandrel 115, which is formed of the metal to be deposited as the printing screen S, and a supporting member 153, in this embodiment a supporting bar, for supporting the anode plate 151 in the bath 103 and providing an electrical connection therewith.
In a preferred embodiment the deposition surface 121 of the mandrel plate 119 and the anode plate 151 are disposed in opposed, parallel relation at a predetermined spacing.
In operation, the power supply unit 111 is actuated to drive an electric current through the electrolyte solution 105 between the mandrel unit 107 and the anode unit 109. This current causes metal ions to migrate from the anode plate 151 to the exposed surfaces of the mandrel plate 119, at which exposed surfaces, that is, the exposed regions of the deposition surface 121 and the exposed inclined and outer surfaces 131, 133 of the edge sections 127a-d, the metal ions deposit as the metal, building up the printing screen S by continued deposition on the mandrel plate 119.
This process is allowed to continue until a deposit of the required thickness, which constitutes the printing screen S, has been built up on the mandrel 115, as illustrated in
The non-conductive elements 141, 143a-d, 145a-d, 147, 149 are then removed, in this embodiment by stripping the resist, leaving the printing screen S.
The printing screen S is then separated from the mandrel 115, and, following cleaning, is ready for use.
The mandrel unit 107 of this embodiment is very similar to that of the above-described first embodiment, and differs only in the configuration of the edge and corner sections 127a-d, 129a-d of the mandrel plate 119.
In this embodiment each of the edge sections 127a-d comprises a first, outer surface 153 which extends from the respective edge of the deposition surface 121 in a direction substantially perpendicular thereto, a second, return surface 155 which extends inwardly and rearwardly from the lower end of the outer surface 153, and a third, recessed surface 157 which extends from the inner end of the return surface 155 to the other major surface 125 in a direction substantially perpendicular to the deposition surface 121. As will be described in more detail hereinbelow, the outer and return surfaces 153, 155 remain exposed to receive metal deposit, resulting in rearwardly and inwardly extending attachment elements E of the electroformed printing screen S.
In this embodiment the first to fourth non-conductive edge elements 143a-d each shield the recessed surface 157 of a respective one of the edge sections 127a-d, leaving the outer and return surfaces 153, 155 of the edge sections 127a-d exposed to receive metal deposit.
In this embodiment the non-conductive corner elements 145a-d each shield a respective one of the corner sections 129a-d, such that deposit is received only on the substantially straight edge sections 127a-d.
In this embodiment the return surfaces 155, and thus the attachment elements E of the printing screen S, have a lateral projection p in a plane parallel to the deposition surface 121 of about 0.5 mm. As a consequence of the relatively small extent of the lateral projection p and the rearward taper of the return surface 155, and thus the attachment elements E of the printing screen S, the resilience, albeit limited, of the printing screen S allows the printing screen S to be released from the mandrel 115.
In operation, the power supply unit 111 is actuated to drive an electric current through the electrolyte solution 105 between the mandrel unit 107 and the anode unit 109. This current causes metal ions to migrate from the anode plate 151 to the exposed surfaces of the mandrel plate 119, at which exposed surfaces, that is, the exposed regions of the deposition surface 121 and the outer and return surfaces 153, 155 of the edge sections 127a-d, the metal ions deposit as the metal, building up the printing screen S by continued deposition on the mandrel plate 119.
This process is allowed to continue until a deposit of the required thickness, which constitutes the printing screen S, has been built up on the mandrel 115, as illustrated in
The non-conductive elements 141, 143a-d, 145a-d, 147 are then removed, in this embodiment by stripping the resist, leaving the printing screen S.
The printing screen S is then separated from the mandrel 115, and, following cleaning, is ready for use.
The mandrel unit 107 of this embodiment is very similar to that of the above-described first embodiment, and differs only in the configuration of the edge and corner sections 127a-d, 129a-d of the mandrel plate 119.
In this embodiment each of the edge sections 127a-d comprises a first, hook surface 163, here of arcuate shape, which extends outwardly and rearwardly from the respective edge of the deposition surface 121 and returns inwardly and rearwardly to a location spaced rearwardly from and laterally inwardly of the respective edge of the deposition surface 121, a second, inclined surface 165 which extends inwardly and rearwardly from the rear, distal end of the hook surface 163, and a third, recessed surface 167 which extends from the inner end of the inclined surface 165 to the other major surface 125 in a direction substantially perpendicular to the deposition surface 121. As will be described in more detail hereinbelow, major regions of the hook surfaces 163 remain exposed to receive metal deposit, resulting in inwardly-directed, hook-shaped attachment elements E of the formed printing screen S.
In this embodiment the first to fourth non-conductive edge elements 143a-d each shield a region of the distal end of the hook surface 163 and the inclined and recessed surfaces 165, 167 of a respective one of the edge sections 127a-d, leaving major regions of the hook surfaces 163 of the edge sections 127a-d exposed to receive metal deposit.
In this embodiment the non-conductive corner elements 145a-d each shield a respective one of the corner sections 129a-d, such that deposit is received only on the substantially straight edge sections 127a-d.
In this embodiment the exposed regions of the hook surfaces 163, and thus the attachment elements E of the printing screen S, have a lateral projection p in a plane parallel to the deposition surface 121 of about 0.5 mm. As a consequence of the relatively small extent of the lateral projection p and the rearward and inward arcuate extension of the hook surface 163, and thus the attachment elements E of the printing screen S, the resilience, albeit limited, of the printing screen S allows the printing screen S to be released from the mandrel 115.
In operation, the power supply unit 111 is actuated to drive an electric current through the electrolyte solution 105 between the mandrel unit 107 and the anode unit 109. This current causes metal ions to migrate from the anode plate 151 to the exposed surfaces of the mandrel plate 119, at which exposed surfaces, that is, the exposed regions of the deposition surface 121 and the exposed regions of the hook surface 163 of the edge sections 127a-d, the metal ions deposit as the metal, building up the printing screen S by continued deposition on the mandrel plate 119.
This process is allowed to continue until a deposit of the required thickness, which constitutes the printing screen S, has been built up on the mandrel 115, as illustrated in
The non-conductive elements 141, 143a-d, 145a-d, 147 are then removed, in this embodiment by stripping the resist, leaving the printing screen S.
The printing screen S is then separated from the mandrel 115, and, following cleaning, is ready for use.
The electroforming system comprises a bath 203 which contains an electrolyte solution 205, a mandrel unit 207 which is disposed in the bath 203 and onto which a printing screen S is to be electroformed, an anode unit 209 which is disposed in the bath 203 such as to provide a source of ions of the metal to be deposited, and a power supply unit 211 which is electrically connected to the mandrel unit 207 and the anode unit 209 and operable to drive an electric current through the electrolyte solution 205, with the negative supply of the power supply unit 211 being connected to the mandrel unit 207 and the positive supply of the power supply unit 211 being connected to the anode unit 209.
The electrolyte solution 205 is typically an aqueous solution which contains a dissolved salt of the metal to be deposited, commonly nickel, and levellers which provide for control of the hardness of the deposited metal.
The mandrel unit 207 comprises a mandrel 215 onto which the printing screen S is to be formed, and a supporting member 217, in this embodiment a supporting bar, for supporting the mandrel 215 in the bath 203 and providing an electrical connection therewith.
The mandrel 215 comprises a mandrel plate 219 which includes first and second oppositely-directed flat, major surfaces 221, 225, where one major surface 221 is a deposition surface onto which metal is deposited to form the printing screen S, as will be described in more detail hereinbelow.
In this embodiment the mandrel plate 219 comprises a flat metal plate which includes first to fourth substantially straight edge sections 227a-d, which each include an elongate channel 228 and together define the edges of a rectangle, and, as will become more apparent hereinbelow, the lateral extent of the printing screen S to be electroformed, and first to fourth corner sections 229a-d which connect respective ones of the edge sections 227a-d.
Referring particularly to
The mandrel 215 further comprises a plurality of non-conductive aperture-defining elements 241 disposed on the deposition surface 221 which shield regions of the deposition surface 221 onto which metal is not to be deposited, with these elements 241 corresponding to the apertures to be formed in the printing screen S, in this embodiment printing apertures through which a pattern of a printing medium is to be printed.
Referring particularly to
Referring particularly to
The mandrel 215 further comprises a non-conductive surface-covering element 247 which shields the other major surface 225 and the outer edges of the mandrel plate 219, such as to prevent the deposition of metal thereon.
In this embodiment the aperture-defining elements 241 and the corner elements 245a-d are formed of resist, and the edge elements 243a-d and the surface covering element 247 are provided by a permanent coating, here of Teflon (RTM).
The mandrel 215 further comprises first to fourth non-conductive reference elements 250a-d disposed at respective ones of the corner sections 229a-d, which act to provide a means of reference when positioning a photo-mask in patterning the aperture-defining elements 241 relative to the channels 228 at the edge sections 227a-d. In this embodiment the reference elements 250a-d are annular fiducials which are defined by non-conductive annular elements, here formed of an epoxy resin, disposed in an annular channel cut into the mandrel plate 219.
The anode unit 209 comprises an anode plate 251, in this embodiment of the same rectangular shape as the mandrel 215, which is formed of the metal to be deposited as the printing screen S, and a supporting member 253, in this embodiment a supporting bar, for supporting the anode plate 251 in the bath 203 and providing an electrical connection therewith.
In a preferred embodiment the deposition surface 221 of the mandrel plate 219 and the anode plate 251 are disposed in opposed, parallel relation at a predetermined spacing.
In operation, the power supply unit 211 is actuated to drive an electric current through the electrolyte solution 205 between the mandrel unit 207 and the anode unit 209. This current causes metal ions to migrate from the anode plate 251 to the exposed surfaces of the mandrel plate 219, at which exposed surfaces, that is, the exposed regions of the deposition surface 221 and the channels 228 at the edge sections 227a-d, the metal ions deposit as the metal, building up the printing screen S by the continued deposition on the mandrel plate 219.
This process is allowed to continue until a deposit of the required thickness, which constitutes the printing screen S, has been built up on the mandrel plate 219, as illustrated in
The aperture-defining elements 241 and the corner elements 245a-d are then removed, in this embodiment by stripping the resist, leaving the printing screen S.
The printing screen S is then separated from the mandrel plate 219, and, following cleaning, is ready for use.
Finally, it will be understood that the present invention has been described in its preferred embodiments and can be modified in many different ways without departing from the scope of the invention as defined by the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 0423263.3 | Oct 2004 | GB | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/GB05/04016 | 10/19/2005 | WO | 00 | 4/20/2007 |