1. Technical Field
An apparatus is disclosed for dispensing fluids through individual nozzles mounted in a common manifold or nozzle block. The apparatus includes an improved closure system which, in a closed position, provides a cover and a seal for the nozzles to prevent dried material from clogging the nozzles. The closure system is particularly useful for dispensers of viscous, water-based fluids including, but not limited to, paint colorants.
2. Description of the Related Art
Systems for dispensing a plurality of different fluids into a container are known. For example, systems for dispensing paint base materials and colorants into a paint container are known. These paint dispensers may use twenty or more different colorants to formulate a paint mixture. Each colorant is contained in a separate canister or package and may include its own dispensing pump. Other systems for dispensing large varieties of different fluids also include systems for dispensing pharmaceutical products, hair dye formulas, cosmetics of all kinds, nail polish, etc.
Some systems for use in preparing products at a point of sale may use a stationary manifold or nozzle block through which pluralities of nozzles extend. Each fluid to be dispensed is then pumped through its own individual nozzle that is accommodated in the manifold. Depending upon the size of the container and the quantity of the fluids to be dispensed, manifolds may be designed in a space efficient manner so that a single manifold can accommodate twenty or more different nozzles. The nozzles are connected to the various fluids by flexible hoses and the ingredients are contained in stationary canisters or containers.
In many fluid dispensing applications, precision is essential as many formulations require the addition of precise or nearly exact amounts of certain ingredients. This is not only true in the pharmaceutical industry but also in the paint and cosmetic industries as the addition of more or less tint or colorant can result in a visible change in the color of the resulting product.
Precision dispensing of viscous fluids can be particularly problematic. Specifically, viscous fluids such as tints, colorants, base materials for cosmetic products, certain pharmaceutical ingredients or other viscous fluid materials have a tendency to dry and cake onto the end of the nozzles or inside the nozzle outlet openings. As a result, the nozzles may require frequent cleaning in order for the nozzles to operate accurately. The accumulation of material on or in the nozzle can cause a drop of fluid to stick to the nozzle, thereby compromising the accuracy of the dispense. While some mechanical wiping or scrapping devices are available, these devices are not practical for multiple nozzle manifold systems and the scraper or wiper element must be manually cleaned anyway. Further, cleaning of a multiple nozzle manifold can cause cross-contamination between the nozzles, which also affects accuracy of the dispense.
The drying or taking of material inside or on the nozzles is exacerbated by modern air quality requirements, which limit the use of volatile organic compounds (VOCs) as solvents. Simply put, many water-based viscous fluids dry out faster than their VOC-based counterparts. This is particularly true with paint colorants.
One solution provided in commonly assigned U.S. Pat. No. 7,261,131 is a mechanized cup-shaped closure element that covers and seals from beneath the manifold after the dispensing operation is complete. In this manner, the viscous materials being dispensed through the nozzles have less exposure to air thereby requiring a lower frequency of cleaning operations. However, while the cup-shaped closure element of U.S. Pat. No. 7,261,131 forms a sealed chamber beneath the nozzles, the amount of air in the chamber can still lead to unwanted drying and caking of material on the nozzles.
A combination manifold that accommodates a plurality of nozzles and a closure system for limiting exposure of the nozzles to air between uses is disclosed. The disclosed combination comprises a manifold comprising an inlet end and an outlet end. The manifold also includes a plurality of through openings extending between the inlet and outlet ends. The through openings accommodate a plurality of nozzles. Each nozzle comprises a nozzle outlet extending beyond the outlet end of the manifold. The combination also comprises an actuator shaft that comprises a proximal end connected to an actuator and a distal end connected to a plate. The plate is coupled to a film disposed between the plate and the nozzle outlets. The plate comprises a plurality of through openings with each through opening of the plate being in matching registry with one of the nozzles. The film also comprises a plurality of valves. Each valve is in matching registry with one of the nozzles.
In a refinement, the valves in the film are small slits. In another refinement, the valves in the film a small crossing slits or x-shaped slit patterns.
In another refinement, the valves in the film are small holes that expand and stretch over the nozzle outlets when the actuator moves the plate and film upward over the nozzle outlets.
In another refinement, the film comprises a material selected from the group consisting of polyurethanes, polytetrafluoroethylene, modified polytetrafluoroethylene, ethylene-propylene copolymers, ethylene-propylene terpolymers, silicone elastomers, polyoxymethylenes, polyacetyls, polyamides, polyethylenes, polypropylenes, nitrile rubbers, tetrafluoroethylene-propylene rubbers, hydrogenated nitrile butadiene rubbers and combinations thereof.
In a refinement, the film comprises multiple layers. In a related refinement, the film comprises multiple polymer layers.
In another refinement, the actuator moves the shaft between open and closed positions. In the open position, the film is sandwiched between the plate and the outlet end of the manifold with the nozzle outlets extending at least partially through the valves of the film and at least partially through the through openings of the plate. In a closed position, the plate and film are moved away from the outlet end of the manifold so the valves of the film close and engage the nozzle outlets.
In another refinement, the plate is rigid and the film is flexible.
In another refinement, the actuator shaft passes through a common access of the plate, film and manifold.
In another refinement, the plate is metallic and the film is polymeric.
A dispenser for dispensing a plurality of fluids is also disclosed. The dispenser comprises a manifold comprising an inlet end and an outlet end. The manifold includes a plurality of openings extending between the inlet and outlet ends. The openings each accommodate a nozzle with each nozzle being linked to a fluid supply. Each nozzle comprises a nozzle outlet extending beyond the outlet end of the manifold. An actuator shaft passes through the manifold and is connected to an actuator at a proximal end and to a plate at a distal end. The actuator shaft passes through a film disposed between the plate and the nozzle outlets. The actuator shaft and actuator move the plate and film between open and closed positions. The plate comprises a plurality of through openings with each opening being in matching registry with one of the nozzles. The film comprises a plurality of valves, with each valve being in matching registry with one of the nozzles. When the actuator moves the actuator shaft to an open position, the film is sandwiched between the plate and the outlet end of the manifold with the nozzle outlets extending at least partially through the valves of the film and at least partially through the openings of the plate. When the actuator moves the actuator shaft to a closed position, the plate and film are moved away from the outlet end of the manifold so that the valves of the film close and rest against the nozzle outlets. The closed valves of the film, in combination with the nature of the film serve to provide a closure or seal against the nozzle outlets, thereby preventing material from drying out and clogging the nozzle outlets.
A method of dispensing viscous, water based fluids is also disclosed wherein the fluids are dispensed through a common manifold. The method comprises providing a fluid dispenser comprising a manifold, comprising and inlet end and an outlet end. The manifold also includes a plurality of openings, each of which accommodates a nozzle. Each nozzle is linked to a fluid supply and each nozzle outlet extends beyond the outlet end of the manifold. An actuator shaft passes through the manifold and is connected to an actuator at one end and to a rigid plate at the other end. The actuator shaft also passes through a film disposed between the plate and the nozzle outlets. The plate includes a plurality of openings, with each opening being in matching registry with one of the nozzles and, similarly, the film comprises a plurality of valves, with each valve being in matching registry with one of the nozzles and in matching registry with the openings of the plate. The method includes the step of moving the actuator shaft to an open position where the film is sandwiched between the plate and the outlet end of the manifold and the nozzle outlets extend at least partially through the valves of the film and at least partially through the openings of the plate. The method further includes dispensing one or more fluids through the nozzles when the actuator and shaft are in the open position. The method further includes moving the actuator and actuator shaft to a closed position resulting in moving of the plate and film from the outlet end of the manifold to the nozzle outlets so the valves of the film close and rest against the nozzle outlets and provide a seal at the nozzle outlets between dispenses.
Other advantages and features will be apparent from the following detailed description when read in conjunction with the attached drawings.
For a more complete understanding of the disclosed methods and apparatuses, reference should be made to the embodiments illustrated in greater detail in the accompanying drawings, wherein:
It should be understood that the drawings are not necessarily to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details which are not necessary for an understanding of the disclosed methods and apparatuses or which render other details difficult to perceive may have been omitted. It should be understood, of course, that this disclosure is not limited to the particular embodiments illustrated herein.
Turning to
Turning to
Still referring to
Turning to
Alternative films 34a and 34b are illustrated in
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5598940 | Finkelstein et al. | Feb 1997 | A |
8181827 | Long et al. | May 2012 | B2 |
Number | Date | Country | |
---|---|---|---|
20110122196 A1 | May 2011 | US |