Manhole rehabilitation system

Information

  • Patent Grant
  • 10968594
  • Patent Number
    10,968,594
  • Date Filed
    Wednesday, November 20, 2019
    4 years ago
  • Date Issued
    Tuesday, April 6, 2021
    3 years ago
Abstract
A manhole rehabilitation system where in one example an existing cross-pipe is exposed and a manhole base and riser are cast around and above the existing cross pipe to form a manhole. In one example an FRP base liner and FRP riser liner are placed before casting in place. In one example casting is made of an aggregate. In one example, a collar and manhole cap rest upon the casting, and are supported thereby such that the liner need not be structural. In one example an existing pipe or manhole forms the outer surface of the casting. In one example shoring is placed and used as the outer surface of the casting.
Description
BACKGROUND OF THE DISCLOSURE
Field of the Disclosure

This disclosure relates to the field of manhole assemblies forming a chamber allowing access to a cross pipe.


Background of the Invention

U.S. patent application Ser. No. 15/946,643 ('643) discloses a different manhole assembly, which is manufactured off site in sections, and then assembled on site. The base of the '643 application comprises bell connectors or equivalents which are attached to pipes which terminate at the bell connectors.


BRIEF SUMMARY OF THE DISCLOSURE

Disclosed herein is a method for producing a manhole. In one example the method comprises the steps of:

    • establishing an excavation below a ground level;
    • exposing an external piping in the excavation;
    • removing a section of the external piping;
    • providing a non-structural base liner having surfaces defining pipe openings; an outer surface, an upper edge;
    • placing the base liner in the excavation, the laterally opposed pipe openings aligned with the external piping;
    • placing a channel pipe having opposing ends in the base liner, attaching the opposing ends of the channel pipe to the external piping in place of the removed section; wherein the channel pipe passes through the pipe openings;
    • the channel pipe having an open channel therein forming a fluid conduit to the external piping;
    • placing a channel form/plug in the open channel, substantially sealing the open channel from entry of debris;
    • filling the base liner with a semi-fluid aggregate material;
    • surrounding the base liner with a semi-fluid aggregate material;
    • allowing the aggregate material to harden;
    • sealing at least one riser liner to the upper edge of the base liner;
    • sealing a cone liner to an upper edge of the riser liner;
    • sealing a riser cap to the upper edge of the riser cone; and
    • disposing a volume of aggregate fill exterior of the base liner, riser liner, and cone liner.


The method may be implemented wherein the channel pipe is formed of a polymer.


The method may be implemented wherein the open channel is open greater than 170° around the circumference of the channel pipe.


The method may be implemented wherein the channel plug is sacrificial.


The method may be implemented wherein the step of filling the base liner includes the step of filling the base liner up to an upper edge of the channel pipe.


The method may be implemented wherein the base liner, riser liner, and/or cone liner are formed of FRP.


The method may be implemented wherein the base liner, riser liner, and/or cone liner are non-structural. This meaning that they do not satisfy compression requirements. The compression requirements satisfied by the aggregate fill in the hardened state. A manhole ring, and manhole cover supported by the hardened state aggregate fill, not the base liner, riser liner, nor cone liner.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a front partial section view of one example of a completed manhole rehabilitation system.



FIG. 2 is a top perspective view of an early (first) stage of construction of the manhole rehabilitation system.



FIG. 3 is a top perspective view of another (second) stage of construction of the manhole rehabilitation system.



FIG. 4 is a top perspective view of another (third) stage of construction of the manhole rehabilitation system.



FIG. 5 is a top perspective view of another (fourth) stage of construction of the manhole rehabilitation system.



FIG. 6 is a top perspective view of another (fifth) stage of construction of the manhole rehabilitation system.



FIG. 7 is a top perspective view of another (sixth) stage of construction of the manhole rehabilitation system.



FIG. 8 is a top perspective view of another (seventh) stage of construction of the manhole rehabilitation system.



FIG. 9 is a top perspective view of another (eighth) stage of construction of the manhole rehabilitation system.



FIG. 10 is a top perspective view of another (ninth) stage of construction of the manhole rehabilitation system.



FIG. 11 is a top perspective view of another (tenth) stage of construction of the manhole rehabilitation system.



FIG. 12 is a side view of one component of the manhole rehabilitation system.



FIG. 13 is a top perspective view of another (eleventh) stage of construction of the manhole rehabilitation system.



FIG. 14 is a top perspective view of another (twelfth) stage of construction of the manhole rehabilitation system.



FIG. 15 is a top perspective view of another (thirteenth) stage of construction of the manhole rehabilitation system.



FIG. 16 is a top perspective view of another (fourteenth) stage of construction of the manhole rehabilitation system.



FIG. 17 is a side view of a riser liner component of the system shown in FIG. 1.



FIG. 18 is an enlarged view of the region 18 of FIG. 17.



FIG. 19 is an enlarged view of the region 19 of FIG. 17.





DETAILED DESCRIPTION OF THE DISCLOSURE

In the field of manholes great advances have been made over the past 1700 years to improve efficiency, reduce problems, reduce leakage into and out of sewer systems, and to improve the longevity of sewer systems.


Historically, a great number of manholes have been installed which deteriorate, have deteriorated, or are prone to leakage and failure. In many instances, it is required that these problematic manholes need to be repaired or replaced, often with the cost of replacement less than the cost of repair over time. Disclosed herein is a manhole rehabilitation system which may be utilized in several examples to provide a modern manhole where required. In some instances, the disclosed manhole rehabilitation system may be utilized interior of an existing manhole. In some instances, the disclosed manhole rehabilitation system may entirely replace existing manhole wherein the existing cross pipe is not entirely replaced. The cross pipe(s) commonly including at least one inlet pipe and at least one outlet pipe.


The term manhole used herein generally discloses a chamber extending from a cross pipe generally upward to a ground level. Commonly a manhole comprises a base engaging a cross-pipe or cross pipes, a riser extending upward from the base, and a manhole cover. The manhole cover or lid is commonly removable from the riser and allows access to the chamber. In many instances the chamber is large enough to fit an adult person may then enter the manhole to access the cross pipe for inspection, cleaning, or repair. Wherein the manhole cover is the component normally seen by most people the term manhole has become synonymous with the manhole cover but the distinction is intended herein between the components forming the chamber and the manhole cover.


Looking to FIG. 1 is shown one example of a manhole rehabilitation system 20. As shown, the disclosed manhole rehabilitation system 20 forms a manhole 22.


The manhole 22 of this example forms a chamber 24 which intersects a cross pipe 26 which may be in place prior to installation of the manhole 22. The chamber 24 of the manhole 22 is defined by several components including a base 28 intersecting the pipe 26, a riser 30 extending upward from the base 28, and a riser cap 32 including the previously mentioned manhole cover 34 removably fitted to the riser cap 32. In FIG. 1 are shown several liner components with an aggregate fill 36 (grout) formed there around. The combination of the liner components, with the aggregate fill 36 and an outer form 38 in combination form the base 28 and riser 30. Generally the aggregate fill is poured into the space between the liner components and the outer form 38 and then hardens to a structural solid capable of supporting the weight of the manhole ring, manhole cover 34, and components such as vehicles etc. which may be temporarily supported by the manhole ring and manhole cover 34.


A more detailed description of the base 28, riser 30, and other components will follow a general description of the manhole rehabilitation system 20. Once the aggregate fill 36 has hardened, the riser cap 32 and other components may be installed. This may be accomplished by attaching a plurality of blocks 40 or equivalent structural materials onto the top edge of the riser 30 and supported by the aggregate fill 36. The blocks 40 may be hardened clay bricks, cinder blocks, pavers, or equivalent components. The riser cap 32 of the example shown having an outer surface 42 which slides vertically 44 as the outer surface 42 of the riser cap 32 engages a gasket 46 on the top edge of the riser 30. In this way, the riser 32 may be adjusted such that the top edge 48 of the riser cap 32 is substantially flush or level with the ground level 50. Thus, the manhole cover 34 will also be substantially flush with the ground level 50. As previously mentioned, the liner components but generally not structural in that they will not satisfy structural requirements of manholes especially those in roadways they require to support a vehicle driving across the manhole cover 34. Thus, the aggregate fill 36, riser 32 including blocks 40 and manhole ring 52 provides structural resistance or compression strength to the manhole 22. In one example, the manhole ring 52 and manhole cover 34 are metallic such as cast iron, steel or other components well-known in the art of manholes.


The other components are easily described by explaining one example of an assembly and construction process as shown in FIG. 2-FIG. 16. FIG. 2 shows an excavation has been formed in the ground exposing a surface 100. The surface 100 may be an inner bottom surface of the excavation 102 or may be an equivalent surface such as the bottom of an existing manhole. In FIG. 2 is shown an example wherein the excavation 102 (see FIG. 1) comprises shoring 104 to maintain the shape of the excavation 102. In one example, the shoring 104 forms the outer surface of a mold into which the aggregate fill 36 is poured the form the structural (compression resisting) portion of the manhole 22. In the example shown in FIG. 3, an existing pipe or existing manhole 106 is utilized for the outer surface of the mold. FIG. 2 and FIG. 3 show examples of shoring 104 and use of an existing manhole 106 as the outer surface 38 of the mold. The shoring 104 and an existing manhole 106 are generally interchangeable and can be used for many examples of the manhole rehabilitation system 20 shown herein.



FIG. 2 also shows a base liner 110 having a bottom edge 112 resting upon the inner bottom surface 100. The base liner 110 of this example also has an outer surface 114 and an upper edge 116 vertically opposed to the bottom edge 112. As shown, there are one or more pipe openings 118 in the base liner 110 through which fluid flows into and out of the manhole 22. To differentiate specific pipe openings and specific examples of general components, a numbering system is used herein utilizing an alphabetic suffix for specific examples. In this example a pipe opening is labeled 118 wherein specific examples of the pipe openings 118 such as shown in FIG. 2 are labeled 118a and 118b.


Looking to FIG. 2 it can be seen that in this example a channel pipe 120 extends through both lateral sides of the base liner 110 through the pipe openings 118. Channel pipe 120 has ends 123 (123a, 123B) of the channel pipe 120 are exterior of the base liner 110. Also be seen that a portion of the channel pipe 120 has been removed interior of the base liner 110, resulting in a surface 123 forming an upwardly open channel 124. The channel 124 allows the fluid in the channel pipe 122 to freely flow through the channel pipe 120 while still allowing visual inspection of the flow through the channel pipe 120 and inspection upstream and downstream of the channel 124. Looking to FIG. 3 it can be seen that the excavation 102 has exposed an external pipe 122 which has been cut and a section removed to install the base liner 110 and channel pipe 120. Cutting of the external pipe 122 and removal of a section thus forming separate external pipes 122a and 122b. In one example, the channel pipe 120 is cut to an angle 126 of approximately 180° relative to the longitudinal axis 128 of the channel pipe 120 to form the surface 123. In another example, the channel pipe 120 is cut to an angle 126 of greater than 170° relative to the longitudinal axis 128 of the channel pipe 120, forming the surface 123 of the channel 124.


The channel pipe 120 may then be connected to the external piping 122 through couplings which may include gaskets 152, seals, welding, brazing, etc. It is generally desired that the connection between the channel pipe 120 and external piping 122 not leak allowing fluid out of the channel pipe 120, nor cross pipes 122 into the surrounding ground. This sealing may be accomplished in many known methods. In FIG. 3 and subsequent Figs. a system is shown wherein a sleeve section 150 slides laterally onto the external piping 122 and the channel pipe 120 with a gasket 152 overlapping the sleeve section 150 and external piping 122 or sleeve section 150 and channel pipe 120.


Before continuing, and axes system 10 is disclosed herein as shown in FIG. 2. The axes system 10 comprising a vertical axis 12, a transverse axis 14 and a lateral axis 16.


In one example, looking to FIG. 3, a channel form 160 is placed into the channel 124. The channel form 160 extending the length of the channel 124 and prohibiting aggregate fill or debris from entering into the channel 124 during the next stages of construction. In one example, the channel form 160 is formed of a malleable material to allow easy removal from the channel 124. In another example, the channel form 160 may be rigid with outer surfaces sufficiently smooth to allow easy removal from the channel 124 following hardening of the aggregate material poured their around and hardened. In one example, the channel form 160 is sacrificial. It may in this sacrificial example be made of foam or other materials which are destroyed when removed from the channel 124 during later steps of construction.


Looking to FIG. 4 is shown the channel form 160 placed into the channel 124 ready for pouring of the aggregate fill into the base liner 110. At this stage, it may be desired to put adhesive tape, or other material upon the upper edge 116 of the base liner 110 to ensure that this surface does not become filled or damaged by the aggregate fill as the aggregate fill is poured into the base liner 110.


Looking to FIG. 5 is shown a worker support 162 which may be set upon the upper edge 116 of the base liner 110. In this position, a worker may stand upon the upper surface 164 of the worker support 162 as the aggregate fill is poured into the base liner 110 and smoothed, leveled, sloped, as beveled, or textured for a non-skid bench surface as desired.


Looking to FIG. 6 can be seen that an aggregate fill 166 has been poured into the base liner 110. The aggregate fill 166 thus forming a bench 168 upon which a user may stand when inspecting or repairing the channel 124 and or cross pipes 122. Once the aggregate fill 166 has hardened, the channel form 160 is removed. This may enlarge and the channel 124 as the surfaces of the aggregate fill 166 form a vertical surface to the channel 124. In some examples, it may be desired to retain the channel form 160 in the channel 124 drain remaining steps of construction to keep debris out of the channel 124.


In one example, it may be desired to seal the benching surface 168 with a non-permeable material to ensure that the aggregate fill 166 does not become permeated with deteriorating chemicals commonly found in sewage and groundwater which may be present in the fluid flow through the channel 124.


In one example, the aggregate material is a grout comprising 3250 PSI high flow non-shrink fast set grout.



FIG. 7 shows a later stage of construction wherein a volume of non-hardened aggregate 176 is placed between the outer surface 172 of the base liner 110 and a containing surface 174 which may be the interior surface of the excavation 102, the interior surface of shoring 104, or equivalent structure. Once the aggregate 176 is cured to a hardened state an outer mold 38a may be placed thereupon, radially outward of the upper edge 116 of the base liner 110 and resting upon the aggregate 176. In one example, alignment components 178 may be fitted to the aggregate 176 or other structure to align the outer mold 38a so as to have a center axis 180 on center with the center axis 182 of the base liner 110. In one form, the outer mold 38a is a cylinder such as sold under the trade name Sono Tube®.


Looking to FIG. 8 is shown another stage of construction which may be accomplished prior to installation of the outer mold 38a shown in FIG. 7. In FIG. 8 a pouring support 184 is positioned within the base liner 110 where the aggregate fill 166 as shown in FIG. 6 does not reach the upper edge 116 thus forming a lip contacting the pouring support 184. Once in place, a riser liner 200 having a top edge 203 may be placed on the upper edge 116 of the base liner 110 and seal thereto. The pouring supports 184 ensuring alignment of the riser liner 200 to the base liner 110. The sealing may be accomplished by an O-ring, semi-fluid sealant, or hardening sealant such as well-known in the art. If an adhesive tape or similar component was used to protect the upper edge 116, this adhesive tape must be removed prior to installation of the riser 200. As shown in FIG. 1, it can be seen that the bottom 202 of the riser liner 200 engages the top edge 116 of the base liner 110. FIG. 19 shows a similar connection at an upper edge 116 of a base liner 110. In this example, the upper edge comprises an inner component 204 and an outer component 206 which connect at a connection point 208. As shown, the bottom edge 210 of a second component 212 fits into the space between the inner component 204 and the outer component 206 and a volume of sealant 214 may also fit in the space so as to seal the base liner 110 to the second component 212. The second component 212 may be a riser liner 200, cone liner 220, or other component. Similarly other connections between other liner components may be similarly constructed.



FIG. 17 also shows a plurality of bridge anchors 222 (222a-222d) which further engage the base liner 110 to the cured aggregate 176. Similar bridge anchors 224 may be fitted to the riser liner 200 for a similar purpose to connect to the aggregate fill 36. Similar bridge anchors 226 may be fitted to the cone liner 220 likewise to engage the cone liner 220 to the aggregate fill 36.


Although in the examples shown only one riser liner 200 is shown, it can be appreciated that a plurality of riser liners 200 may be stacked one upon the other to extend the vertical height of the manhole 22 such that the distance between the surface 100 and the ground level 50 is achieved when the blocks 40, manhole ring 52 are included.


Looking to FIG. 9, again the outer mold 308A is not shown in this Fig. to more clearly show the internal components. The outer mold 38 is not shown in this FIG. 1n FIG. 9, the bottom edge 228 of the cone liner 220 has been fitted to the upper edge 230 of the riser liner 200. The cone liner 220 having an upper edge 221. This fitting of the cone liner 220 to the riser liner 200 may be accomplished in the same manner as that shown in FIG. 19 and disclosed above.


In one example, the cone liner 220 has a first diameter at the bottom edge 228 and a second, smaller diameter at an upper edge 232. Such a reduction in diameter is known in the art of mammals and accomplished through a cone shaped device as shown here, a stepped version, and arcuate example, or other equivalent structures.


Looking to FIG. 10 is shown the shared aggregate 176 forming part of the base assembly 242 with the outer mold 38 positioned thereupon as previously discussed. A riser liner 200 and cone liner 220 are installed as described. This assembly forming a mold 234 into which is poured a volume of aggregate fill 236. As shown in FIG. 11, a worker support 238 functionally equivalent to the worker support 162 may be utilized to allow a worker to correctly and properly form the upper surface 240 of the aggregate fill 236. The aggregate fill being concrete or other materials formed of Portland cement and equivalent pourable materials that harden to a structurally supporting state. The aggregate fill 236 will in one example flow under the channel pipe and thus support the weight of the channel pipe and material flowing therein upon the surface 100. In one example, the sides 161 of the channel form 160 result in a surface of the channel 124 formed of the aggregate fill 166 rising up to or above the edge of the channel pipe 120.


Looking to FIG. 14 is shown the base assembly 242 with the outer mold 38a and aggregate fill 236 removed to show the riser liner 200 and cone liner 220. In this example, a telescopic collar tube (TAC) 244 fits inside the gasket 46 of the cone liner 220 as previously described. This TAC having an upper edge 246 which rests upon the blocks 40 previously discussed in allows the manhole ring 52 to be adjusted to substantially align with the ground level 50.



FIG. 15 shows the blocks 40 in position. It is understood by looking to FIG. 1 that the blocks 40 rest upon the upper surface 248 of the aggregate fill 36 and not on the upper edge of the cone liner 220 in that the cone liner to learn 20 is generally not a structural component.


Looking to FIG. 16 is shown the shoring extending substantially to the ground level 50. Thus, the region between the aggregate fill 36 and the shoring 104 may be filled with a backfill 250. The shoring 104 may then be removed. In another example, the shoring 104 is removed prior to the backfill 250 being placed.


In one example, the base liner 110, riser liner 200, cone liner 220, and collar tube 244 are formed of fiber reinforced plastic (FRP). FRP is well-known in the arts as fiberglass although the term fiberglass is generally synonymous with the fibers used, and thus confusing. An FRP construction is generally a resin impregnated fibrous material; with a hardener added to the resin such that when the combined resin/hardener cures the FRP material hardens to a rigid state. The fibers used may be fiberglass, carbon fiber or less commonly burlap or other materials. The resin may be a polyester resin which is common in the arts, or epoxy which is also common the arts or other partners. They may be one part or two-part although the two-part materials are more common.


One advantage of producing the base liner 110, riser liner 200 and cone liner 220 from an FRP material is that the same resin may be used as the sealant 214 used between adjoining sections. Thus the sealant 214 will cure to a hardened state, rigidly securing the adjacent components to each other as a substantially unitary construction.


One installation sequence includes the steps of:

    • Excavate and install shoring support. If utilities are found, they should be wrapped with Styrofoam.
    • Cut existing pipes to the desired length.
    • Set base liner on surface of excavation.
    • Install channel pipe inside base liner extending through pipe openings.
    • Cut a channel opening in the channel pipe.
    • Connect the channel pipe to the existing pipes.
    • Install channel form in the channel opening to keep aggregate and debris out of the channel pipe and to form a deeper concrete channel during grouting.
    • Install work platform (worker support).
    • Apply adhesive tape to upper edge of base liner to protect joint section from debris.
    • Grout inside of base liner with 3250 PSI high flow non-shrink fast set grout and build benching.
    • Remove work platform.
    • Grout exterior of base liner.
    • Install reinforcing dowels around the outer perimeter of the base liner if required.
    • Install inner pouring supports to inner edge of base liner.
    • Install one or more riser liners on to base liner using inner pouring supports to ensure alignment.
    • Apply resin to the connection between the base liner and the riser liner.
    • Install cone liner to the riser liner.
    • Apply resin to the connection between the cone liner and the riser liner.
    • Install work platform to upper edge of cone liner.
    • Grout exterior of base liner, riser liner, cone liner to upper edge of cone liner.
    • Install telescoping access collar to two cone liner.
    • Install blocks and adhesive to upper surface of grout to support manhole ring and manhole cover.
    • Install cast iron manhole ring onto blocks.
    • Grout remaining level from the top of cone to rim elevation after telescoping access cone, blocks, cast iron manhole ring are installed and leveled.
    • Remove the shoring from excavation.
    • Backfill to rim elevation.


Another installation process involves the steps of:


A. General






    • Local codes may apply and should be consulted as applicable in manhole installation.

    • Correct manhole liner installation requires proper connection between segments and/or host surface. Good placement of surrounding structural grout and proper handling are essential to prevent manhole damage and ensure long-term corrosion resistant service.

    • Complete Manhole Rehabilitation instructions must be consulted before actual installation is performed.

    • FRP Manhole Rehabilitation Liners are non-structural components. To restore or achieve the desired load rating class of the rehabilitated manhole, the engineer specified grout and optional steel reinforcing should be strictly followed.


      B. Preparation

    • Pipes penetrating as-built manhole walls should only be cut with prior consent of engineer or designer.

    • Cut and remove existing asphalt or concrete.

    • Excavate and remove flat top or cone section of manhole and remove surrounding material.

    • Remove all existing ladder rungs, obstacles and debris. Do not cut pipes penetrating as-built manhole walls.

    • Wash all manhole structure walls. Substantially remove all incontinent concrete materials without further damage to manhole structure walls.

    • Prevent any additional damage to as-built structure or surrounding infrastructure when demolishing and excavating.

    • If live flow, channel should be bypassed. In low flow applications, “flow thru” inflatable pipe plugs may be acceptable. If pipe plugs are used, complete blockage of flow will be required for both grouting of base liner and installation of internal pipe seals.

    • Remove existing interior components (i.e. pumps, grinders, guiderails, valves, etc.).

    • There should be no flow or process contents in the structure during rehabilitation work on the base. Flow may be restored during construction of Wall Liner segments, provided safety is not compromised.


      C. Baseliner Installation (if Specified by Engineer)

    • Channel should be clean and devoid of flow. Benching may be partially removed to allow a minimum of 50 mm [2″] (or as specified on project documents) spacing between the base liner and the existing concrete. Care is to be taken when removing the existing benching to prevent damage to base.

    • Baseliner shall be lowered into position. Liner may be secured in position and fastened with anti-flotation connections to the existing structure. Baseliner should be level.

    • Alignments and level of channels, pipe penetrations and base skirt flange shall be checked. It is recommended to dry fit the baseliner prior to the installation in order to determine the locations of the anti-floatation mountings.

    • Liner may be connected to existing pipes. Chanel of baseliner may be supported during pouring with a matching EPS pouring support.

    • Pipe penetrations may be sealed with correctly sized inflatable plugs.

    • Grout conforming to specifications is to be poured into the annular space between baseliner and existing structure. Grout may be poured up to 50 mm [2″] below the top of the base liner. Installer should ensure grout is free of voids and air pockets.

    • Let grout set.

    • Remove mounting brackets and EPS channel support.

    • After grouting, flow may be temporarily restored with “flow thru” pipe plugs and appropriate length connected hose provide flow does not adversely affect liner cleanliness or worker safety.

    • For installation of Link Pipe internal seal, area between as-built pipe and new baseliner must be clear of any/all obstructions.


      D. Wall and Cone Liner Installation

    • If base liner component is present, stack riser liner and cone liner segments as needed to fully erect the FRP manhole liner inside the existing manhole. Maintain FRP manhole liner plumb within the manhole throughout the stacking process and ensure that space between the FRP manhole liner and the existing wall is of sufficient thickness throughout the entire circumference, as specified. Establish resin connection between adjoining components.

    • If base liner component is not present, fully demolish invert and benching to obtain a solid, level concrete surface at the bottom of the manhole for the first wall liner section. Bond the wall liner to the manhole base with an appropriate sealant, such as Sikaflex®. Stack remaining riser liner and cone liner components as needed to fully erect the FRP manhole liner inside the existing manhole. Maintain FRP manhole liner plumb within the manhole throughout the stacking process and ensure that space between the FRP manhole liner and the existing wall is of sufficient thickness throughout the entire circumference, as specified by the engineer. Establish resin connection between adjoining components.

    • If required to restore or achieve the desired load rating class of the rehabilitated manhole, steel reinforcing shall be installed in the annular space between the FRP Manhole liners and the manhole wall, as specified by the engineer.

    • The FRP manhole liner may be carefully grouted in place, with a high-flow grout, from the bottom up, in lifts not exceeding 6′. Grout shall be consolidated to fill all pockets, seams and cracks within the existing wall.

    • If Baseliner component is not present, rebuild invert and bench as specified by the engineer.


      E. Backfill

    • Backfilling may be done just as soon as the concrete (grout, aggregate) has hardened enough around the cone liner to provide sufficient support for manhole and fill. Native soil (or sand, in unstable areas), free of large stones, debris, or concrete chunks may be used for backfill. Backfill should be place evenly around manhole in 12″ maximum lifts and should be thoroughly tamped to 90% standard proctor density before the next layer is installed. Backfill material shall be subject to approval by the engineer.


      F. Bring to Grade

    • Construct chimney on flat shoulder of manhole using precast concrete rings (blocks).

    • Insert FRP telescoping access tube into the gasketed FRP access collar.

    • Install casting per standard manhole construction methods.


      G. Clean-Up

    • Upon completion, the installer should clean up the work site and properly dispose of any excess material or debris.





In another installation example:


Exterior Surface: The exterior surface may be finished with embedded aggregates and FRP bonding bridges to allow for adequate bonding with the surrounding grout once installed. The exterior surface should be free of blisters larger than 0.5″ in diameter, delamination and fiber show, except in the vicinity of FRP bonding bridges where fiber show may be acceptable. Gel-coat or paint or other coatings may not be allowed.


Interior Surface: The interior surfaces shall be resin rich with no exposed fibers. Interior surface shall be smooth for improved corrosion resistance and reduced sludge build-up. The surface should be free of crazing, delamination, blisters larger than 0.25″ in diameter, and wrinkles of 0.125″ or greater in depth. Surface pits shall be permitted up to 6/ft2 if they are less than 0.75″ in diameter and less than 0.0625″ deep. Voids that cannot be broken with finger pressure and that are entirely below the resin surface shall be permitted up to 4/ft2 if they are less than 0.5″ in diameter and less than 0.0625″ thick. Gel-coat shall be permitted on interior surfaces, no paint or other coatings are allowed.


Chemical Resistance: FRP lined manholes demonstrate having sufficient corrosion resistance by passing the “Greenbook” 2009 edition (or later), Standard Specifications for Public Works Construction, Chemical Resistance Test (Pickle Jar Test).


Physical Properties: All FRP liner material shall have the following physical properties when tested at 77° F.±5 degrees:
















Property
Standard
Units
Initial
(Par. VI.F.)




















Density
ASTM D792
g/cm3
1.02















Thickness

Mm
3
min.




Tensile Strength
ASTM D638
psi
7,000
min.
6,500
min.











Hardness
ASTM D2240

95-97
89-97


(Shore “A”)

















Weight change




0.05%
max.


Flexural Strength
ASTM D790
Lbf
124
avg.














Compressive
ASTM D695
psi
13,000




Strength


















Ignition Loss
ASTM D2584
%
52
avg.














Taber abrasion test
ASTM D4060
%
0.075















(weight loss)















Tensile specimens may be prepared and tested in accordance with ASTM D412 using Die B. Weight change specimens shall be 1 IN by 3 IN samples.


All gaskets may have the following physical properties:















Property
Standard
Units
Requirement







Chemical resistance:
ASTM D543

% %

No weight loss


1N sulfuric acid 1N
(at 24° C.

No weight loss


hydrochloric acid
for 48 hr.)




Tensile Strength
ASTM D412
psi
1,200 min.


Elongation at Break
ASTM D412
%
  350 min.


Hardness (Shore A)
ASTM D2240

±5 from the connector





manufacturer's specified





hardness


Accelerated oven
ASTM D573
%
Max 15% decrease in tensile


aging
(at 70° C. for

strength; Max 20% decrease



7 days)

in elongation


Compression set
ASTM D 395,
%
Max 25% decrease of



Method B (at

original deflection



70° C. for 22 hr.)




Water absorption
ASTM D471
%
Increase of max 10%



(at 70° C.

of original weight



for 48 hr.)

(19 by 25 mm specimen)


Ozone Resistance
ASTM D1149

Rating 0


Low temperature
ASTM D2137

No fracture at −40° C.


brittle point





Tear resistance
ASTM D624,
kN/m
34



Die B









While the present invention is illustrated by description of several embodiments and while the illustrative embodiments are described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily appear to those sufficed in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general concept. The invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein.

Claims
  • 1. A method for producing a manhole comprising the steps of: establishing an excavation below a ground level;exposing an external piping in the excavation;removing a section of the external piping;providing a non-structural base liner having surfaces defining pipe openings; an outer surface, an upper edge;placing the base liner in the excavation, the pipe openings aligned with the external piping;placing a channel pipe having opposing ends in the base liner, attaching the opposing ends of the channel pipe to the external piping in place of the removed section; wherein the channel pipe passes through the pipe openings;the channel pipe having an open channel therein forming a fluid conduit to the external piping;placing a channel form/plug in the open channel, substantially sealing the open channel from entry of debris;filling the base liner with a semi-fluid aggregate material;surrounding the base liner with a semi-fluid aggregate material;allowing the aggregate material to harden;sealing at least one riser liner to the upper edge of the base liner;sealing a cone liner to an upper edge of the riser liner;sealing a riser cap to the upper edge of the riser cone; anddisposing a volume of aggregate fill exterior of the base liner, riser liner, and cone liner.
  • 2. The method as recited in claim 1 wherein the channel pipe is formed of a polymer.
  • 3. The method as recited in claim 1 wherein the open channel is open greater than 170°.
  • 4. The method as recited in claim 1 wherein the channel plug is sacrificial.
  • 5. The method as recited in claim 1 wherein the step of filling the base liner includes the step of filling the base liner up to an upper edge of the channel pipe.
  • 6. The method as recited in claim 1 wherein the base liner is formed of FRP.
  • 7. The method as recited in claim 1 wherein the riser liner is formed of FRP.
  • 8. The method as recited in claim 1 wherein the cone liner is formed of FRP.
  • 9. The method as recited in claim 1 wherein the base liner non-structural.
  • 10. The method as recited in claim 1 wherein the riser liner is non-structural.
  • 11. The method as recited in claim 1 wherein the cone liner is non-structural.
  • 12. A manhole constructed by a process comprising the steps of: exposing an external piping in an excavation below a ground level;removing a section of the external piping;providing a non-structural base liner having surfaces defining pipe openings; an outer surface, an upper edge;placing the base liner in the excavation, the pipe openings aligned with the external piping;placing a channel pipe having opposing ends in the base liner, attaching the opposing ends of the channel pipe to the external piping in place of the removed section; wherein the channel pipe passes through the pipe openings;the channel pipe having an open channel therein forming a fluid conduit to the external piping;placing a channel form/plug in the open channel, substantially sealing the open channel from entry of debris;filling the base liner with a semi-fluid aggregate material;surrounding the base liner with a semi-fluid aggregate material;allowing the aggregate material to harden;sealing at least one riser liner to the upper edge of the base liner;sealing a cone liner to an upper edge of the riser liner;sealing a riser cap to the upper edge of the riser cone; anddisposing a volume of aggregate fill exterior of the base liner, riser liner, and cone liner.
  • 13. The manhole as recited in claim 12 wherein the channel pipe is formed of a polymer.
  • 14. The manhole as recited in claim 12 wherein the open channel is open greater than 170°.
  • 15. The manhole as recited in claim 12 wherein the step of filling the base liner includes the step of filling the base liner up to an upper edge of the channel pipe.
  • 16. The manhole as recited in claim 12 wherein the base liner is formed of FRP.
  • 17. The method as recited in claim 12 wherein the base liner non-structural.
  • 18. The manhole as recited in claim 12 wherein the riser liner is non-structural.
  • 19. The manhole as recited in claim 12 wherein the cone liner is non-structural.
  • 20. A manhole constructed by a process comprising the steps of: exposing an external piping in an excavation below a ground level;removing a section of the external piping;providing a non-structural base liner having surfaces defining pipe openings; an outer surface, an upper edge;placing the base liner in the excavation, the pipe openings aligned with the external piping;forming a channel pipe in the base liner, wherein the channel pipe passes through the pipe openings;placing a channel form/plug in the open channel, substantially sealing the open channel from entry of debris;the channel pipe having an open channel therein forming a fluid conduit to the external piping;filling the base liner with a semi-fluid aggregate material;surrounding the base liner with a semi-fluid aggregate material;allowing the aggregate material to harden;sealing at least one riser liner to the upper edge of the base liner;sealing a cone liner to an upper edge of the riser liner;sealing a riser cap to the upper edge of the riser cone; anddisposing a volume of fill exterior of the base liner, riser liner, and cone liner.
RELATED APPLICATIONS

This application claims priority benefit of U.S. Provisional Ser. No. 62/770,028 filed Nov. 20, 2018, the contents of which are incorporated herein by reference.

US Referenced Citations (90)
Number Name Date Kind
541987 Whiteside Jul 1895 A
1712510 Monie May 1929 A
1955018 Rego Apr 1934 A
2025839 Woods Dec 1935 A
2030536 Rego Feb 1936 A
2239033 Cartmill Apr 1941 A
2254668 Tomek Sep 1941 A
2620749 West Dec 1952 A
2681494 Weber Jun 1954 A
3090160 Shaver et al. May 1963 A
3331295 Sorrell Jul 1967 A
3370386 Martin Feb 1968 A
3462896 Lokensgaard Aug 1969 A
3477106 Tetzlaff et al. Nov 1969 A
3533199 Pickett Oct 1970 A
3715958 Crawford et al. Feb 1973 A
3787078 Williams Jan 1974 A
3965233 Ritter Jun 1976 A
4102088 Keller et al. Jul 1978 A
4119291 Polito Oct 1978 A
4123033 Joelson Oct 1978 A
4127990 Morrow Dec 1978 A
4275757 Singer Jun 1981 A
4318880 McIntosh Mar 1982 A
4346921 Gill et al. Aug 1982 A
4372017 Heckethorn Feb 1983 A
4419231 Friedl Dec 1983 A
4422994 Ditcher Dec 1983 A
4591290 Prescott May 1986 A
4621941 Ditcher et al. Nov 1986 A
4682907 Gaudin Jul 1987 A
4776138 Sumner et al. Oct 1988 A
4776722 Gaudin Oct 1988 A
4927290 Bowman May 1990 A
5017313 Trimble May 1991 A
5081802 Westhoff et al. Jan 1992 A
5100697 Nielsen Mar 1992 A
5261766 Anderson Nov 1993 A
5263298 Ballesteros Nov 1993 A
5303518 Strickland Apr 1994 A
5308192 Srackangast May 1994 A
5360131 Phillipps et al. Nov 1994 A
5386669 Almeida Feb 1995 A
5413307 Tidwell May 1995 A
5451081 Kaucnik Sep 1995 A
5536420 Oyzboyd Jul 1996 A
5549411 Hawkins Aug 1996 A
5564860 Amann Oct 1996 A
5885446 McGrew, Jr. Mar 1999 A
5979117 Fuller Nov 1999 A
6202370 Miller et al. Mar 2001 B1
6385913 Ahn May 2002 B1
6393771 Stetson May 2002 B1
6428701 Mullennix et al. Aug 2002 B1
6457901 Sondrup Oct 2002 B1
6746178 Hensley et al. Jun 2004 B1
6851225 Haar et al. Feb 2005 B1
7144189 Bongiovanni et al. Dec 2006 B1
7347644 Meyers Mar 2008 B2
7473373 Danler Jan 2009 B1
7695213 Akkala et al. Apr 2010 B1
7748926 Jurich et al. Jul 2010 B2
8851789 Bax Oct 2014 B2
9011035 Munro Apr 2015 B2
9175705 Clark, Jr. et al. Nov 2015 B1
9890513 Wu et al. Feb 2018 B1
10138615 Kim et al. Nov 2018 B2
10214893 Skinner et al. Feb 2019 B2
10294627 Bechler et al. May 2019 B2
10344447 Sauve et al. Jul 2019 B2
10370181 Plummer Aug 2019 B1
10428548 Yano Oct 2019 B2
10442617 Holbrook Oct 2019 B1
10458093 Gilbert Oct 2019 B2
10563373 Friesen Feb 2020 B1
10662606 Friesen May 2020 B1
10689834 Levesque Jun 2020 B2
10822766 Friesen Nov 2020 B1
20040081517 Hartman Apr 2004 A1
20050000175 Machledt et al. Jan 2005 A1
20050100412 Houck May 2005 A1
20060065994 Zotto Mar 2006 A1
20070053747 O'Brien Mar 2007 A1
20110013991 Watson et al. Jan 2011 A1
20120141210 Kiest, Jr. Jun 2012 A1
20130336723 McKinney et al. Dec 2013 A1
20160097180 Pesonen Apr 2016 A1
20160145848 Skinner et al. May 2016 A1
20180305888 Bonell et al. Oct 2018 A1
20200217037 Friesen Jul 2020 A1
Foreign Referenced Citations (7)
Number Date Country
817419 Oct 1951 DE
0737617 Oct 1996 EP
2604758 Apr 2014 EP
2145444 Apr 1988 GB
2006090047 Apr 2006 JP
2014077249 May 2014 JP
2016145484 Aug 2016 JP
Non-Patent Literature Citations (4)
Entry
Fernco Inc., “Fernco Saddle”, https://www.google.ca/search?q=fernco+saddle&client=safari&hl=en-ca&prmd=sivn&source=Inms&tbm=isch&sa=X&ved=2ahUKEwibgZ2dhPLkAhXWsJ4KHaosDjkQ_AUoAnoECA4QAg&biw=375&bih=635&dpr=3, accessed Sep. 27, 2019, 3 pages.
Hobas, “Hobas Tee Manhole”, https://www.google.ca/search?q=hobas+tee+manhole&client=safari&hl=en-ca&prmd=isnv&source=Inms&tbm=isch&sa=X&ved=2ahUKEwiR19vEhPLkAhUNvp4KHTVFBpYQ_AUoAXoECAsQAQ&biw=375&bih=635, accessed Sep. 27, 2019, 9 pages.
National Liner, “The 3S Segment Panel System: for the structural rehabilitation and restoration of storm sewers, sanitary sewers, sanitary sewers and culverts”, https://www.nationalliner.com/portals/0/pdf/3-pannel-system.pdf, accessed Nov. 5, 2019, 4 pages.
National Precast Concrete Association, “Watertight Manhole Joints,” Jun. 2013, 4 pages.
Provisional Applications (1)
Number Date Country
62770028 Nov 2018 US