Combustion exhaust, particularly from diesel combustion, contributes to emission of a variety of gases, including carbon monoxide (CO), nitric oxide (NO), and hydrocarbons. Such gases are emitted from a variety of diesel engines, such as automobiles, marine engines, and generators. Catalysts are employed to catalyze oxidation of these gases, but traditional wash-coated catalysts do not catalyze oxidation as effectively at lower temperatures as compared to higher temperatures. In addition, traditional catalysts utilize platinum group metals (PGMs) to enhance catalysis. However, platinum group metals can be expensive.
Additional background information is provided in U.S. Patent Publication No. 2014/0256534 and U.S. Pat. No. 9,561,494.
Described herein is a low temperature, low pressure, hydrothermal, one-step, solution based process using KMnO4 and Co(NO)2 precursors.
Described herein is a method of making a manganese-cobalt (Mn—Co) spinel oxide nanoarray on a substrate. The method can include contacting a substrate with a solvent, such as water, that includes MnO4− and Co2+ ions at a temperature from about 60° C. to about 120° C. The method can include dissolving potassium permanganate (KMnO4) in the solvent to yield the MnO4− ions. The method can include dissolving cobalt nitrate, such as cobalt nitrate hexahydrate (Co(NO3)2·6H2O), in the solvent to yield the Co2+ ions.
The method can include varying the concentration of MnO4− and Co2+ ions in the solvent to control the density of the manganese-cobalt spinel oxide nanoarray. The method can include controlling the temperature of the solvent to control the density of the manganese-cobalt spinel oxide nanoarray.
The method can include contacting a substrate with a solvent comprising MnO4− and Co2+ ions at a temperature from about 60° C. to about 120° C. at least twice to increase the thickness of the manganese-cobalt spinel oxide nanoarray.
Described herein is a manganese-cobalt (Mn—Co) spinel oxide nanoarray on a substrate. The nanoarray can be free of precious metals. The nanoarray can be free of platinum group metals, such as platinum, palladium, and rhodium. The spinel metal oxide nanoarray can include MnxCo3-xO4, where x is between 0 and 3, preferably from 1 to 2, even more preferably about 1.5.
The substrate can have a honeycomb structure. The substrate can be cordierite, such as a cordierite honeycomb. The substrate can be etched.
Described herein is a method of reducing the concentration of an impurity in a gas. The method can include contacting the gas with a manganese-cobalt (Mn—Co) spinel oxide nanoarray, such as those nanorays described herein. The impurity can be a hydrocarbon. The gas can be from an emission source.
The redox reaction between KMnO4 and Co(NO3)2 was designed and readily utilized for scalable integration of spinel MnxCo3-xO4 nano-sheet arrays with three-dimensional (3D) ceramic honeycombs by controlling the reaction temperature. The Co2+ can reduce MnO4− to form Mn—Co spinel oxide nano-sheet arrays uniformly on the channel surface of cordierite honeycomb. The novel PGM free oxide nano-sheet array integrated ceramic honeycomb monolith shows good low temperature catalytic activity for propane oxidation, with the 50% conversion temperature achieved at 310° C. which was much lower than that over the wash-coated commercial Pt/Al2O3. These integrated Mn—Co composite oxide nano-arrays may hold great promise for the construction of advanced monolithic catalyst for high-performance and low-cost emission control.
The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments.
A description of example embodiments follows.
As used herein, the term platinum group metal (PGM) refers to platinum, palladium, rhodium, osmium, iridium, and ruthenium.
One of skill in the art will appreciate that different PGMs can have different catalytic activity and can be useful for different applications.
Due to the multiple valency states of manganese ions, manganese oxide with mixed-valent (Mn) framework can be achieved by a series of reactions such as reduction or oxidation of Mn2+ cation[1], MnO4− species[2, 3], and reduction-oxidation between Mn2+ and MnO4− ions[4, 5]. Some oxidants such as K2Cr2O7[6], (S2O8)2-[7, 8], NaClO[8] and carbon[9], have been applied for oxidizing Mn2+ to yield MnOx. Although some of their redox potentials are close to Mn4+/Mn2+ (1.23 V), the reaction could be still proceeded by controlling the reaction temperature and solution acidity. Potassium permanganate, a strong oxidizer, has been usually selected as a manganese precursor for synthesis of manganese oxide related materials under acidic condition. Because standard redox potential of MnO2/Mn2+ (1.224 V) is much higher than MnO4−/MnO2 (0.595 V), manganese salts with lower manganese oxidation state (Mn2+) have been usually used for reducing MnO4− to obtain manganese oxide such as octahedral molecular sieves (OMS)[5, 10, 11]. Besides the manganese ion-pairs such as Mn4+/Mn2+, some other ion-pairs (Ce4+/Ce3+, Co3+/Co2+ and Cu2+/Cu+) may be considered for the reduction of MnO4− into related MnOx or composite oxides. However, due to their incompatible standard redox potential near room temperature, using other metal ions with low oxidation state for the reduction of MnO4− have been usually ignored so far.
Mn—Co spinel oxide, an important solid solution composite oxide with a general formula of (Co, Mn)(Co, Mn)2O4, has attracted great attention as heterogeneous catalysts and battery anode materials, owing to its favorable features such as low cost, easy accessibility, high stability, redox-active metal centers, and environmental friendless[12-14]. Much research has been reported on the synthesis of powder-based Mn—Co composite oxides with significantly promoted activity through nanostructuring. However, it is usually accompanied with compromised performance after the assembly of nanostructured powder-based devices. In ceramic honeycomb monolith with separate 3D channels, the direct integration with hierarchical Mn—Co oxide array structure remains a challenge due to the difficulty to grow nanostructures uniformly in deep channels.
Described herein is a successfully designed and utilized redox reaction between KMnO4 and Co(NO3)2 at controllable temperature for directly growing Mn—Co composite oxide nanostructure arrays onto 3-D channeled cordierite honeycomb substrates. With uniform deposition in the form of nanostructure arrays, the Pt-group metal (PGM) free Mn—Co spinel oxide integrated honeycomb monolith can be scaled up in full size with good catalytic propane oxidation activity at low temperature superior to the Pt/Al2O3 wash-coated monolithic catalysts. Materials loading can be dramatically reduced on the nanostructure array monolithic catalysts, while the well-defined structural characteristics and distribution enabled by array nanostructures allow effective mass transport and enable improved reaction chemistry and kinetics[15].
Varying the concentration of MnO4− or Co2+ ions in the solvent can permit control of the deposition rate of the manganese-cobalt spinel oxide nanoarray. Increasing the concentration of the ions can increase the rate at which those ions are deposited to form a nanoarray. Controlling the temperature of the solvent can also control deposition rate of the manganese-cobalt spinel oxide nanoarray. Increasing the temperature of the solvent can increase the rate at which ions are deposited to form a nanoarray.
Mn—Co spinel oxide nano-array based monolith can be in situ fabricated on various commercial substrates like metal fiber/foil/film, carbon fiber/film/foam, ceramic/alumina/silicon carbide/stainless steel honeycomb by applying a solution hydrothermal strategy at low temperature and low pressure. This monolithic material with high surface area and high materials utilization efficiency can be directly used for environment and energy applications including emission control systems, air/water purifying systems and lithium-ion batteries.
Preferably, the substrate comprises a honeycomb cordierite.
Mn—Co spinel oxide is usually used for the anodes in lithium-ion batteries with high capacity and cycle life. It is also used as a non-precious-metal catalyst for controlling emissions, e.g., CO oxidation, hydrocarbon combustion, NO oxidation and reduction etc. By integrating this Mn—Co oxide array on conductive substrate (metal and carbon), the product can be directly used as an anode electrode in rechargeable lithium-ion batteries (LIBs). For non-conductive substrates like ceramic/alumina/silicon carbide honeycomb, the product covered with Mn—Co oxide nano-array can be directly used as an active catalyst for catalytic oxidation/reduction and to be a high-surface support for loading a platinum group metal (PGM) instead of a washcoating procedure. The developed catalytic device can be used in an emission control system, e.g., a diesel oxidation catalyst, volatile organic compounds (VOCs) combustion reactor, indoor air purification etc.
Powder based industry typically requires further processes, like pelleting and washcoating, for practical applications. These further processes typically compromise material utilization efficiency. Additionally, these process steps increase the length of production time.
As disclosed herein, Mn—Co array nanostructures can be integrated directly onto various substrates, which accomplishes the application of metal oxides based nanomaterials without any further powder-based procedures. Directly integrating the Mn—Co array nanostructures onto a commercial substrate can significantly reduce fabrication time and costs while creating a product having an ultra-high materials utilization efficiency.
The nanostructure monoliths disclosed herein have several advantages. The monolithic Mn—Co oxide array nanostructure has excellent contact with substrate, high surface area, well-defined structural and geometrical configurations, and high materials utilization efficiency. The in situ integrating technology can fully keep the nanostructure-derived properties exposed instead of compromising the performance and materials utilization efficiency which is always a great challenge in the powder-based industry.
Optionally, the cordierite honeycomb is contacted with basic solution to form an etched cordierite honeycomb. In general, the basic solution can be a NaOH, KOH, or NH4OH solution, the treating time is in the range of 2-48 hours, and the treatment temperature is in the range of 40-120 degree C. In general, the concentration of the NaOH, KOH or NH4OH is in the range of about 0.5M to about 3M, with about 2M being a preferred concentration. Weak bases, such as ammonia, can be acceptable. The cordierite honeycomb treated in this way is referred to herein as etched cordierite honeycomb. Alternatively, etched cordierite honeycomb is prepared by contacted cordierite honeycomb with an acidic solution for comparable times and at comparable temperatures. Suitable acidic solutions include hydrochloric acid, sulfuric acid, and phosphoric acid, though weaker acids, such as acetic acid and oxalic acid, can be acceptable as well.
Mn—Co—O sheet arrays disclosed herein can be grown on unmodified (e.g. not etched) cordierite honeycomb and on etched cordierite honeycomb. The growth method is the same in each case, but the resultant structures differ. Compared to an Mn—Co—O sheet array grown on a non-etched cordierite honeycomb, an Mn—Co—O sheet array grown on etched cordierite has improved performance for hydrocarbon combustion due to greater surface area and being more populated with a wider range of pore sizes, based on Brunauer-Emmett-Teller (BET) analysis. The activity of the resulting catalyst for hydrocarbons combustion can be enhanced by adjusting the porosity of the Mn—Co—O sheet array.
Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) was applied as a reducing agent to react with potassium permanganate (KMnO4), which could make the formation of Mn—Co composite oxide on the surface of ceramic cordierite. Before growth, ceramic cordierite honeycomb was ultra-sonicated for 30 minutes in ethanol to remove the residual contamination and washed with DI water, then dried at 90° C. for further use. The cordierite honeycomb substrate (1 cm×2 cm×3 cm, mesh 600) was suspended into 40 mL mixed aqueous solution of Co(NO3)2 and KMnO4. To investigate the reducing effect of Co(NO3)2 on KMnO4, different molar ratios of Co(NO3)2/KMnO4 (the units of both Co(NO3)2 and KMnO4 are mmol) were used such as 0.5/4, 1/4, 2/4, 4/4, 6/4 and 8/4, where the as-prepared samples were denoted as 0.5Co-4Mn, 1Co-4Mn, 2Co-4Mn, 4Co-4Mn, 6Co-4Mn and 8Co-4Mn, respectively. The mixed solution was then transferred into an electrical oven for hydrothermal synthesis at 95° C. for 12 hours. Notably, no reaction occurs before the temperature reaches a minimum threshold, which is dependent upon the reactant concentration, as described more fully in the Calculation of Gibbs Free Energy. As a result, this confers a degree of control over the reaction, which can be useful for process development (e.g., appropriate selection of heating device). After the reaction, the substrate was withdrawn from the solution and carefully washed to remove the residual precipitate, then dried at 90° C. for 12 hours. Both the monolith and collected powder from the solution were transferred into a muffle furnace and treated at 500° C. for 2 hours in air.
X-ray diffraction (XRD) patterns of the as-synthesized Mn—Co nanostructured array were measured on BRUKER AXS D5005 X-ray diffractometer system using Cu-Ka radiation in the diffraction angle (2θ) range 10-80. The Brunauer-Emmett-Teller (BET) surface areas and pore size distributions of all samples were obtained using the N2 adsorption-desorption method on an automatic surface analyzer (ASAP 2020, Micromeritics Cor.). For each measurement, all samples were degassed at 150° C. for 6 h. The morphology and structure were recorded on a scanning electron microscope (SEM, FEI Teneo LVSEM). The microstructures of selected sample were obtained by using transmission electron microscopy (TEM, FEI Talos S/TEM) with an accelerating voltage of 200 kV. Hydrogen temperature programmed reduction (H2-TPR) was carried out in a U-shaped quartz reactor under a gas flow (5% H2 balanced with Ar, 25 mLmin−1) on a Chemisorption system (ChemiSorb 2720, Micromeritics Cor.). In each run, sample with 49 channels (7 mm×7 mm×10 mm) was used and the temperature was raised to 750° C. from room temperature at a constant rate of 10° C. min−1.
Catalytic propane combustion was selected as a probe reaction to illustrate activity of as-prepared nanostructured 3D Mn—Co composite array. Hydrocarbons generated from mobile and stationary combustion sources, such as automobiles, petrochemical, and power generation plants, play an important role in the formation of photochemical smog and ozone pollution and some are difficult to remove like propane. The propane oxidation tests were carried on a BenchCAT system (Altamira Instruments), and an Agilent Micro-GC were equipped for separating and detecting gaseous species in the exhaust stream. The reactant gas was composed of 0.3% C3H8, 10% O2 and balanced with N2, and the total flow rate of 50 ml min−1. Typically, honeycomb sample with 25 channels (5 mm×5 mm×10 mm) was used to test and the space velocity (SV) was about 12,000 h−1. The total weight of the monolithic nanostructured honeycomb was around 0.1 g and the actual catalytic active materials were about 5-20 mg.
MnO4− is reduced to MnO2; Co2+ is oxidized to Co3+. The half-equations are
(1) reduction of MnO4−:
MnO4−+4H++3eMnO2+4OH−,E1°=1.679 V;
(2) Co2+ oxidation:
3Co3++3e3Co2+,E2°=1.92V;
3Co2+3Co3++3e,E3°=−E2°=−1.92V;
Then the total reaction is:
MnO4−+2H2O+3Co2+MnO2+4OH−+3Co3+,E°=E1°+E2°=−0.241V
So, the standard Gibbs free energy change is
ΔG°=−nFE=−3×9.648×104×(−0.241) J=69.77 kJ,
Clearly then, ΔG°>0, indicating the total reaction cannot be proceeded under the standard condition (T=273.15K, P=101.325 KPa, c=1 mol/L). However, the solubility of MnO4− (KMnO4, 0.4 mol/L at 20° C.) are limited, so the actual Gibbs free energy should be calculated from actual reduction potential.
So, the actual reduction potential is
The balanced [Co3+] can be obtained from Ksp-Co(OH)3(2.5×10−43),
Using [Co2+]=0.1 mol/L, [MnO4−]=0.1 mol/L, [H+]=[OH−]=10−7 mol/L,
Then, ΔG=−nFE=−117.5 kJ<0
It is noticed that the reaction can be proceeded under our experimental condition. The reaction at room temperature is not clear that might be due to the large activation barriers to the reaction which prevent it from taking place. With raising the temperature, The Gibbs free energy change can be moved to more negative value and the activation barriers can be overcome.
Reaction Between MnO4− and Co2+
The reactions between MnO4− and Co2+ incorporate the Co species into the manganese oxide framework and then form the Mn—Co composite spinel oxide. In an earlier study of a Co3O4—MnO2 hybrid nanowire array structure on the stainless steel plate, three processes were involved: growth of Co3O4 nanowires array; deposition of a carbon layer on the Co3O4 nanowires; and MnO2 shell formation through reduction of KMnO4 with assistance of carbon layer[24]. The prior process is more complex and less controllable than the methods described here.
In the methods described herein, the experiments showed no obvious color change after mixing the KMnO4 and Co(NO3)2 solution for several days at room temperature, indicating that the reaction between MnO4− and Co2+ is very slow at room temperature. According to the Nernst equation (E=Eθ)−(RT/(nF))lnQ), the cell voltage E is influenced by standard voltage Eθ, temperature T, and reaction quotient. From the standard reduction potentials of Co3+/Co2+ (1.92 V) and MnO4−/MnO2 (1.679V), the standard voltage for the reaction between Co2+ and MnO4− will be positive, indicating the standard free energy change will be negative with the reaction proceed at room temperature (see Calculation of Gibbs Free Energy). However, the reaction at room temperature seems to be negligible due to the large activation barriers to the reaction. With the temperature rise, Gibbs free energy change will be more negative and the activation barriers can be overcome. As a result, a significant reaction can take place when increasing reaction temperature to 95° C. Without wishing to be bound by theory, acceptable reaction rates are typically found between 6. As shown in
One of skill in the art will appreciate that reaction rates are related to both temperate and reactant concentration. Increasing the concentration of reactants will permit acceptable reaction rates at lower concentrations of reactants. Accordingly, acceptable reaction rates can typically be found from about 60° C. to about 120° C., depending on the concentration of reactants. See Calculation of Gibbs Free Energy for more information.
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for studying the morphological features of as-prepared Mn—Co composite oxide nano-arrays. As shown in
One of the as-synthesized samples (6Co-4Mn) was selected for further evaluation, as shown in
The nano-sheet like morphology was further illustrated by observation of transmission electron microscopy (TEM) images which are presented in
The XRD patterns of the as-prepared nano-sheet array based monolithic cordierite are represented in
A redox mechanism is usually applied to explain the catalytic oxidation reaction on the metal oxides, which contains oxidizing hydrocarbon by the surface (or lattice) oxygen of catalyst and regeneration of surface (or lattice) oxygen by gaseous oxygen [30, 31] The different oxidation states of Mn and Co species can provide serious redox pairs that will effectively promote the oxidation and reduction processes during the oxidation of hydrocarbons. H2-TPR is an ideal method to investigate the reducibility of the catalysts and the results are displayed in
In summary, the reaction between Co2+ and MnO4− at about 90° C. can be used to integrate Mn—Co composite oxide nano-sheet array onto a 3D cordierite honeycomb substrate. The Co2+ can reduce MnO4− to grow Mn—Co spinel oxide nano-sheet arrays uniformly on the channel surface of cordierite honeycomb. The novel nanostructure shows good low temperature catalytic activity for propane oxidation, with the 50% conversion temperature achieved at 310° C. which was much lower than that over the wash-coated commercial Pt/Al2O3. These integrated functional Mn—Co composite oxide nano-arrays are useful for the conversion of gaseous hydrocarbons to carbon dioxide.
A nanostructured MnxCo3-xO4 sheet array was synthesized by a hydrothermal reaction between KMnO4 and Co(NO3)2 solution. Reaction time: 12 hours; Temperature: 95° C.; Ratio 6Mn-4Co. Two kinds of cordierite honeycomb (600 cpsi) including blank one and another treated with basic solution were used as substrates for in-situ growth of nano-array based catalysts. The catalytic hydrocarbons combustion was conducted in a fixed-bed reactor by using the BenchCAT system with a space velocity of 24,000 h1. The typical reaction gas was 0.5% C3H6 (or 0.3% C3H8)+10% O2 balanced with nitrogen.
Compared to the blank cordierite honeycomb (
A reaction between KMnO4 and Co(NO)2 has been used to synthesize Mn—Co spinel oxide and successfully applied to in-situ grow MnxCo3-xO4 sheet array on the 3-D channel of commercial cordierite honeycomb. The textural properties can be controlled by modifying the surface of cordierite substrate. By adjusting the porosity of MnxCo3-xO4 sheet array, the catalytic activities toward hydrocarbons combustion can be significantly promoted.
The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for the elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt the teaching of the invention to particular use, application, manufacturing conditions, use conditions, composition, medium, size, and/or materials without departing from the essential scope and spirit of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments and best mode contemplated for carrying out this invention as described herein.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting of the true scope of the invention disclosed herein. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Since many modifications, variations, and changes in detail can be made to the described examples, it is intended that all matters in the preceding description and shown in the accompanying figures be interpreted as illustrative and not in a limiting sense.
Chemical compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a by hydrogen atom.
All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. Each range disclosed herein constitutes a disclosure of any point or sub-range lying within the disclosed range.
The use of the terms “a” and “an” and “the” and words of a similar nature in the context of describing the improvements disclosed herein (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or relative importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes, at a minimum the degree of error associated with measurement of the particular quantity).
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention or any embodiments unless otherwise claimed.
This application claims the benefit of U.S. Provisional Application No. 62/513,544, filed on Jun. 1, 2017. The entire teachings of the above application are incorporated herein by reference.
This invention was made with government support under Grant No. DE-FE0011577 from the United States Department of Energy; under Grant No. DE-EE0006854 from the United States Department of Energy; and under Grant No. CBET1344792 from the United States National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62513544 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16465948 | May 2019 | US |
Child | 18166577 | US |