Estimating the range to a mobile object using a monocular camera fixed to a moving platform has, in general, remained an unsolved problem for the past three decades. An effective solution to this problem can be used in autonomous collision detection and avoidance applications for unmanned vehicles, especially unmanned aerial vehicles and surface vehicles. The technology can also be used to provide situational awareness information to manned air and water crafts moving in dynamic environments. In this disclosure, we present a novel approach to compute the range or distance to a dynamic object using a sequence of monocular images captured from a moving sensor platform. In what follows, we shall use the term “intruder” to describe the dynamic object whose range is to be estimated.
Depending on the sensor resolution, imaging sensors can provide very accurate estimates of the relative bearing angle to the intruder. At large distances, an intruder may occupy only a few pixels on an image. The classical approach is to treat the intruder as a point target and use bearing angle measurements to the tracked point. However, this approach is, in general, not sufficient due to the inherent unobservability of the intruder dynamics. We use an example to illustrate this problem.
Let us assume that the sensor platform is initially located at (0,0) in a two-dimensional plane and moves along the positive y-axis with velocity given by vs. Let us assume that the intruder initially located at (x0, y0) is moving with velocity (u, v) where u and v represent the X and Y components of the velocity. The position of the sensor at any time t is given by (0, vst). The position of the intruder at time t is given by (x0+ut, y0+vt). The bearing angle to the intruder as measured from the sensor at any given time is, therefore, given by arctan (y0+(v−vs)t)/(x0+ut). Now, let us assume there is another intruder located initially at (kx0, ky0) moving with velocity (ku, kv−(k−1)vs), where k is a positive constant and not equal to 1. Now, notice that the relative bearing to the second intruder measured from the sensor at any time t is given by arctan (ky0+(kv−(k−1)vs)t−vst)/(kx0+kut) which is equal to arctan (ky0+kvt−kvst)/(kx0+kut)=arctan (y0+(v−vs)t)/(x0+ut). Therefore, two intruders with distinct trajectories (k≠1) generate the same bearing angle measurement at the sensor. This clearly illustrates the inherent observability problem present in bearing-only tracking. Please refer to
The conditions of unobservability in a bearing-only tracking problem have been extensively studied since the late 1970's. This body of research has established that the intruder state is observable, in general, only if the order of sensor dynamics is greater than the intruder dynamics. For an intruder moving with constant velocity, this implies that the sensor dynamics must involve an acceleration component. In the event that the sensor dynamics are not of a higher order, the sensor platform must execute a deliberate maneuver involving a higher order dynamics component to be able to estimate the range. With the growing use of Unmanned Aerial Vehicles (UAVs) in recent years, such a “maneuver-based” approach has been proposed as a solution to the passive camera based Sense and Avoid (SAA) problem: upon detecting an intruder, the UAV maneuvers in order to triangulate and resolve the position of the intruder. However, a maneuver-based approach is undesirable in many ways especially in military operations. It may lead to waste of fuel, loss in mission performance, and is in general bad airmanship.
Other research deals with choosing the right coordinate frames and filters for bearings-only tracking from the point of view of stability and unbiasedness. For example, an Extended Kalman Filter (EKF) applied to bearings-only target tracking has been theoretically analyzed and has established the reasons for the filter bias and instability. A modified polar coordinate system based Kalman Filter has also been proposed to separate the observable and unobservable dynamics. Further, a bank of EKFs each with a different initial range estimate referred to as the range-parameterized (RP) tracker has been proposed and shown to perform better than classical EKF implementations. More recently, particle filter solutions to bearings-only tracking problem are receiving considerable attention and they have been implemented to track both maneuvering and non-maneuvering targets. Particle filter and RP EKF have been compared and it has been shown that the particle filter is only marginally better than the Range Parameterized EKF but is considerably more robust to errors in the initial target range.
This disclosure presents a novel passive image based ranging approach that does not require the sensor platform to maneuver. Analytical results prove that the approach can be used to estimate the range to an intruder without any sensor maneuver under very general conditions. Tests conducted on real flight-test data have demonstrated the practicality of the approach.
The invention in this disclosure concerns a novel method to estimate the range to a moving rigid body from a mobile platform using monocular passive cameras such as electro-optical or infra-red camera mounted on the platform. The primary application of the proposed technology is in the area of collision detection and avoidance for unmanned vehicles. Unmanned aerial, surface and ground vehicles equipped with cameras can use the proposed invention to estimate the range to other moving objects in their vicinity. The range information can then be used to determine the trajectory of the moving objects and maintain a safe distance from them.
Generally, in a computerized system including a camera mounted on a moving vehicle, wherein the camera acquires consecutively in real time a plurality of images of a moving object within a field of view of the camera, a method for determining a range of said moving object from said moving vehicle comprises the steps of:
(a) detecting the moving object (intruder) within each of said plurality of images;
(b) identifying two feature points p1 and p2 on said detected object where p1 and p2 satisfy a certain geometric relationship with the velocity vector of the detected object including but not limited to that the two feature points represent a leading point of the detected object and a trailing point of the detected object; and
(c) recursively calculating the range to the object based on changes in the positions of the feature points p1 and p2 in the sequential images and further based on the assumption that the geometric relationship mentioned under item (b), including but not limited to the assumption that the detected object is traveling in a direction along a line connecting feature points p1 and p2, is valid
The key aspect of the invention lies in the premise that if you can assume pure translational movement and assume a direction of motion based on the image, then you can recursively calculate the range without the order of sensor dynamics being greater than the intruder dynamics, i.e. without any extraneous maneuvering.
Accordingly, among the objects of the instant invention are: the provision of a maneuverless passive ranging method.
Another object of the invention is the provision of a ranging method which extracts feature points on a detected object and provides a geometric relationship between the spatial positions of the feature points and the direction of velocity of the object.
Other objects, features and advantages of the invention shall become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawings.
In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:
Referring to
Generally the invention is implemented in a computerized system 16 including a CPU 18, memory 20 and a camera mounted on the platform 12. The system 16 communicates with the vehicles navigation system and receives inputs from the vehicles global positioning system/inertial measurement unit (GPS/IMU) 22. The estimated range derived from the system 16 can be output back to the navigation system for avoidance measures or output to a display 24.
The invention is described in detail herein. In Section 1, there are described some preliminary notions that are used throughout the document. In Section 2, there are presented some novel mathematical results which form the basis of the invention. In Section 3, the monocular passive ranging (MPR) method is described. In Section 4, there is described a novel image processing algorithm which can be used as a module of the MPR algorithm when the rigid body to which the range is to be estimated is an aircraft. In Section 5, another variant of the MPR method is described.
1. Preliminaries
In this section, we describe concepts and notation to be used throughout this document. For any time t, let the positions of two feature points on the intruder be (x1(t), y1(t), z1(t)) and (x2(t), y2(t), z2(t)) respectively, where x1(t), y1(t), z1(t), x2(t), y2(t), z2(t)ϵ, where
is the set of real numbers. Here the coordinates are measured with respect to a fixed global frame of reference. Let the position of the sensor be (xs(t), ys(t), zs(t)), where again xs(t), ys(t), zs(t) ϵ
. Let ri(t)ϵ
3 be the position vector of feature point i with respect to the sensor at time t, where iϵ{1,2}. In other words, we have,
ri(t):=[xi(t)−xs(t) yi(t)−ys(t) zi(t)−zs(t)].
Given a vector XϵN, let ∥X∥ denote the Euclidean norm of the vector. We let X(t)(n) denote the nth derivative of X(t) with respect to time, assuming that the nth derivative exists. For notational convenience, we also assume that X(t)(0) is equivalent to X(t). We will also use ∥X(t)∥ as an alternate representation of ∥X(t)∥(1). Similarly, we let ∥X(t)∥(n) denote the nth derivative of ∥X(t)∥ with respect to time. In what follows, for simplicity we shall omit the dependence on time wherever it is clear from the context.
2. Novel Mathematical Conditions for Maneuverless Monocular Passive Ranging
In this section, we present the results on the observability of the intruder states. Intuitively speaking, an intruder state is said to be observable if the state can estimated from the available measurements. In particular, we are interested in observing the range to the intruder at a given time.
Lemma 1. Let the intruder be a rigid body undergoing a pure translational motion. Let (x1(t), y1(t), z1(t)) and (x2(t), y2(t), z2(t)) be the locations of two points on the intruder at time t. Assuming that the motion is sufficiently smooth for the first order derivatives to exist, we have {dot over (x)}1={dot over (x)}2; {dot over (y)}1={dot over (y)}2; ż1=ż2.
The proof is a straightforward consequence of the fact that the body is rigid and undergoes no rotation. We are now ready to state our main results on observability. The results are summarized by the following theorems.
Theorem 1. Let (x(t), y(t), z(t)) represent the trajectory of a given point on a mobile rigid intruder at time t. Likewise, let (xs(t), ys(t), zs(t)) represent the trajectory of the sensor. Let r(t) denote the vector (x(t)−xs(t), y(t)−ys(t), z(t)−zs(t)). Let the measurement vector be defined by h(t):=r(t)/∥r(t)∥ and let hx(t), hy(t) and hz(t) denote the three components of h(t). Let the following conditions be true:
Then the quantity ∥r(t)∥(1)/∥r(t)∥ is observable if the following conditions are true at time t.
and
Theorem 2. Let (x1(t), y1(t), z1(t)) and (x2(t), y2(t), z2(t)) be the locations of two points on a mobile rigid intruder at time t. Let the rigid body's motion be purely translational. Let [us(t) vs(t) ws(t)] and [u(t) v(t) w(t)] be the velocity vectors of the sensor and the intruder at time t. Let RϵSO(3) be a rotation matrix such that (1/∥[u(t) v(t) w(t)]∥)[u(t) v(t) w(t)]T=(1/∥[x1(t)−x2(t) y1(t)−y2(t) z1(t)−z2(t)]∥)R[x1(t)−x2(t) y1(t)−y2(t) z1(t)−z2(t)]T. Let ri(t) denote the vector (xi(t)−xs(t),yi(t)−ys(t),zi(t)−zs(t)) for iϵ{1,2}. Let the measurements be given by hi(t):=ri(t)/∥rit∥ for iϵ{1,2}. Let hi
is observable;
and
Then, the states of the intruder are observable as long as the vectors [us(t) vs(t) ws(t)] and [u(t) v(t) w(t)] are not parallel.
Theorem 3. Let the intruder be a rigid body undergoing a translation motion. Let (x1(t), y1(t), z1(t)) and (x2(t), y2(t), z2(t)) be the locations of two feature points on the intruder at time t. Let [us(t) vs(t) ws(t)] and [u(t) v(t) w(t)] be the velocity vector of the sensor and the intruder at time t. Let α ϵ [0, π/2] be the angle between the vectors [u(t) v(t) w(t)] and [x1(t)−x2(t) y1(t)−y2(t) z1(t)−z2(t)]. For parallel vectors, we assume that α=0 and for perpendicular vectors α=π/2.
Suppose that the following conditions hold:
is observable;
Then, the following statements hold true.
One of the critical assumptions in the above theorem is that (us, vs, ws) is not parallel or perpendicular to the vector(x1−x2, y1−y2, z1−z2). This again corresponds to events that are highly improbable Now that we have established the mathematical conditions for the range to an intruder to be observable, we present a novel monocular passive ranging method that does not require the sensor platform to maneuver.
3. A Novel Maneuverless Monocular Passive Ranging (MPR) Method
In this section, a novel MPR method based on the applications of Theorem 1 and Theorems 2 and 3 is described. We assume that there is a mobile platform containing a passive monocular camera system as the sensor. The sensor system is used to detect the presence of the other moving objects 10 in the vicinity and estimate the range to the objects. (See
For ease of reference of the reader, the equations of dynamics and measurements for a Recursive Filter Implementation for Cases 1 and 2 are laid out below.
Recursive Filter Implementation for Section 3—Case (1)
Dynamics Equations
x1(N)−xs(N)=0, y1(N)−ys(N)=0, z1(N)−zs(N)=0
x2(N)−xs(N)=0, y2(N)−ys(N)=0, z2(N)−zs(N)=0
x1(i)=x2(i), 1≤i≤N
y1(i)=y2(i), 1≤i≤N
z1(i)=z2(i), 1≤i≤N
u(R21(x2−x1)+R22(y2−y1)+R23(z2z1)) =v(R11(x2−x1)+R12(y2y1)+R13(z2−z1))
u(R31(x2−x1)+R32(y2y1)+R33(z2−z1)) =w(R11(x2−x1)+R12(y2y1)+R13(z2−z1))
Here N is a suitable positive integer, the superscript (N) denotes the Nth derivative with respect to time, u=x1(1), v=y1(1), w=z1(1) and Rij is the ij element of the rotation matrix R, and (xs, ys, zs) is the 3D position of the sensor platform.
Measurement Equations
Knowing the dynamics and the measurement equations, standard non-linear filtering techniques such as the Extended Kalman Filter can be implemented to get an estimate of the states (x1, y1, z1), (x2, y2, z2), and (u, v, w). Let the estimates be denoted by ({circumflex over (x)}1, ŷ1, {circumflex over (z)}1), ({circumflex over (x)}2, ŷ2, {circumflex over (z)}2), and (û, {circumflex over (v)}, ŵ). Once these states are estimated, the estimated range is given as follows:
Recursive Filter Implementation for Section 4.3—Case (2) and for Section 5 (below)
Dynamics Equations
x1(N)−xs(N)=0, y1(N)−ys(N)=0, z1(N)−zs(N)=0
x2(N)−xs(N)=0, y2(N)−ys(N)=0, z2(N)−zs(N)=0
x1(i)=x2(i), 1≤i≤N
y1(i)=y2(i), 1≤i≤N
z1(i)=z2(i), 1≤i≤N
If α=0 radians, then:
v(x2−x1)=u(y2−y1)
w(y2−y1)=v(z2−z1)
If α=π/2 radians, then:
u(x2−x1)+v(y2−y1)+w(z2−z1)=0.
Here N is a suitable positive integer, the superscript (N) denotes the Nth derivative with respect to time, u=x1(1), v=y1(1), w=z1(1) and (xs, ys, zs) is the 3D position of the sensor platform.
Measurement Equations
Knowing the dynamics and the measurement equations, standard non-linear filtering techniques such as the Extended Kalman Filter can be implemented to get an estimate of the states (x1, y1, z1), (x2, y2, z2), and (u, v, w). Let the estimates be denoted by ({circumflex over (x)}1, ŷ1, {circumflex over (z)}1), ({circumflex over (x)}2, ŷ2, {circumflex over (z)}2), and (û, {circumflex over (v)}, ŵ). Once these states are estimated, the estimated range is given as follows.
If α=0 radians, then:
If α=π/2 radians, then:
In a practical situation, measurements are always corrupted by noise. In such cases, a recursive filter implementation, such as the Extended Kalman Filter, can be used to estimate the range and other states of the intruder.
An exemplary recursive EKF method is described below
Let
Where the states x1, y1, z1, x2, y2, z2, u, v, w are recursively estimated without the knowledge of whether α=0 or απ/2
We determine that
α=π/2 if αcorrelation≤δ
α=0 if αcorrelation>1−δ
where δ is a tuning parameter
Furthermore, instead of using a single EKF, one could use a bank of EKF's, or a particle filter for recursively computing the range. In this case, one can compute α=0 or α=π/2 for each particle in the bank and then use a voting mechanism to determine if α=0 or α=π/2. If the number of particles with α=0 is larger than the number of particles for which α=π/2, then we make a determination that α=0 and vice versa.
4. Image Processing for Feature Point Identification in Aircraft Images
In the previous section, there is described a monocular passive ranging method. In step (i) of the method, two feature points on the intruder are identified such that the the rotation matrix R is known or that the angle α is known and is equal to either 0 or π/2 radians. In this section, a novel method to identify two feature points such that the angle α is equal to either 0 or π/2 radians is described. The method also provides an algorithm to check if the angle α is equal to 0 or π/2 radians. This method is applicable to the case when the intruder is an aircraft. A software implementation is laid out in
In
4a. Silhouette Extraction by Image Segmentation
The exemplary method below can be used as an alternative to the method set forth in
A silhouette extraction module is used to identify the two feature points of the object in the field of view. This works by first performing image segmentation in a neighborhood of the detected aircraft to obtain the aircraft silhouette, and then identifying two feature points from the silhouette.
Segmentation:
The image segmentation module receives a sequence of image windows of a fixed size around the detected aircraft. The steps in the image segmentation process are:
1. Compute image features: These are extracted by
2. Shape prior: The segmentation resulting from the previous frame is also used as a feature to maintain continuity of the silhouette. The shape prior is registered with the new image by shifting the shape prior till the centroids of the edge maps of the previous and current frame match. Optionally, the shift may be estimated by matching the brightest or darkest pixels in the current and previous frames.
3. Segmentation: A fast DBSCAN algorithm is used to segment the feature image into multiple clusters. The largest clusters and those touching the image boundary are marked as background and the rest are marked as foreground. The foreground cluster is the silhouette of the intruder aircraft.
Robust Feature Point identification:
The feature points of the silhouette are further identified in a manner robust to errors in silhouette extraction. A straight line is fit to the silhouette using least squares fitting. This is the principal axis of the silhouette. All silhouette points are projected to the principal axis and a truncated histogram of the points is calculated along the principal axis. The centroid and interquartile range (IQR) are calculated from the histogram. The robust feature point estimates are the two points a distance of IQR away from the centroid along the principal axis.
5. Likelihood Testing Based Range Estimation
In this section, another method for estimating the range to the intruder is described. The difference of this method from the method in Section 3 Case 2 (See
is greater than a certain threshold M then α is equal to 0 and the correct range estimate is rα=0est.
If, on the other hand,
is less than a certain threshold m then α is equal to π/2 and the correct range estimate is rα=π/2est.
The previous method requires the knowledge of the likelihood functions. Any suitable likelihood function can be used as long as it satisfied two properties. First, it should be a positive real valued function. Second, the function must assume a strictly greater value for an argument that is more likely to occur than another argument that is less likely to occur. The particular choice of the likelihood function depends on the needs of the user and domain of operation. For example, for use in an unmanned aircraft collision avoidance application, the likelihood functions should be designed after a careful study of the types of intruder aircraft operating in the airspace and their performance capabilities as well as the type of passive sensor being used. Likewise, the thresholds M and m are tunable design parameters and should be chosen based on the application scenario and system objectives.
6. Collision Detection
Previously we established that one can compute r1(t) and r2(t)—the range to the wto feature points using the method described in the patent. We now present a method to predict an imminent collision.
We introduce the following notation. Let tcurrent be the time at which the range to the feature points is computed. Define constants Tsafe and Rsafe as safe time and safe distance which allow for the either the ownship or the intruder to maneuver and avoid an impending collision. These constants depend on the dynamics of the ownship and the intruder. They are defined by the needs of the application. We determine that a collision is imminent if at a critical time t*≥tcurrent in the future if |ri(t*)|≤Rsafe for i=1 or 2, t*−tcurrent≥0 and t*−tcurrent≤Tsafe
In general case one can determine t* as
for i=1 or 2. Depending on the motion of the intruder and ownship t* might not be unique. We check for the collision detection condition for t* that is greater than tcurrent and closest to it among all the possible t*.
For the special case where intruder and the ownship are not accelerating i.e. both of them have linear motion then t* is computed using the formula
It can therefore be seen that the present invention provides a maneuverless passive ranging method which is based on extracting feature points on a detected object and assuming a direction of movement based on those selected feature points. For these reasons, the instant invention is believed to represent a significant advancement in the art which has substantial commercial merit.
While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.
This application claims the benefit of earlier filed U.S. Provisional Patent application No. 61465295, filed Mar. 17, 2011, the entire contents of which is incorporated herein by reference. This application is a continuation-in-part of U.S. patent application No. 13420964, filed Mar. 15, 2012.
This invention was made with government support under Air Force Contract No. FA8650-07-C-1200 and DARPA Contract No. W31P4Q-11-C-0118. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5867256 | Van Rheeden | Feb 1999 | A |
20040193374 | Hac | Sep 2004 | A1 |
20070154068 | Stein | Jul 2007 | A1 |
20080095402 | Kochi et al. | Apr 2008 | A1 |
20090252377 | Akita et al. | Oct 2009 | A1 |
20100296705 | Miksa et al. | Nov 2010 | A1 |
20110012719 | Hilger et al. | Jan 2011 | A1 |
20110178658 | Kotaba et al. | Jul 2011 | A1 |
20160107595 | Rosenbaum | Apr 2016 | A1 |
Entry |
---|
Gandhi, T., Yang, M.-T., Kasturi, R., Camps, O., Coraor, L, and McCandless, J., “Detection of Obstacles in the Flight Path of an Aircraft”, IEEE Transactions on Aerospace and Electronic Systems, vol. 39, No. 1, Jan. 2003. |
Utt, J., McCalmont, and Deschenes, M., “Development of a Sense and Avoid System”, American Institute of Aeronautics and Astronautics, infotech@aerospace, Sep. 2005. |
Hammel, S. and Aidala, V., “Observability Requirements for Three-Dimensional Tracking via Angle Measurements”, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-21, No. 2, Mar. 1985. |
Payne, A., “Observability problem for bearings-only tracking”, International Journal of Control, 49:3, 761-768, 1989, http://dx/doi.org/10.1080/00207178908559665. |
Lindgren, A. and Gong, K. F.; “Position and Velocity Estimation Via Bearing Observations”, IEE Transactions on Aerospace and Electronic Systems, vol. AES14, No. 4 Jul. 1978 pp. 564-579. |
Nardone, S. C. and Aidala, V. J.; “Observability Criteria for Bearings-Only Target Motion Analysis”, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17, No. 2 Mar. 1981 pp. 162-166. |
Aidala, V. J. and Hammel, S. E.; “Utilization of Modified Polar Coordinates for Bearings-Only Tracking”, IEEE Transactions on Automatic Control, vol. AC-28, No. 3 Mar. 1983 pp. 283-292. |
Shakernia, O., Cheen, W. Z., Raska, V. M.; “Passive Ranging for UAV Sense and Avoid Applications”, Infotech@Aerospace, American Institute of Aeronautics and Astronautics, Arlington, VA Sep. 2005 pp. 26-29. |
Aidala, V. J.; “Kalman Filter Behavior in Bearings-Only Tracking Applications”, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 1 Jan. 1979 pp. 29-39. |
Peach, N., “Bearings-only tracking using a set of range-parameterised extended Kalman filters”, IEE Proc.-Control Theory Appl. vol. 142, No. 1 Jan. 1995 pp. 73-80. |
Arulampalam, M. S., Ristic, B., Gordon, N., Mansell, T., “Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters”, EURASIP Journal on Applied Signal Processing 2004:15, 2351-2365, 2004 Hindawi Publishing Corporation. |
Arulampalam, M. S., Maskell, S., Gordon, N. and Clapp, T.; “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEFF Transactions on Signal Processing, vol. 50, No. 2 Feb. 2002 pp. 174-189. |
Brehard, T. and Le Cadre, J.-P.; “Initialization of Particle Filter and Posterior Cramer-Rao Bound for Bearings-Only Tracking in Modified Polar Coordinate System”, Institut National De Recherche En Informatique Et En Automatique, INRIA, No. 5074 Jan. 2004 pp. 1-29. |
Brehard, T., Le Cade, J.-P., “A New Approach for the Bearings-Only Problem: estimation of the variance-to-range ratio”, Int. Conf. on Information Fusion (Fusion'o4), Stockholm, Sweden 2004 pp. 591-598. |
Brehard, T. and Le Cadre, J.-P.; “Closed-form Posterior Cramer-Rao Bound for Bearings-Only Tracking”, IEEE Trans. on Aerospace and Electronic Systems, vol. 42 No. 2006 pp. 1198-1223. |
Brehard, T., and Le Cadre, J.-P.; “Hierarchical Particle Filter for Bearings-Only Tracking”, IEEE Transactions on Aerospace and Electronic Systems, vol. 43, No. 4 Oct. 2007 pp. 1567-1586. |
Arulampalam, S. and Ristic, B.; “Comparison of the Particle Filter with Range-Parameterised and Modified Polar EKFs for Angle-Only Tracking”, In Signal and Sata Processing of Small Targets 2000, Proceedings of SPIE vol. 4048 (2000). |
Joarder, K. and Raviv, D., “A Novel method to Calculate Looming Cue for Threat of Collision”, IEE 1995 pp. 341-346. |
Geyer, C., Dey, D., and Singh, S., “Prototype Sense-and-Avoid System for UAVs”, Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-09-09, 2009 pp. 1-49. |
Petridis, S., Geyer, C., and Singh, S., “Learning to Detect Planes at Low Resolutions”, in Proceedings of 6th International Conference on Computer Vision Systems (ICVS), vol. 5008, May 2008 pp. 1-19. |
Carnie, R. and Walker, R., “Image Processing Algorithms for UAV Sense and Avoid”, in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida—May 206, pp. 2848-2853. |
MC Candless, J. W., “Detection of Aircraft in Video Sequences Using a Predictive Optical Flow Algorithm”, Optical Engineering, 3: 523-530, pp. 1-17. |
Number | Date | Country | |
---|---|---|---|
61465295 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13420964 | Mar 2012 | US |
Child | 15138146 | US |