Referring initially to
The manhole system 10 includes a frame 22 for securing with the collar 20. The collar 20 may be part of the manhole system 10, or the collar 20 may be part of the bulk carrier 12 itself. In the latter instance, utilization of such an existing collar 20 allows the manhole system 10 to be retrofitted on a bulk carrier 12 that previously utilized a different system for closing the opening 16.
The frame 22 includes a circular cut-out 24 for receiving an upper portion of the collar 20, as can be seen in
In the present form, each securement 26 includes a brace 28 secured with an exterior surface 30 of the collar 20. A pivot nut 32 is positioned within each brace 28 and secured therein by a pin 34. The frame 22 is positioned relative to the collar 20 so that bolt holes 36 provided in a series on the frame 22 are aligned with the pivot nuts 32. A bolt 38 is then inserted through each bolt hole 36 and threadably secured with each pivot nut 32 and brace 28. The arrangement provided by the securements 26 allows the manhole system 10 (other than the collar 20) to be easily removed or replaced, such as when the manhole system 10 becomes damaged, and allows for accurate placement and alignment of the manhole system 10 relative to the bulk carrier 10. With the frame 22 secured to the collar 20, the braces 28 provide support for the manhole system 10 itself.
The frame 22 has a circular portion 22a with the described bolt holes 26 and cut-out 24, and has a lower flange 40 extending to one side thereof. The lower flange 40 has a pivot opening 42 vertically aligned for receiving a pivot pin 44 around which the cover 14 rotates or pivots between the open and closed positions. The pivot pin 44 includes a lower portion 48 received within the pivot opening 42, an upper portion 50 received within a recess (not shown) in the cover 14, and a radial flange 52 extending about the pivot pin 44. A washer 54 is positioned around the lower pin portion 48, between the lower flange 40 and the radial flange 52, to support the pivot pin 44 and to provide bearing surfaces between the flanges 40 and 52. As will be described, the pivot pin 44 allows the cover 14 to rotate therearound as well as permits the cover 14 to shift vertically a short distance.
The cover 14 includes a circular portion 60 for covering the opening 16 of the collar 20 in the closed position and an upper flange 62 extending to one side thereof. The upper flange 62 receives the pivot pin 44, as described above. For structural strength, the upper flange 62 includes a pivot bearing 66 that extends upwardly and includes the recess for receiving the pivot pin 44. This allows a greater portion of the pivot pin 44 to be received therein and permits the above-mentioned vertical shifting of the cover 14 relative to the frame 22. For additional support, a top side 68 of the cover 14 includes braces 70 extending from the pivot bearing 66 and upper flange 62 over the circular portion 60.
When in the closed position, the cover 14 and frame 22 are sealed with an inflatable seal 70. As can be seen in
Inflation of the inflatable seal 70 also provides for engagement of catches 80 provided on the frame 22 and the cover 14 to restrict or prevent pivoting of the cover 14 after the inflatable seal 70 has been inflated and the tank sealed. In prior art systems, inflation of a bladder of the type shown as the inflatable seal 70 places a bending moment or torque on a pivot pin or axis. Over time, this can weaken or worsen the operation of the pivot pin. In any event, the prior art cover and bladder systems did not provide for a vertical shift by a cover to engage catches or hooks. Therefore, the prior art catches or hooks provided only a modicum of resistance to shifting of a cover. In the present manhole system 10, the pivot pin 44 is sized to permit the cover 14 to shift upwardly, relative to the frame and the pivot pin 44, due to the inflation of the inflatable seal 70. This allows for more positive engagement by the catches 80. The catches 80 also serve to assist in defining the closed position for the cover 14 as they prevent over-rotation or rotation beyond the closed position by the cover 14 relative to the frame 22.
More specifically and in the present form, the frame 22 includes three frame catches 80a that are stationary while the cover 14 carries three cover catches 80b which move along with the cover 14. Each catch 80, as shown, has two threaded foot portions 82 received within holes on either the cover 14 or the frame 22. A pair of nuts 84 are used to precisely position and retain the catch 80 with the cover 14 or the frame 22. The catch 80 is shaped to define a receiving space 86 between it and its supporting structure, either the cover 14 or the frame 22. As can be seen, the frame catches 80a extend upwardly from the frame circular portion 22a while the cover catches 80b extend downwardly from the cover circular portion 60, each to define the receiving space 86. The catches 80 are positioned on their supporting structures so that, when the cover 14 is in the closed position, the frame catches 80a receive a portion of the cover 14 in their receiving spaces 86a while the cover catches 80b receive a portion of the frame 22 in their receiving spaces 86b.
With the cover 14 in the closed position and the frame 22 and cover 14 received in the respective receiving spaces of the catches 80, the inflatable seal 70 is then inflated. This first creates the seal between the frame 22 and cover 14 and also lifts the cover 14 upwardly so that the frame catches 80a engage with the cover 14 and so that the cover catches 80b engage with the frame 22.
The operation of the manhole system 10 is remotely actuated and controlled. To shift the cover 14 between the open and closed positions, a piston 100 is provided which is, for instance, driven by fluid such as by being pneumatically or hydraulically actuated. The piston 100 has a frame end 102 secured with the frame lower flange 40, on a bottom side thereof. The frame end 102 is secured via a bolt 104 that permits the piston 100 to rotate about its frame end as the cover 14 moves. The piston 100 also has a cover end 106 secured with the cover upper flange 62, also via a bolt 108 that permits rotation of the piston thereabout during movement of the cover 14. During operation, the piston 100 is extended to force the cover 14 to rotate around the pivot pin 44 to the open position, or the piston 100 is retracted to rotate the cover 14 to the closed position.
The manhole system 10 includes one or more pressure lines 110 for shifting the cover 14 and for inflating the inflatable seal 70. As can be seen in
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.