Aspects and embodiments of the present invention relate to membrane filtration systems and, more particularly, to manifold arrangements used to communicate fluids to and from a plurality of filtration modules.
In accordance with an aspect of the present invention, there is provided a filtration module assembly comprising a vessel and a header coupled to an end of the vessel. The header includes a housing having an open-ended upper end and a lower end. The filtration module assembly further comprises an end cap including a portion that mates with a complimentary structure defined by the inner wall of the open-ended upper end of the housing to removably engage with the housing and the end cap defines a passageway for fluid to flow out of the vessel. A filtration cartridge disposed within the vessel includes an upper end removably coupled to the lower end of the housing.
In accordance with some embodiments, the filtration cartridge comprises a plurality of permeable hollow fiber membranes extending between the lower end of the filtration cartridge and the upper end of the filtration cartridge.
In accordance with some embodiments, the vessel comprises a screen extending between the lower end of the filtration cartridge and the upper end of the filtration cartridge and surrounding the plurality of permeable hollow fiber membranes.
In accordance with some embodiments, the module assembly further comprises a filtrate collection chamber defined by the end cap and the upper end of the filtration cartridge.
In accordance with some embodiments, the passageway includes a filtrate communication passageway in fluid communication between the filtrate collection chamber and a first fluid transfer manifold.
In accordance with some embodiments, the end cap further comprises a shut off valve constructed and arranged to fluidly isolate the filtrate collection chamber from a filtrate communication port.
In accordance with some embodiments, the first fluid transfer manifold is coupled to the header and includes a filtrate passageway and is further coupled to a second fluid transfer manifold of a second module assembly to provide fluid communication between the filtrate passageway of the first fluid transfer manifold and a filtrate passageway of the second fluid transfer manifold.
In accordance with some embodiments, the passageway includes a filtrate communication passageway defined by a side surface of the end cap and an internal surface of the housing.
In accordance with some embodiments, the filtration cartridge includes an external diameter smaller than an internal diameter of the housing.
In accordance with some embodiments, the filtration cartridge includes fluid communication openings defined in a potting sleeve surrounding a portion of the membranes, the fluid communication openings in fluid communication between a feed passageway in the housing and outer surfaces of the membranes.
In accordance with some embodiments, the removable end cap includes screw threads configured to engage with mating screw threads provided on an upper portion of an inner wall of the housing.
In accordance with another aspect of the present invention, a filtration system is provided comprising a first filtration module including a first fluid communication opening and a first header having a first removable end cap engaged with an upper end of the first header and a first filtration cartridge having an end disposed in a lower end of the first header, a second filtration module including a second fluid communication opening and a second header having a second removable end cap engaged with an upper end of the second header and a second filtration cartridge having an end disposed in a lower end of the second header, and a first common fluid transfer manifold in fluid communication with the first fluid communication opening and the second fluid communication opening positioned between the first filtration module and the second filtration module.
In accordance with some embodiments, the first common fluid transfer manifold is in fluid communication with lumens of membrane fibers included in the first filtration module and with lumens of membrane fibers included in the second filtration module.
In accordance with some embodiments, the filtration system further comprises a second common fluid transfer manifold located between the first header and the second header, and in fluid communication with external surfaces of membrane fibers included in the first filtration module and with external surfaces of membrane fibers included in the second filtration module.
In accordance with some embodiments, the first header includes an internal diameter greater than an external diameter of the first filtration cartridge header includes an internal diameter greater than an external diameter of the second filtration cartridge.
In accordance with some embodiments, one or more fluid communication openings defined in each of the first housing and the second housing are in fluid communication with both the first filtration cartridge and the second filtration cartridge.
In accordance with some embodiments, the first removable end cap is engaged with the first open-ended housing to define a filtrate collection chamber between the first removable end cap and the first filtration cartridge.
In accordance with some embodiments, the first removable end cap includes a fluid communication passageway in fluid communication between the filtrate collection chamber and the first fluid communication opening.
In accordance with another aspect of the present invention, a method of operating a filtration system is provided comprising passing a feed through a plurality of filtration modules each including a filtration cartridge, the plurality of filtration modules fluidly connected by a common feed transfer manifold and a common filtrate transfer manifold, the plurality of filtration modules each including respective removable end caps disposed in respective open-ended upper housings, isolating the filtration cartridge of a first filtration module of the plurality of filtration modules from the common filtrate manifold and taking the first filtration module out of operation by engaging a shut-off valve in the end cap of the first filtration module, disengaging the removable end cap from the open-ended upper housing of the first filtration module, accessing the filtration cartridge of the first filtration module by longitudinally displacing the filtration cartridge of the first filtration module through the housing of the first filtration module, re-engaging the removable end cap with the housing of the first filtration module assembly, and returning the first filtration module assembly to operation.
In accordance with some embodiments, disengaging the removable end cap from the housing of the first filtration module assembly includes rotating the removable end cap of the first filtration module relative to the housing of the first filtration module, disengaging screw threads formed on the removable end cap of the first filtration module from mating screw threads provided on an upper portion of an inner wall of the housing of the first filtration module.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
Filtration module assemblies often comprise a header that retains a filtration cartridge. The filtration cartridge may comprise a filtration sub-system and may in some embodiments comprise a plurality of membranes. The filtration cartridge is mounted to the header and permeate received from the filtration cartridge is passed through the header, and thus the filtration module, and drawn off as filtrate. Filtration systems often comprise a plurality of such filtration modules fluidly connected to one another by manifolds. Manifolds are typically positioned above and below the filtration module headers and communicate fluids to and from the modules via the headers.
The filter cartridges in these systems often have a finite life and may need to be removed for cleaning and/or replacement at regular intervals during the operating life of a filtration system. Filter cartridges that require service are typically removed by first removing, for example, by vertically displacing, the header mountings to release the filter cartridge from the module. The cartridge is then removed from the module.
The membranes in the modules may require regular testing, evaluation, diagnosis, cleaning and/or replacement. Filtration module assemblies often have manifolds vertically positioned above modules. The position of the manifolds may require that the modules be removed laterally to maneuver around the vertically positioned manifolds. Filtration systems generally comprise a plurality of filtration modules, and the modules are often arranged in banks that form large arrays. Accessing a single membrane module in a filtration system may require that multiple neighboring modules in the bank also be removed to provide access to a module in need of service. This is particularly problematic when the module is located deep within a bank. Evaluating or servicing a single module, especially one located deep within a multi-rowed array of membrane modules, can be time and labor intensive and result in the filtration system being off-line for undesirably long and costly periods of time.
Additionally, filtration systems generally include modules suspended vertically from an overhead supporting frame so that the headers and the header mountings can be displaced vertically to enable the cartridges to be removed laterally. Overhead supporting frames are often expensive to produce and maintain.
One or more aspects of the present invention relate to improved filtration module assemblies. The improved filtration module assemblies of the present invention may be advantageously used in filtration systems. Aspects and embodiments of the filtration module assemblies disclosed may advantageously reduce the downtime required to service a filtration module of a filtration system. Aspects and embodiments of the filtration module assemblies disclosed may also enable filtration modules of a filtration system to be mounted in an improved mounting arrangement.
A filtration module assembly in accordance with an embodiment of the present invention is illustrated generally at 10 in
The hollow fiber membranes form the working part of the filter cartridge. Each fiber membrane may have an average pore size of about 0.2 micron, a wall thickness of about 600 microns and a lumen diameter of about 200 microns. The fiber membranes may be arranged in bundles. There may be about 14,000 hollow fibers in the bundle, but this number, as well as the individual fiber dimensions and characteristics are not narrowly critical and may be varied according to operational requirements.
In accordance with some embodiments, membrane potting sleeves may have features that enable the transfer of fluid between the membrane lumens and a fluid communication region of the module. Referring to
In accordance with some embodiments, a lower potting head may comprise through passages that promote the transfer of fluid between the potting head and the potted membrane fibers. Referring to
In accordance with aspects and embodiments of the present invention, the lower potting sleeves of membrane modules may be fitted in and coupled to lower sockets. The sockets may be in communication with a fluid control manifold advantageously offset from the lower sockets to facilitate servicing. Referring to
Annular flange 5 extends from lower socket 31 between the tubular neck portion 34 and an outer wall 6 of socket 31. Flange 5 has screw threads to threading engage with a mating upwardly extending annular flange 7 provided on the upper side of the lower header 32. Annular flanges 5 and 7, when threadingly engaged, are positioned so as to align the respective mating connecting flanges 35 and 37.
In accordance with aspects and embodiments, a lower socket may advantageously receive and support a membrane module. In some embodiments, the support provided by the socket may facilitate the use of an improved filtration system frame. Still referring to
The lower socket may advantageously define a fluid transfer passageway between the openings in the lower potting sleeve and a fluid transport port located in the lower header. Below circumferential rib 44, inner wall 42 of the lower socket 31 is radially spaced from the lower potting sleeve 19 to define an annular fluid transfer passageway 9. Annular fluid passageway 9 is positioned between and in fluid communication with the openings 22 in lower potting sleeve 19 and a fluid transfer port 45 of lower header 32.
In accordance with aspects and embodiments of the present invention, a membrane module may be fitted into an upper open ended header housing and a lower socket. The header housing may advantageously facilitate access to a membrane module received by the housing, particularly when the module is one of a plurality of modules in a filtration system. Referring generally
In accordance with aspects and embodiments, a common fluid control manifold may be offset from beneath the lower potting heads and may, in some embodiments, be advantageously positioned below and between membrane modules. Referring to
The body of the fluid control manifold 54 includes sidewalls that define a feed passageway 60 and a control port 61 which extends generally vertically downward in a radial direction from an upper wall 62 of the feed passageway 60 and into the feed passageway 60. Control port 61 may be a conduit in the form of a pipe or a tube. Control port 61 may be referred to as conduit 61, and the as used herein, the terms are interchangeable.
Fluid may be fed into one or more passageways in fluid communication with the fluid passageway 60 of fluid control manifold 54. For example, and referring to
In some embodiments, aeration control apertures and corresponding passageways may advantageously allow a flow of gas through the membrane module without displacing liquid in the feed passageway. In some embodiments, aeration control features may advantageously prevent the conduit in the common fluid manifold from becoming completely filled with gas. Referring to
Referring to
In accordance with aspects and embodiments of the present invention, an upper potting head and potting sleeve may advantageously be received by an annular adapter. The annular adapter may be mounted within an upper header housing and the configuration may advantageously benefit the construction of filtration modules, filtration system assemblies, and facilitate the service of modules positioned in such assemblies.
Referring again to
The upper header housing 30 is formed of upper and lower components 87 and 88 respectively. The lower end 89 of upper component 87 includes a peripheral flange 90. The lower face 91 of the peripheral flange 90 includes annular groove 92. The upper end 93 of the lower component 88 includes peripheral flange 94 which abuts peripheral flange 90. The upper face 95 of peripheral flange 94 includes annular rib 96 which is sized to mate with annular groove 92 when flanges 90 and 94 are abutted. Flanges 90 and 94 are held in an abutted engagement by an external C-section clip 97 which fits over and engages with the periphery of flanges 90 and 94. A dovetail seal is provided between flanges 90 and 94. Clip 97 may be a resilient self-actuating device biased to retain the flanges 90 and 94 in an abutted position, and may be, for example, a pipe clamp. In accordance with some embodiments, clip 97 may be constructed of stainless steel. Flanges 90 and 94 may be disengaged by spreading and removing clip 97. Clip 97 may be removed either manually or with a tool. In accordance with some embodiments, clip 97 may be removed with a spanner or pliers.
During filtration operations, annular adaptor 81 is sealingly engaged with upper component 87 of upper header housing 30. Annular grooves 100 and 101 positioned around the periphery of annular adaptor 81 support O-rings 102 and 103. O-rings 102 and 103 exert a force on the inner wall of upper housing component 87 to provide a sealing engagement.
In accordance with some embodiments, the upper header housing may have an enlarged diameter portion to form a fluid transfer passageway between the outer wall of the upper potting sleeve and the inner wall of the housing. Referring to
Upper potting sleeve 20 has a plurality of openings 22 in fluid communication with common fluid region 21. During filtration, upper potting sleeve 20 is mounted within the upper header housing 30 and positioned such that the plurality of openings 22 are further in fluid communication with annular fluid transfer passageway 104. In some embodiments, it may be desirable to prevent the rotation of potting sleeve 20 relative to upper header housing 30. Rotation of potting sleeve 20, and thus apertures 22, may be capable of causing damage to the membranes in the fluid outflow region. Locking protrusion 85′ advantageously prevents such rotation and fixably spaces the location of openings 22 from the fluid transfer port 105 to prevent damage to the membranes in the region of fluid outflow.
In accordance with aspects and embodiments of the present invention, an upper potting sleeve and attached annular adapter may be held at a mounting location within an upper header housing by a removable end cap. The removable end cap may sealingly engage the membrane assembly with the housing and may define a filtrate discharge passageway. As used herein, a “removable end cap” is one which may be reversibly removed from a membrane module without causing damage to either the removable end cap or any other portion of the membrane module in which it is included. A removable end cap which has been removed from a filtration module may be replaced in the module and the module may operate with no loss of performance caused by the removal and replacement of the removable end cap.
Referring to
Referring to
A peripheral groove 137 is positioned adjacent the downwardly extending rib 133 of end cap base portion 121 and supports O-ring 138. Groove 137 and O-ring 138 sealing engage end cap 120 and upper header housing 30. Referring also to
The outer wall of the upper portion 123 of the end cap 120, adjacent the step and below screw threads 146 has a peripheral groove 148 which supports O-ring 149. This arrangement, together with O-ring 138, serves to form a fluid tight seal of a filtrate discharge passageway 126.
In accordance with some embodiments, the removable end cap may have features that advantageously control fluid flow. In some embodiments, a valve may operate to disconnect a filtration cartridge from a filtration system without interfering with other modules in the system.
Referring to
Port 154 in end cap 120 fluidly connects filtrate collection chamber 135 and filtrate passageway 160. Shut-off valve 150 includes seal 153 positioned on the lower end of valve 150. When shut-off valve 150 is moved upwardly, seal 153 closes port 154 to prevent flow of filtrate out of filtrate collection chamber 135 and into filtrate discharge passageway 126. The closing of port 154 does not, however, interfere with the flow of filtrate from and to adjacent module headers through filtrate passageway 126. Shut-off valve 150 is designed such that it can be readily operated without having to dismantle component parts of the filter assembly. Shut-off valve 150 may advantageously allow a single membrane module of a filtration system comprising a plurality of modules to be taken offline without requiring other surrounding modules be taken offline as well.
In accordance with some embodiments, valve 150 may be moved from the open position to the closed position by rotating shaft 156 of valve 150 in a screw threading engagement with the inner wall of shut-off passageway 124. Rotating shaft 156 in passageway 124 in a first direction causes upward axial movement of seal 153 and closes port 154. Shut-off valve 150 may be opened by rotating shaft 156 in an opposite direction.
In accordance with some embodiments, valve 150 may have features that further assist an operator of a filtration system. Shaft 156 of shut off valve 150 may, for example, protrude from a lower wall of the upper portion of 123 of end cap 120 when activated so that it is easily ascertainable, even at a distance, that the valve is in the closed position and that the module which the valve controls is disconnected or offline. In accordance with some embodiments, the shut-off passageway 124 may have a transparent window or may be formed of transparent material so that air bubbles can be observed by an operator during a pressure test or a pressure decay test.
The header housings of the present invention may facilitate the construction and design of filtration systems comprising multiple membrane modules housed in header housings as described herein. The header housings of aspects of the present invention may provide for the fluid connection of membrane modules to common fluid manifolds that are advantageously positioned to facilitate an improved method of servicing a filtration system. The header housings of the present invention may additionally facilitate the construction of improved filtration system support frames.
Referring again to
With continued reference to
Referring again to
In accordance with aspects and embodiments of the present invention, a filtration system may implement the filtration module assemblies and manifold configurations disclosed herein. The resultant improved filtration system may be more cost-effective to construct and maintain.
Referring generally to
Common manifolds 54, 168, and 170 are each substantially symmetric about planes defined by the longitudinal axes of the filter module assemblies. Flow of feed, filtrate, and gas within the manifolds passes predominantly perpendicularly to the longitudinal axes of the filter module assemblies. In some embodiments, each manifold 54, 168, and 170 includes planar side faces and at one side of each manifold there are grooves (not shown) for receiving O-rings around the ends of respective passageways 60, 171, and 172. At the opposite side of each manifold there are annular beveled projections (not shown) adapted to engage the O-rings of an adjacent manifold. Each manifold 54, 168, and 170 can be abutted against a like manifold so as to create a row of manifolds to which rows of membrane module pairs 11 and 12 can be connected. The arrangement may allow a greater packing density of modules than is possible in conventional filtration systems.
Referring to
Similarly and referring to
Referring to
The lower external wall of the upper portion of the header housing 30 includes a pair of radially extending protrusions 190 with tangential through passages 191 formed therein. Protrusions 190 are located on opposed side walls (rear protrusion not shown) such that when the header housing 30 is joined to manifolds 168 and 170, tangential through passages 191 extend normal to the axes of the transfer manifolds 168 and 170. Tie bars 194 and 195 extend through the passages 191 of protrusions 190 of membrane module 11 and further extend through passages 191 of protrusions 190 of header housing 30 of membrane module 12. Tie bars 194 and 195 are provided with threaded end portions 196 and 197, respectively, to receive and engage respectively locking nuts 198 and 199 so as to axially pull the header housings 30 of modules 11 and 12 into an abutting engagement with transfer manifolds 168 and 170.
Referring to
Those skilled in the art will recognize that alternate mechanisms for connecting the manifolds and/or headers together may also or additionally be utilized. For example, the manifolds and/or headers may be provided with clips, intersecting flanges, pressure fit couplings, or screw-like threading adapted to couple to complementary threading on adjacent modules and/or headers.
In accordance with some embodiments, the assemblies of the present invention may facilitate the construction of filtration system using a less-expensive, lighter-weight rack than possible in filtration systems comprising traditional assemblies. Because the modules, module pairs, and their associated headers are essentially self-supporting, the modules may be easily mounted in the lighter weight rack without comprising stability or performance.
Referring to
The filtration systems and module assemblies of the present invention may improve the ease with which the system may be serviced. In accordance with some embodiments, a module in need of service may be taken offline without taking surrounding membrane modules offline. In some embodiments, the module may be serviced without having to dismantle the components of adjacent membranes. The systems and assemblies of the present invention may enable a system to be serviced without taking a large portion of, or the entire system offline. The systems and assemblies of the present invention may facilitate an operator in servicing the system.
In accordance with aspects and embodiments and referring to the filtration assembly shown in generally in
End cap 120 of module 11 may be removed by unscrewing the end cap from upper header housing 30. As discussed, in some embodiments, end cap 120 may have threads positioned on the outer surface of the upper portion of end cap 120 that mate with complementary threads in upper header housing 30. In accordance with other embodiments, end cap 120 may be removed by pulling end-cap 120 vertically out of an unthreaded header housing 30, or may be removed by other means. As shown in
In accordance with aspects and embodiments of the present invention, filtration may be performed in a plurality of modes. Filtration may operate in dead end or feed and bleed modes, and in accordance with some aspects and embodiments, cleaning operations may be performed.
Referring to
In accordance with some embodiments, the filtration system may operate in dead end filtration mode. In dead-end filtration mode, the feed liquid is pressurized within the outer casing 15. The pressurization produces a transmembrane pressure differential across the walls of the membranes and feed is forced through the outer surface of the membranes. As a result, filtrate is produced within the membrane lumens. In some embodiments and in accordance with the dead-end filtration mode of operation, the membranes are not open in the lower potting head 18. Filtrate flows upward within the membrane lumens and is discharged into filtrate receiving chamber 135. Filtrate then flows through port 154 into filtrate discharge passageway 126, through filtrate transfer port 160 and into filtrate transfer manifold 168.
In accordance with other embodiments, the filtration system may operate in feed and bleed filtration mode. In feed and bleed filtration mode, a portion of feed liquid does not pass through the membranes to produce filtrate. In accordance with some feed and bleed embodiments, from about 10% of the feed liquid to about 75% of the feed liquid enters the base of each module and flows upward along the outside of the membranes. This portion of the feed then passes outward through opening 22 in upper potting sleeve 20 into annular fluid transfer passageway 104. The feed liquid then flows out through fluid transfer port 105 and into passageway 172 of the fluid transfer manifold 170. The remaining portion of the feed is filtered through the membranes and is collected from the membrane lumens as filtrate in filtrate collection chamber 135. The collected filtrate then flows through filtrate passageway 126 in end cap 120, through port 160, and into filtrate transfer manifold 168.
In accordance with some embodiments, the membranes in the filtration module assemblies and filtration systems of the present invention may be cleaned by a scouring or scrubbing process. When cleaning is desired, the liquid within feed passageway 60 is displaced downwardly by the introduction of gas into feed passageway 60 until the gas/liquid interface reaches the level of aeration openings 71 and 72. The gas then passes through openings 71 and 72, along passages 66 and 67 of conduit 61, and into the respective output passageways 63 and 64. The gas then passes from passageways 63 and 64 into fluid connection passageway 50, outward through fluid transfer port 45, and into the lower socket 31. The gas is then captured by skirt 29 and fed upwards through passages 26 in the lower potting head 18.
The gas then enters the base of each module and gas bubbles flow upward along the membranes and within the screen 80 cleaning the surface of the membranes. As the gas moves past the membrane fibers, the friction between the gas bubbles and contaminants lodged on the membrane surfaces may cause release of the contaminants from the membrane surfaces. The introduction of the gas may also cause the membrane fibers to vibrate and further dislodge contaminants. The gas then passes outward through openings 22 in the upper potting sleeve 20 and into annular fluid transfer passageway 104. The gas then vents through fluid transfer port 105 and into the passageway 171 of the fluid transfer manifold 170. In accordance with some embodiments, a single manifold 54 may be used to selectively supply feed and/or gas bubbles to a membrane module.
A backwash or draindown of the modules may be performed after gas aeration and cleaning. During a backwash or draindown, liquid may be removed from the module by flowing liquid in the reverse direction to that of the feed supply mode. A backwash, such as a reverse fluid flow, for example, flow of filtrate from the lumens through to the outer surfaces of the membranes, may further remove contaminants from the membranes by forcing liquid from the inside of the membranes out through the membrane pores. A drain down of the modules may remove dislodged contaminant waste from the module.
In accordance with some embodiments, the membrane modules may be configured to withdraw filtrate from the bottom or both ends of the potted membranes. Referring to
While exemplary embodiments of the disclosure have been disclosed, many modifications, additions, and deletions may be made therein without departing from the spirit and scope of the disclosure and its equivalents, as set forth in the following claims.
Those skilled in the art would readily appreciate that the various parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the apparatus and methods of the present disclosure are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present disclosure may further comprise a network of systems or be a component of a heat exchanger system or water treatment system. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosed systems and methods may be practiced otherwise than as specifically described. For example, flat sheet membranes may be prepared and used in the systems of the present disclosure. The present systems and methods are directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems, or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present disclosure.
Further, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. For example, the manifolds may be prepared by any fabrication technique, including injection molding or welding techniques and be fabricated from any desired material. In other instances, an existing facility may be modified to utilize or incorporate any one or more aspects of the invention. Thus, in some cases, the systems may involve connecting or configuring an existing facility to comprise a filtration system or components of a filtration system, for example the manifolds disclosed herein. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.
Use of ordinal terms such as “first,” “second,” “third,” and the like in the specification and claims to modify an element does not by itself connote any priority, precedence, or order of one element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element having a certain name from another element having a same name, but for use of the ordinal term, to distinguish the elements.
Number | Date | Country | Kind |
---|---|---|---|
2011904047 | Sep 2011 | AU | national |
This application is a continuation of and claims the benefit under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/428,226, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Feb. 9, 2017, which is a divisional of and claims the benefit under 35 U.S.C. § 120 to co-pending U.S. patent application Ser. No. 14/347,258, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Mar. 26, 2014, issued as U.S. Pat. No. 9,604,166 on Mar. 28, 2017, which is a national stage application under 35 U.S.C. § 271 of International Application no. PCT/US2012/055715, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Sep. 17, 2012, each of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
256008 | Leak | Apr 1882 | A |
285321 | Tams | Sep 1883 | A |
403507 | Bode | May 1889 | A |
511995 | Buckley | Jan 1894 | A |
1997074 | Novotny | Apr 1935 | A |
2080783 | Petersen | May 1937 | A |
2105700 | Ramage | Jan 1938 | A |
2517626 | Berg | Aug 1950 | A |
2843038 | Manspeaker | Jul 1958 | A |
2926086 | Chenicek et al. | Feb 1960 | A |
3068655 | Murray et al. | Dec 1962 | A |
3139401 | Hach | Jun 1964 | A |
3183191 | Hach | May 1965 | A |
3191674 | Richardson | Jun 1965 | A |
3198636 | Bouthilet | Aug 1965 | A |
3228876 | Mahon | Jan 1966 | A |
3246761 | Bryan et al. | Apr 1966 | A |
3275554 | Wagenaar | Sep 1966 | A |
3442002 | Geary et al. | May 1969 | A |
3462362 | Kollsman | Aug 1969 | A |
3472168 | Inoue et al. | Oct 1969 | A |
3472765 | Budd et al. | Oct 1969 | A |
3492698 | Geary et al. | Feb 1970 | A |
3501798 | Carraro | Mar 1970 | A |
3505215 | Bray | Apr 1970 | A |
3556305 | Shorr | Jan 1971 | A |
3563860 | Henderyckx | Feb 1971 | A |
3591010 | Pall et al. | Jul 1971 | A |
3592450 | Rippon | Jul 1971 | A |
3625827 | Wildi et al. | Dec 1971 | A |
3628775 | McConnell et al. | Dec 1971 | A |
3654147 | Levin | Apr 1972 | A |
3679052 | Asper | Jul 1972 | A |
3693406 | Tobin, III | Sep 1972 | A |
3700561 | Ziffer | Oct 1972 | A |
3700591 | Higley | Oct 1972 | A |
3708071 | Crowley | Jan 1973 | A |
3728256 | Cooper | Apr 1973 | A |
3763055 | White et al. | Oct 1973 | A |
3791631 | Meyer | Feb 1974 | A |
3795609 | Hill et al. | Mar 1974 | A |
3804258 | Okuniewski et al. | Apr 1974 | A |
3843809 | Luck | Oct 1974 | A |
3876738 | Marinaccio et al. | Apr 1975 | A |
3912624 | Jennings | Oct 1975 | A |
3937015 | Akado et al. | Feb 1976 | A |
3955998 | Clampitt et al. | May 1976 | A |
3962095 | Luppi | Jun 1976 | A |
3968192 | Hoffman, III et al. | Jul 1976 | A |
3992301 | Shippey et al. | Nov 1976 | A |
3993816 | Baudet et al. | Nov 1976 | A |
4016078 | Clark | Apr 1977 | A |
4049765 | Yamazaki | Sep 1977 | A |
4076656 | White et al. | Feb 1978 | A |
4082683 | Galesloot | Apr 1978 | A |
4105556 | O'Amaddio et al. | Aug 1978 | A |
4105731 | Yamazaki | Aug 1978 | A |
4107043 | McKinney | Aug 1978 | A |
4138460 | Tigner | Feb 1979 | A |
4157899 | Wheaton | Jun 1979 | A |
4169873 | Lipert | Oct 1979 | A |
4183890 | Bollinger | Jan 1980 | A |
4187263 | Lipert | Feb 1980 | A |
4188817 | Steigelmann | Feb 1980 | A |
4190411 | Fujimoto | Feb 1980 | A |
4190419 | Bauer | Feb 1980 | A |
4192750 | Elfes et al. | Mar 1980 | A |
4193780 | Cotton, Jr. et al. | Mar 1980 | A |
4203848 | Grandine, II | May 1980 | A |
4204961 | Cusato, Jr. | May 1980 | A |
4218324 | Hartmann et al. | Aug 1980 | A |
4226921 | Tsang | Oct 1980 | A |
4227295 | Bodnar et al. | Oct 1980 | A |
4230583 | Chiolle et al. | Oct 1980 | A |
4243525 | Greenberg | Jan 1981 | A |
4247498 | Castro | Jan 1981 | A |
4248648 | Kopp | Feb 1981 | A |
4253936 | Leysen et al. | Mar 1981 | A |
4271026 | Chen et al. | Jun 1981 | A |
4272379 | Pollock | Jun 1981 | A |
4302336 | Kawaguchi et al. | Nov 1981 | A |
4315819 | King et al. | Feb 1982 | A |
4323453 | Zampini | Apr 1982 | A |
4340479 | Pall | Jul 1982 | A |
4350592 | Kronsbein | Sep 1982 | A |
4353802 | Hara et al. | Oct 1982 | A |
4359359 | Gerlach et al. | Nov 1982 | A |
4367139 | Graham | Jan 1983 | A |
4367140 | Wilson | Jan 1983 | A |
4369605 | Opersteny et al. | Jan 1983 | A |
4371427 | Holler et al. | Feb 1983 | A |
4384474 | Kowalski | May 1983 | A |
4388189 | Kawaguchi et al. | Jun 1983 | A |
4389363 | Molthop | Jun 1983 | A |
4405688 | Lowery et al. | Sep 1983 | A |
4407975 | Yamaguchi | Oct 1983 | A |
4414113 | LaTerra | Nov 1983 | A |
4414172 | Leason | Nov 1983 | A |
4415452 | Heil et al. | Nov 1983 | A |
4431545 | Pall et al. | Feb 1984 | A |
4451369 | Sekino et al. | May 1984 | A |
4462855 | Yankowsky et al. | Jul 1984 | A |
4467001 | Coplan et al. | Aug 1984 | A |
4476015 | Schmitt et al. | Oct 1984 | A |
4476112 | Aversano | Oct 1984 | A |
4491522 | Ishida et al. | Jan 1985 | A |
4496470 | Kapiloff et al. | Jan 1985 | A |
4511471 | Muller | Apr 1985 | A |
4519909 | Castro | May 1985 | A |
4539940 | Young | Sep 1985 | A |
4540490 | Shibata et al. | Sep 1985 | A |
4545862 | Gore et al. | Oct 1985 | A |
4547289 | Okano et al. | Oct 1985 | A |
4609465 | Miller | Sep 1986 | A |
4610789 | Barch | Sep 1986 | A |
4614109 | Hofmann | Sep 1986 | A |
4623460 | Kuzumoto et al. | Nov 1986 | A |
4623670 | Mutoh et al. | Nov 1986 | A |
4629563 | Wrasidlo | Dec 1986 | A |
4632745 | Giuffrida et al. | Dec 1986 | A |
4636296 | Kunz | Jan 1987 | A |
4647377 | Miura | Mar 1987 | A |
4650586 | Ellis, III | Mar 1987 | A |
4650596 | Schlueter et al. | Mar 1987 | A |
4656865 | Callan | Apr 1987 | A |
4660411 | Reid | Apr 1987 | A |
4666543 | Kawano | May 1987 | A |
4670145 | Edwards | Jun 1987 | A |
4673507 | Brown | Jun 1987 | A |
4687561 | Kunz | Aug 1987 | A |
4687578 | Stookey | Aug 1987 | A |
4688511 | Gerlach et al. | Aug 1987 | A |
4689191 | Beck et al. | Aug 1987 | A |
4702830 | Makino et al. | Oct 1987 | A |
4702836 | Mutoh et al. | Oct 1987 | A |
4702840 | Degen et al. | Oct 1987 | A |
4707266 | Degen et al. | Nov 1987 | A |
4708799 | Gerlach et al. | Nov 1987 | A |
4718270 | Storr | Jan 1988 | A |
4744240 | Reichelt | May 1988 | A |
4749487 | Lefebvre | Jun 1988 | A |
4752421 | Makino | Jun 1988 | A |
4756875 | Tajima et al. | Jul 1988 | A |
4763612 | Iwanami | Aug 1988 | A |
4769140 | van Dijk et al. | Sep 1988 | A |
4774132 | Joffee et al. | Sep 1988 | A |
4775471 | Nagai et al. | Oct 1988 | A |
4779448 | Gogins | Oct 1988 | A |
4781831 | Goldsmith | Nov 1988 | A |
4784771 | Wathen et al. | Nov 1988 | A |
4793932 | Ford et al. | Dec 1988 | A |
4797187 | Davis et al. | Jan 1989 | A |
4797211 | Ehrfeld et al. | Jan 1989 | A |
4800019 | Bikson et al. | Jan 1989 | A |
4812235 | Seleman et al. | Mar 1989 | A |
4824563 | Iwahori et al. | Apr 1989 | A |
4828696 | Makino et al. | May 1989 | A |
4834998 | Shrikhande | May 1989 | A |
4839048 | Reed et al. | Jun 1989 | A |
4840227 | Schmidt | Jun 1989 | A |
4846970 | Bertelsen et al. | Jul 1989 | A |
4867883 | Daigger et al. | Sep 1989 | A |
4876006 | Ohkubo et al. | Oct 1989 | A |
4876012 | Kopp et al. | Oct 1989 | A |
4888115 | Marinaccio et al. | Dec 1989 | A |
4889620 | Schmit et al. | Dec 1989 | A |
4904426 | Lundgard et al. | Feb 1990 | A |
4908114 | Ayers | Mar 1990 | A |
4911838 | Tanaka | Mar 1990 | A |
4919815 | Copa et al. | Apr 1990 | A |
4931186 | Ford et al. | Jun 1990 | A |
4933084 | Bandel et al. | Jun 1990 | A |
4952317 | Culkin | Aug 1990 | A |
4963304 | Im et al. | Oct 1990 | A |
4966699 | Sasaki et al. | Oct 1990 | A |
4968430 | Hildenbrand et al. | Nov 1990 | A |
4968733 | Muller et al. | Nov 1990 | A |
4980066 | Slegers | Dec 1990 | A |
4988444 | Applegate et al. | Jan 1991 | A |
4999038 | Lundberg | Mar 1991 | A |
5002666 | Matsumoto et al. | Mar 1991 | A |
5005430 | Kibler et al. | Apr 1991 | A |
5015275 | Beck et al. | May 1991 | A |
5024762 | Ford et al. | Jun 1991 | A |
5034125 | Karbachsch et al. | Jul 1991 | A |
5043113 | Kafchinski et al. | Aug 1991 | A |
5059317 | Marius et al. | Oct 1991 | A |
5066375 | Parsi et al. | Nov 1991 | A |
5066402 | Anselme et al. | Nov 1991 | A |
5069065 | Sprunt et al. | Dec 1991 | A |
5069353 | Espenan | Dec 1991 | A |
5075044 | Augem | Dec 1991 | A |
5075065 | Effenberger et al. | Dec 1991 | A |
5079272 | Allegrezza, Jr. et al. | Jan 1992 | A |
5080770 | Culkin | Jan 1992 | A |
5094750 | Kopp et al. | Mar 1992 | A |
5094867 | Detering et al. | Mar 1992 | A |
5098567 | Nishiguchi | Mar 1992 | A |
5102550 | Pizzino et al. | Apr 1992 | A |
5104535 | Cote et al. | Apr 1992 | A |
5104546 | Filson et al. | Apr 1992 | A |
H1045 | Wilson | May 1992 | H |
5135663 | Newberth, III et al. | Aug 1992 | A |
5137631 | Eckman et al. | Aug 1992 | A |
5138870 | Lyssy | Aug 1992 | A |
5147553 | Waite | Sep 1992 | A |
5151191 | Sunaoka et al. | Sep 1992 | A |
5156738 | Maxson | Oct 1992 | A |
5158721 | Allegrezza, Jr. et al. | Oct 1992 | A |
5169528 | Karbachsch et al. | Dec 1992 | A |
5169530 | Schucker et al. | Dec 1992 | A |
5180407 | DeMarco | Jan 1993 | A |
5182019 | Cote et al. | Jan 1993 | A |
5186821 | Murphy | Feb 1993 | A |
5192442 | Piccirillo et al. | Mar 1993 | A |
5192456 | Ishida et al. | Mar 1993 | A |
5192478 | Caskey | Mar 1993 | A |
5198116 | Comstock et al. | Mar 1993 | A |
5198162 | Park et al. | Mar 1993 | A |
5203405 | Gentry et al. | Apr 1993 | A |
5209852 | Sunaoka et al. | May 1993 | A |
5211823 | Giuffrida et al. | May 1993 | A |
5221478 | Dhingra et al. | Jun 1993 | A |
5227063 | Langerak et al. | Jul 1993 | A |
5244579 | Horner et al. | Sep 1993 | A |
5262054 | Wheeler | Nov 1993 | A |
5269919 | von Medlin | Dec 1993 | A |
5271830 | Faivre et al. | Dec 1993 | A |
5275766 | Gadkaree et al. | Jan 1994 | A |
5286324 | Kawai et al. | Feb 1994 | A |
5290451 | Koster et al. | Mar 1994 | A |
5290457 | Karbachsch et al. | Mar 1994 | A |
5297420 | Gilliland et al. | Mar 1994 | A |
5316671 | Murphy | May 1994 | A |
5320760 | Freund et al. | Jun 1994 | A |
5353630 | Soda et al. | Oct 1994 | A |
5354470 | Seita et al. | Oct 1994 | A |
5358732 | Seifter et al. | Oct 1994 | A |
5361625 | Ylvisaker | Nov 1994 | A |
5364527 | Zimmermann et al. | Nov 1994 | A |
5364529 | Morin et al. | Nov 1994 | A |
5374353 | Murphy | Dec 1994 | A |
5389260 | Hemp et al. | Feb 1995 | A |
5393433 | Espenan et al. | Feb 1995 | A |
5396019 | Sartori et al. | Mar 1995 | A |
5401401 | Hickok et al. | Mar 1995 | A |
5401405 | McDougald | Mar 1995 | A |
5403479 | Smith et al. | Apr 1995 | A |
5405528 | Selbie | Apr 1995 | A |
5411663 | Johnson | May 1995 | A |
5417101 | Weich | May 1995 | A |
5419816 | Sampson et al. | May 1995 | A |
5425415 | Master et al. | Jun 1995 | A |
5451317 | Ishida et al. | Sep 1995 | A |
5458779 | Odegaard | Oct 1995 | A |
5468397 | Barboza et al. | Nov 1995 | A |
5470469 | Eckman | Nov 1995 | A |
5477731 | Mouton | Dec 1995 | A |
5479590 | Lin | Dec 1995 | A |
5484528 | Yagi et al. | Jan 1996 | A |
5490939 | Gerigk et al. | Feb 1996 | A |
5501798 | Al-Samadi et al. | Mar 1996 | A |
5525220 | Yagi et al. | Jun 1996 | A |
5531900 | Raghavan et al. | Jul 1996 | A |
5552047 | Oshida et al. | Sep 1996 | A |
5556591 | Jallerat et al. | Sep 1996 | A |
5597732 | Bryan-Brown | Jan 1997 | A |
5607593 | Cote et al. | Mar 1997 | A |
5626755 | Keyser et al. | May 1997 | A |
5633163 | Cameron | May 1997 | A |
5639373 | Mahendran et al. | Jun 1997 | A |
5647988 | Kawanishi et al. | Jul 1997 | A |
5651393 | Danowski | Jul 1997 | A |
5670053 | Collentro et al. | Sep 1997 | A |
5677360 | Yamamori et al. | Oct 1997 | A |
5688460 | Ruschke | Nov 1997 | A |
5690830 | Ohtani et al. | Nov 1997 | A |
5733456 | Okey et al. | Mar 1998 | A |
5744037 | Fujimura et al. | Apr 1998 | A |
5747605 | Breant et al. | May 1998 | A |
5766479 | Collentro et al. | Jun 1998 | A |
D396046 | Scheel et al. | Jul 1998 | S |
5783083 | Henshaw et al. | Jul 1998 | A |
5786528 | Dileo et al. | Jul 1998 | A |
D396726 | Sadr et al. | Aug 1998 | S |
5814234 | Bower et al. | Sep 1998 | A |
D400890 | Gambardella | Nov 1998 | S |
5843069 | Butler et al. | Dec 1998 | A |
5846424 | Khudenko | Dec 1998 | A |
5846425 | Whiteman | Dec 1998 | A |
5871823 | Anders et al. | Feb 1999 | A |
5888401 | Nguyen | Mar 1999 | A |
5891334 | Gundrum et al. | Apr 1999 | A |
5895521 | Otsuka et al. | Apr 1999 | A |
5895570 | Liang | Apr 1999 | A |
5906739 | Osterland et al. | May 1999 | A |
5906742 | Wang et al. | May 1999 | A |
5918264 | Drummond et al. | Jun 1999 | A |
5942113 | Morimura | Aug 1999 | A |
5944997 | Pedersen et al. | Aug 1999 | A |
5951878 | Astrom | Sep 1999 | A |
5958243 | Lawrence et al. | Sep 1999 | A |
5961830 | Barnett | Oct 1999 | A |
5968357 | Doelle et al. | Oct 1999 | A |
5988400 | Karachevtcev et al. | Nov 1999 | A |
5989428 | Goronszy | Nov 1999 | A |
5997745 | Tonelli et al. | Dec 1999 | A |
6001254 | Espenan et al. | Dec 1999 | A |
6007712 | Tanaka et al. | Dec 1999 | A |
6017451 | Kopf | Jan 2000 | A |
6036030 | Stone et al. | Mar 2000 | A |
6045698 | Cote et al. | Apr 2000 | A |
6045899 | Wang et al. | Apr 2000 | A |
6048454 | Jenkins | Apr 2000 | A |
6048455 | Janik | Apr 2000 | A |
6066401 | Stilburn | May 2000 | A |
6071404 | Tsui | Jun 2000 | A |
6074718 | Puglia et al. | Jun 2000 | A |
6077435 | Beck et al. | Jun 2000 | A |
6083393 | Wu et al. | Jul 2000 | A |
6096213 | Radovanovic et al. | Aug 2000 | A |
6113782 | Leonard | Sep 2000 | A |
6120688 | Daly et al. | Sep 2000 | A |
6126819 | Heine et al. | Oct 2000 | A |
6149817 | Peterson et al. | Nov 2000 | A |
6156200 | Zha et al. | Dec 2000 | A |
6162020 | Kondo | Dec 2000 | A |
6193890 | Pedersen et al. | Feb 2001 | B1 |
6214231 | Cote et al. | Apr 2001 | B1 |
6214232 | Baurmeister et al. | Apr 2001 | B1 |
6217770 | Haney et al. | Apr 2001 | B1 |
6221247 | Nemser et al. | Apr 2001 | B1 |
6224767 | Fujiwara et al. | May 2001 | B1 |
6264839 | Mohr et al. | Jul 2001 | B1 |
6277512 | Hamrock et al. | Aug 2001 | B1 |
6280626 | Miyashita et al. | Aug 2001 | B1 |
6284135 | Ookata | Sep 2001 | B1 |
6299773 | Takamura et al. | Oct 2001 | B1 |
6303026 | Lindbo | Oct 2001 | B1 |
6303035 | Cote et al. | Oct 2001 | B1 |
6315895 | Summerton et al. | Nov 2001 | B1 |
6319411 | Cote | Nov 2001 | B1 |
6322703 | Taniguchi et al. | Nov 2001 | B1 |
6325928 | Pedersen et al. | Dec 2001 | B1 |
6325938 | Miyashita et al. | Dec 2001 | B1 |
6331248 | Taniguchi et al. | Dec 2001 | B1 |
6337018 | Mickols | Jan 2002 | B1 |
RE37549 | Mahendran et al. | Feb 2002 | E |
6349835 | Saux et al. | Feb 2002 | B1 |
6354444 | Mahendran et al. | Mar 2002 | B1 |
6361695 | Husain et al. | Mar 2002 | B1 |
6368819 | Gaddy et al. | Apr 2002 | B1 |
6372138 | Cho et al. | Apr 2002 | B1 |
6383369 | Elston | May 2002 | B2 |
6387189 | Groschl et al. | May 2002 | B1 |
6402955 | Ookata | Jun 2002 | B2 |
6423214 | Lindbo | Jul 2002 | B1 |
6423784 | Hamrock et al. | Jul 2002 | B1 |
6432310 | Andou et al. | Aug 2002 | B1 |
6440303 | Spriegel | Aug 2002 | B2 |
D462699 | Johnson et al. | Sep 2002 | S |
6444124 | Onyeche et al. | Sep 2002 | B1 |
6468430 | Kimura et al. | Oct 2002 | B1 |
6471869 | Yanou et al. | Oct 2002 | B1 |
6485645 | Husain et al. | Nov 2002 | B1 |
6495041 | Taniguchi et al. | Dec 2002 | B2 |
6517723 | Daigger et al. | Feb 2003 | B1 |
6524733 | Nonobe | Feb 2003 | B1 |
6550747 | Rabie et al. | Apr 2003 | B2 |
6562237 | Olaopa | May 2003 | B1 |
6576136 | De Moel et al. | Jun 2003 | B1 |
6592762 | Smith | Jul 2003 | B2 |
D478913 | Johnson et al. | Aug 2003 | S |
6613222 | Mikkelson et al. | Sep 2003 | B2 |
6623643 | Chisholm et al. | Sep 2003 | B2 |
6627082 | Del Vecchio et al. | Sep 2003 | B2 |
6635179 | Summerton et al. | Oct 2003 | B1 |
6641733 | Zha et al. | Nov 2003 | B2 |
6645374 | Cote et al. | Nov 2003 | B2 |
6656356 | Gungerich et al. | Dec 2003 | B2 |
6685832 | Mahendran et al. | Feb 2004 | B2 |
6696465 | Dellaria et al. | Feb 2004 | B2 |
6702561 | Stillig et al. | Mar 2004 | B2 |
6706185 | Goel et al. | Mar 2004 | B2 |
6706189 | Rabie et al. | Mar 2004 | B2 |
6708957 | Cote et al. | Mar 2004 | B2 |
6712970 | Trivedi | Mar 2004 | B1 |
6721529 | Chen et al. | Apr 2004 | B2 |
6723242 | Ohkata et al. | Apr 2004 | B1 |
6723758 | Stone et al. | Apr 2004 | B2 |
6727305 | Pavez Aranguiz | Apr 2004 | B1 |
6743362 | Porteous et al. | Jun 2004 | B1 |
6755970 | Knappe et al. | Jun 2004 | B1 |
6758972 | Vriens et al. | Jul 2004 | B2 |
6761826 | Bender | Jul 2004 | B2 |
6770202 | Kidd et al. | Aug 2004 | B1 |
6780466 | Grangeon et al. | Aug 2004 | B2 |
6783008 | Zha et al. | Aug 2004 | B2 |
6790347 | Jeong et al. | Sep 2004 | B2 |
6790912 | Blong | Sep 2004 | B2 |
6805806 | Arnaud | Oct 2004 | B2 |
6808629 | Wouters-Wasiak et al. | Oct 2004 | B2 |
6811696 | Wang et al. | Nov 2004 | B2 |
6814861 | Husain et al. | Nov 2004 | B2 |
6821420 | Zha et al. | Nov 2004 | B2 |
6830782 | Kanazawa | Dec 2004 | B2 |
6840251 | Gill et al. | Jan 2005 | B2 |
6841070 | Zha et al. | Jan 2005 | B2 |
6861466 | Dadalas et al. | Mar 2005 | B2 |
6863816 | Austin et al. | Mar 2005 | B2 |
6863817 | Liu et al. | Mar 2005 | B2 |
6863818 | Daigger et al. | Mar 2005 | B2 |
6863823 | Cote | Mar 2005 | B2 |
6869534 | McDowell et al. | Mar 2005 | B2 |
6881343 | Rabie et al. | Apr 2005 | B2 |
6884375 | Wang et al. | Apr 2005 | B2 |
6890435 | Ji et al. | May 2005 | B2 |
6890645 | Disse et al. | May 2005 | B2 |
6893568 | Janson et al. | May 2005 | B1 |
6899138 | Lundman | May 2005 | B2 |
6936085 | DeMarco | Aug 2005 | B2 |
6946073 | Daigger et al. | Sep 2005 | B2 |
6952258 | Ebert et al. | Oct 2005 | B2 |
6955762 | Gallagher et al. | Oct 2005 | B2 |
6962258 | Zha et al. | Nov 2005 | B2 |
6974554 | Cox et al. | Dec 2005 | B2 |
6994867 | Hossainy et al. | Feb 2006 | B1 |
7005100 | Lowell | Feb 2006 | B2 |
7014763 | Johnson et al. | Mar 2006 | B2 |
7018530 | Pollock | Mar 2006 | B2 |
7022233 | Chen | Apr 2006 | B2 |
7041728 | Zipplies et al. | May 2006 | B2 |
7052610 | Janson et al. | May 2006 | B2 |
7083733 | Freydina et al. | Aug 2006 | B2 |
7087173 | Cote et al. | Aug 2006 | B2 |
7122121 | Ji | Oct 2006 | B1 |
7147777 | Porteous | Dec 2006 | B1 |
7147778 | DiMassimo et al. | Dec 2006 | B1 |
7160455 | Taniguchi et al. | Jan 2007 | B2 |
7160463 | Beck et al. | Jan 2007 | B2 |
7172699 | Trivedi et al. | Feb 2007 | B1 |
7172701 | Gaid et al. | Feb 2007 | B2 |
7186344 | Hughes | Mar 2007 | B2 |
7208091 | Pind et al. | Apr 2007 | B2 |
7223340 | Zha et al. | May 2007 | B2 |
7226541 | Muller et al. | Jun 2007 | B2 |
7247238 | Mullette et al. | Jul 2007 | B2 |
7264716 | Johnson et al. | Sep 2007 | B2 |
7279100 | Devine | Oct 2007 | B2 |
7279215 | Hester et al. | Oct 2007 | B2 |
7314563 | Cho et al. | Jan 2008 | B2 |
7329344 | Jordan et al. | Feb 2008 | B2 |
7344645 | Beck et al. | Mar 2008 | B2 |
7378024 | Bartels et al. | May 2008 | B2 |
7410584 | Devine | Aug 2008 | B2 |
7455765 | Elefritz et al. | Nov 2008 | B2 |
7481933 | Barnes | Jan 2009 | B2 |
7507274 | Tonkovich et al. | Mar 2009 | B2 |
7510655 | Barnes | Mar 2009 | B2 |
7540957 | Kurth et al. | Jun 2009 | B1 |
7563363 | Kuzma | Jul 2009 | B2 |
7591950 | Zha et al. | Sep 2009 | B2 |
7632439 | Mullette et al. | Dec 2009 | B2 |
7648634 | Probst | Jan 2010 | B2 |
7662212 | Mullette et al. | Feb 2010 | B2 |
7708887 | Johnson et al. | May 2010 | B2 |
7713413 | Barnes | May 2010 | B2 |
7718057 | Jordan et al. | May 2010 | B2 |
7718065 | Jordan | May 2010 | B2 |
7722769 | Jordan et al. | May 2010 | B2 |
7761826 | Thanvantri et al. | Jul 2010 | B1 |
7819956 | Muller | Oct 2010 | B2 |
7850851 | Zha et al. | Dec 2010 | B2 |
7931463 | Cox et al. | Apr 2011 | B2 |
7938966 | Johnson | May 2011 | B2 |
20010052494 | Cote et al. | Dec 2001 | A1 |
20020027111 | Ando et al. | Mar 2002 | A1 |
20020070157 | Yamada | Jun 2002 | A1 |
20020117444 | Mikkelson et al. | Aug 2002 | A1 |
20020148767 | Johnson et al. | Oct 2002 | A1 |
20020153313 | Cote | Oct 2002 | A1 |
20020185435 | Husain et al. | Dec 2002 | A1 |
20030038080 | Vriens et al. | Feb 2003 | A1 |
20030042199 | Smith | Mar 2003 | A1 |
20030052055 | Akamatsu et al. | Mar 2003 | A1 |
20030056919 | Beck | Mar 2003 | A1 |
20030057155 | Husain et al. | Mar 2003 | A1 |
20030062301 | Merrie et al. | Apr 2003 | A1 |
20030075495 | Dannstrom et al. | Apr 2003 | A1 |
20030075504 | Zha et al. | Apr 2003 | A1 |
20030121855 | Kopp | Jul 2003 | A1 |
20030127388 | Ando et al. | Jul 2003 | A1 |
20030146153 | Cote et al. | Aug 2003 | A1 |
20030159988 | Daigger et al. | Aug 2003 | A1 |
20030196947 | Gundrum et al. | Oct 2003 | A1 |
20030196955 | Hughes | Oct 2003 | A1 |
20030226797 | Phelps | Dec 2003 | A1 |
20040007523 | Gabon et al. | Jan 2004 | A1 |
20040007525 | Rabie et al. | Jan 2004 | A1 |
20040035770 | Edwards et al. | Feb 2004 | A1 |
20040045893 | Watanabe et al. | Mar 2004 | A1 |
20040050791 | Herczeg | Mar 2004 | A1 |
20040055974 | Del Vecchio et al. | Mar 2004 | A1 |
20040108268 | Liu et al. | Jun 2004 | A1 |
20040112831 | Rabie et al. | Jun 2004 | A1 |
20040145076 | Zha et al. | Jul 2004 | A1 |
20040149655 | Petrucco et al. | Aug 2004 | A1 |
20040154671 | Martins et al. | Aug 2004 | A1 |
20040168978 | Gray | Sep 2004 | A1 |
20040173525 | Hunniford et al. | Sep 2004 | A1 |
20040188339 | Murkute et al. | Sep 2004 | A1 |
20040188341 | Zha et al. | Sep 2004 | A1 |
20040222158 | Husain et al. | Nov 2004 | A1 |
20040232076 | Zha et al. | Nov 2004 | A1 |
20040245174 | Takayama et al. | Dec 2004 | A1 |
20050000885 | Stockbower | Jan 2005 | A1 |
20050006308 | Cote et al. | Jan 2005 | A1 |
20050023219 | Kirker et al. | Feb 2005 | A1 |
20050045557 | Daigger et al. | Mar 2005 | A1 |
20050053878 | Bruun et al. | Mar 2005 | A1 |
20050061725 | Liu et al. | Mar 2005 | A1 |
20050077227 | Kirker et al. | Apr 2005 | A1 |
20050098494 | Mullette et al. | May 2005 | A1 |
20050103722 | Freydina et al. | May 2005 | A1 |
20050109692 | Zha et al. | May 2005 | A1 |
20050115880 | Pollock | Jun 2005 | A1 |
20050115899 | Liu et al. | Jun 2005 | A1 |
20050121389 | Janson et al. | Jun 2005 | A1 |
20050126963 | Phagoo et al. | Jun 2005 | A1 |
20050184008 | Schacht et al. | Aug 2005 | A1 |
20050194305 | Vido et al. | Sep 2005 | A1 |
20050194310 | Yamamoto et al. | Sep 2005 | A1 |
20050194315 | Adams et al. | Sep 2005 | A1 |
20060021929 | Mannheim et al. | Feb 2006 | A1 |
20060065596 | Kent et al. | Mar 2006 | A1 |
20060081533 | Khudenko | Apr 2006 | A1 |
20060201879 | Den Boestert et al. | Sep 2006 | A1 |
20060249448 | Fujishima et al. | Nov 2006 | A1 |
20060249449 | Nakhla et al. | Nov 2006 | A1 |
20060273007 | Zha et al. | Dec 2006 | A1 |
20060273038 | Syed et al. | Dec 2006 | A1 |
20070007207 | Mahendran et al. | Jan 2007 | A1 |
20070039888 | Ginzburg et al. | Feb 2007 | A1 |
20070045183 | Murphy | Mar 2007 | A1 |
20070051679 | Adams et al. | Mar 2007 | A1 |
20070075017 | Kuzma | Apr 2007 | A1 |
20070084791 | Jordan et al. | Apr 2007 | A1 |
20070084795 | Jordan | Apr 2007 | A1 |
20070095741 | Berends | May 2007 | A1 |
20070102339 | Cote et al. | May 2007 | A1 |
20070108125 | Cho et al. | May 2007 | A1 |
20070138090 | Jordan et al. | Jun 2007 | A1 |
20070170112 | Elefritz et al. | Jul 2007 | A1 |
20070181496 | Zuback | Aug 2007 | A1 |
20080093297 | Gock et al. | Apr 2008 | A1 |
20080179249 | Beck et al. | Jul 2008 | A1 |
20080203017 | Zha et al. | Aug 2008 | A1 |
20080210623 | McMahon et al. | Sep 2008 | A1 |
20080257822 | Johnson | Oct 2008 | A1 |
20080277340 | Hong et al. | Nov 2008 | A1 |
20090001018 | Zha et al. | Jan 2009 | A1 |
20090194477 | Hashimoto | Aug 2009 | A1 |
20100000941 | Muller | Jan 2010 | A1 |
20100012585 | Zha et al. | Jan 2010 | A1 |
20100025320 | Johnson | Feb 2010 | A1 |
20100051545 | Johnson et al. | Mar 2010 | A1 |
20100170847 | Zha et al. | Jul 2010 | A1 |
20100200503 | Zha et al. | Aug 2010 | A1 |
20100300968 | Liu et al. | Dec 2010 | A1 |
20100326906 | Barnes | Dec 2010 | A1 |
20110049047 | Cumin et al. | Mar 2011 | A1 |
20110049048 | Benner et al. | Mar 2011 | A1 |
20110056522 | Zauner et al. | Mar 2011 | A1 |
20110114557 | Johnson et al. | May 2011 | A2 |
20110127209 | Rogers et al. | Jun 2011 | A1 |
20110132826 | Muller et al. | Jun 2011 | A1 |
20110139715 | Zha et al. | Jun 2011 | A1 |
20110192783 | Cox et al. | Aug 2011 | A1 |
20120074053 | Collignon et al. | Mar 2012 | A1 |
20120091602 | Cumin et al. | Apr 2012 | A1 |
20120285885 | James et al. | Nov 2012 | A1 |
20130037467 | Biltoft et al. | Feb 2013 | A1 |
20130056426 | Barnes | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
3440084 | Apr 1985 | AU |
3440084 | Apr 1985 | AU |
7706687 | Feb 1988 | AU |
7706687 | Feb 1988 | AU |
762091 | Jun 2003 | AU |
762091 | Jun 2003 | AU |
2531764 | Mar 2005 | CA |
2531764 | Mar 2005 | CA |
1050770 | Apr 1991 | CN |
1050770 | Jan 1995 | CN |
2204898 | Aug 1995 | CN |
2236049 | Sep 1996 | CN |
1468140 | Jan 2004 | CN |
1468140 | Jan 2004 | CN |
1735452 | Feb 2006 | CN |
3904544 | Aug 1990 | DE |
3904544 | Aug 1990 | DE |
4117281 | Jan 1992 | DE |
4117281 | Jan 1992 | DE |
4113420 | Oct 1992 | DE |
4113420 | Oct 1992 | DE |
4117422 | Nov 1992 | DE |
4117422 | Nov 1992 | DE |
4326603 | Feb 1995 | DE |
4326603 | Feb 1995 | DE |
19503060 | Aug 1996 | DE |
19503060 | Aug 1996 | DE |
29804927 | Jun 1998 | DE |
29804927 | Jun 1998 | DE |
29906389 | Jun 1999 | DE |
29906389 | Jun 1999 | DE |
10045227 | Feb 2002 | DE |
10045227 | Feb 2002 | DE |
10209170 | Aug 2003 | DE |
10209170 | Aug 2003 | DE |
202004012693 | Oct 2004 | DE |
202004012693 | Oct 2004 | DE |
0012557 | Jun 1980 | EP |
0090383 | Oct 1983 | EP |
126714 | Nov 1984 | EP |
126714 | Nov 1984 | EP |
194735 | Sep 1986 | EP |
194735 | Sep 1986 | EP |
280052 | Aug 1988 | EP |
280052 | Aug 1988 | EP |
327025 | Aug 1989 | EP |
327025 | Aug 1989 | EP |
344633 | Dec 1989 | EP |
344633 | Dec 1989 | EP |
407900 | Jan 1991 | EP |
407900 | Jan 1991 | EP |
430082 | Jun 1991 | EP |
0464321 | Jan 1992 | EP |
0464321 | Jan 1992 | EP |
492446 | Jul 1992 | EP |
492942 | Jul 1992 | EP |
492942 | Jul 1992 | EP |
518250 | Dec 1992 | EP |
547575 | Jun 1993 | EP |
547575 | Jun 1993 | EP |
280052 | Jul 1994 | EP |
627255 | Dec 1994 | EP |
627255 | Dec 1994 | EP |
395133 | Feb 1995 | EP |
662341 | Jul 1995 | EP |
492446 | Nov 1995 | EP |
430082 | Jun 1996 | EP |
518250 | Sep 1996 | EP |
734758 | Oct 1996 | EP |
763758 | Mar 1997 | EP |
824956 | Feb 1998 | EP |
848194 | Jun 1998 | EP |
627255 | Jan 1999 | EP |
911073 | Apr 1999 | EP |
920904 | Jun 1999 | EP |
0937494 | Aug 1999 | EP |
0937494 | Aug 1999 | EP |
1034835 | Sep 2000 | EP |
1034835 | Sep 2000 | EP |
1156015 | Nov 2001 | EP |
1156015 | Nov 2001 | EP |
1236503 | Sep 2002 | EP |
1350555 | Oct 2003 | EP |
1350555 | Oct 2003 | EP |
1236503 | Aug 2004 | EP |
1466658 | Oct 2004 | EP |
1466658 | Oct 2004 | EP |
2620712 | Mar 1989 | FR |
2674448 | Oct 1992 | FR |
2699424 | Jun 1994 | FR |
2762834 | Nov 1998 | FR |
702911 | Jan 1954 | GB |
996195 | Jun 1965 | GB |
2253572 | Sep 1992 | GB |
52-078677 | Jul 1977 | JP |
53-5077 | Jan 1978 | JP |
53108882 | Sep 1978 | JP |
54162684 | Dec 1979 | JP |
55099703 | Jul 1980 | JP |
55129107 | Oct 1980 | JP |
55129155 | Oct 1980 | JP |
56021604 | Feb 1981 | JP |
56118701 | Sep 1981 | JP |
56121685 | Sep 1981 | JP |
57190697 | Nov 1982 | JP |
58088007 | May 1983 | JP |
60019002 | Jan 1985 | JP |
60206412 | Oct 1985 | JP |
60260628 | Dec 1985 | JP |
61097005 | May 1986 | JP |
61097006 | May 1986 | JP |
61107905 | May 1986 | JP |
61167406 | Jul 1986 | JP |
61167407 | Jul 1986 | JP |
61171504 | Aug 1986 | JP |
61192309 | Aug 1986 | JP |
61222510 | Oct 1986 | JP |
61242607 | Oct 1986 | JP |
61249505 | Nov 1986 | JP |
61257203 | Nov 1986 | JP |
61263605 | Nov 1986 | JP |
61291007 | Dec 1986 | JP |
61293504 | Dec 1986 | JP |
62004408 | Jan 1987 | JP |
62068828 | Mar 1987 | JP |
62114609 | May 1987 | JP |
62140607 | Jun 1987 | JP |
62144708 | Jun 1987 | JP |
62163708 | Jul 1987 | JP |
62179540 | Aug 1987 | JP |
62237908 | Oct 1987 | JP |
62250908 | Oct 1987 | JP |
62187606 | Nov 1987 | JP |
62262710 | Nov 1987 | JP |
63-93307 | Apr 1988 | JP |
63097634 | Apr 1988 | JP |
63099246 | Apr 1988 | JP |
63143905 | Jun 1988 | JP |
63-1602 | Jul 1988 | JP |
63171607 | Jul 1988 | JP |
63180254 | Jul 1988 | JP |
S63-38884 | Oct 1988 | JP |
64-075542 | Mar 1989 | JP |
1-501046 | Apr 1989 | JP |
1111494 | Apr 1989 | JP |
01151906 | Jun 1989 | JP |
01-307409 | Dec 1989 | JP |
02-017925 | Jan 1990 | JP |
02017924 | Jan 1990 | JP |
02026625 | Jan 1990 | JP |
02031200 | Feb 1990 | JP |
02040296 | Feb 1990 | JP |
02107318 | Apr 1990 | JP |
02126922 | May 1990 | JP |
02144132 | Jun 1990 | JP |
02164423 | Jun 1990 | JP |
02174918 | Jul 1990 | JP |
02241523 | Sep 1990 | JP |
02277528 | Nov 1990 | JP |
02284035 | Nov 1990 | JP |
03018373 | Jan 1991 | JP |
03028797 | Feb 1991 | JP |
03-086529 | Apr 1991 | JP |
03110445 | May 1991 | JP |
04108518 | Apr 1992 | JP |
04110023 | Apr 1992 | JP |
4-190889 | Jul 1992 | JP |
04187224 | Jul 1992 | JP |
04250898 | Sep 1992 | JP |
04256424 | Sep 1992 | JP |
04265128 | Sep 1992 | JP |
04293527 | Oct 1992 | JP |
04310223 | Nov 1992 | JP |
04317793 | Nov 1992 | JP |
04334530 | Nov 1992 | JP |
04348252 | Dec 1992 | JP |
05-4030 | Jan 1993 | JP |
05023557 | Feb 1993 | JP |
05096136 | Apr 1993 | JP |
05137977 | Jun 1993 | JP |
05157654 | Jun 1993 | JP |
05161831 | Jun 1993 | JP |
05184884 | Jul 1993 | JP |
05279447 | Oct 1993 | JP |
05285348 | Nov 1993 | JP |
05305221 | Nov 1993 | JP |
06-027215 | Feb 1994 | JP |
06071120 | Mar 1994 | JP |
06114240 | Apr 1994 | JP |
06170364 | Jun 1994 | JP |
06190250 | Jul 1994 | JP |
06218237 | Aug 1994 | JP |
06238273 | Aug 1994 | JP |
06-292820 | Oct 1994 | JP |
06277469 | Oct 1994 | JP |
06285496 | Oct 1994 | JP |
06343837 | Dec 1994 | JP |
07000770 | Jan 1995 | JP |
07024272 | Jan 1995 | JP |
07047247 | Feb 1995 | JP |
07068139 | Mar 1995 | JP |
07136470 | May 1995 | JP |
07136471 | May 1995 | JP |
07155564 | Jun 1995 | JP |
07155758 | Jun 1995 | JP |
7-39921 | Jul 1995 | JP |
07178323 | Jul 1995 | JP |
07185268 | Jul 1995 | JP |
07185270 | Jul 1995 | JP |
07185271 | Jul 1995 | JP |
07185272 | Jul 1995 | JP |
07204635 | Aug 1995 | JP |
07236819 | Sep 1995 | JP |
07251043 | Oct 1995 | JP |
07256253 | Oct 1995 | JP |
07275665 | Oct 1995 | JP |
07289860 | Nov 1995 | JP |
07303895 | Nov 1995 | JP |
07313973 | Dec 1995 | JP |
08010585 | Jan 1996 | JP |
8039089 | Feb 1996 | JP |
08197053 | Aug 1996 | JP |
08323161 | Dec 1996 | JP |
08332357 | Dec 1996 | JP |
09000890 | Jan 1997 | JP |
09038470 | Feb 1997 | JP |
09038648 | Feb 1997 | JP |
09072993 | Mar 1997 | JP |
09075689 | Mar 1997 | JP |
09099227 | Apr 1997 | JP |
09103655 | Apr 1997 | JP |
09103661 | Apr 1997 | JP |
9117647 | May 1997 | JP |
9138298 | May 1997 | JP |
09141063 | Jun 1997 | JP |
09155345 | Jun 1997 | JP |
09187628 | Jul 1997 | JP |
09192458 | Jul 1997 | JP |
09220569 | Aug 1997 | JP |
09271641 | Oct 1997 | JP |
09313902 | Dec 1997 | JP |
09324067 | Dec 1997 | JP |
10015365 | Jan 1998 | JP |
10024222 | Jan 1998 | JP |
10033955 | Feb 1998 | JP |
10048466 | Feb 1998 | JP |
10066972 | Mar 1998 | JP |
10076144 | Mar 1998 | JP |
10076264 | Mar 1998 | JP |
10085562 | Apr 1998 | JP |
10085565 | Apr 1998 | JP |
10085566 | Apr 1998 | JP |
10156149 | Jun 1998 | JP |
10180048 | Jul 1998 | JP |
10225685 | Aug 1998 | JP |
10235168 | Sep 1998 | JP |
10249171 | Sep 1998 | JP |
10286441 | Oct 1998 | JP |
10328538 | Dec 1998 | JP |
11005023 | Jan 1999 | JP |
11028339 | Feb 1999 | JP |
11028467 | Feb 1999 | JP |
11031025 | Feb 1999 | JP |
11033365 | Feb 1999 | JP |
11033367 | Feb 1999 | JP |
11076769 | Mar 1999 | JP |
11076770 | Mar 1999 | JP |
11090189 | Apr 1999 | JP |
11156166 | Jun 1999 | JP |
11156360 | Jun 1999 | JP |
11165200 | Jun 1999 | JP |
11179171 | Jul 1999 | JP |
11300177 | Nov 1999 | JP |
11302438 | Nov 1999 | JP |
11309351 | Nov 1999 | JP |
11319501 | Nov 1999 | JP |
11319507 | Nov 1999 | JP |
11333265 | Dec 1999 | JP |
2000000439 | Jan 2000 | JP |
200051670 | Feb 2000 | JP |
2000051669 | Feb 2000 | JP |
2000061466 | Feb 2000 | JP |
200079390 | Mar 2000 | JP |
2000070684 | Mar 2000 | JP |
2000093758 | Apr 2000 | JP |
2000157845 | Jun 2000 | JP |
2000157850 | Jun 2000 | JP |
2000185220 | Jul 2000 | JP |
2000189958 | Jul 2000 | JP |
2000233020 | Aug 2000 | JP |
2000237548 | Sep 2000 | JP |
2000300968 | Oct 2000 | JP |
2000317276 | Nov 2000 | JP |
2000334276 | Dec 2000 | JP |
2000342932 | Dec 2000 | JP |
2001009246 | Jan 2001 | JP |
2001070967 | Mar 2001 | JP |
2001079366 | Mar 2001 | JP |
2001079367 | Mar 2001 | JP |
2001104760 | Apr 2001 | JP |
2001120963 | May 2001 | JP |
2001-510396 | Jul 2001 | JP |
2001179059 | Jul 2001 | JP |
2001179060 | Jul 2001 | JP |
2001190937 | Jul 2001 | JP |
2001190938 | Jul 2001 | JP |
2001205055 | Jul 2001 | JP |
2001212587 | Aug 2001 | JP |
2001232160 | Aug 2001 | JP |
2001-269546 | Oct 2001 | JP |
2002011472 | Jan 2002 | JP |
2002113333 | Apr 2002 | JP |
2002143849 | May 2002 | JP |
2002177746 | Jun 2002 | JP |
3302992 | Jul 2002 | JP |
2002525197 | Aug 2002 | JP |
2002527229 | Aug 2002 | JP |
2002263407 | Sep 2002 | JP |
2002-336663 | Nov 2002 | JP |
2003024751 | Jan 2003 | JP |
2003047830 | Feb 2003 | JP |
2003053157 | Feb 2003 | JP |
2003053160 | Feb 2003 | JP |
200371254 | Mar 2003 | JP |
2003062436 | Mar 2003 | JP |
2003135935 | May 2003 | JP |
2003190976 | Jul 2003 | JP |
2003-265597 | Sep 2003 | JP |
2003-275548 | Sep 2003 | JP |
2003266072 | Sep 2003 | JP |
2003275759 | Sep 2003 | JP |
2003340250 | Dec 2003 | JP |
2004008981 | Jan 2004 | JP |
2004073950 | Mar 2004 | JP |
2004-230287 | Aug 2004 | JP |
2004216263 | Aug 2004 | JP |
2004230280 | Aug 2004 | JP |
2004249168 | Sep 2004 | JP |
2004322100 | Nov 2004 | JP |
2004-536710 | Dec 2004 | JP |
2004337730 | Dec 2004 | JP |
2005-502467 | Jan 2005 | JP |
2005-087887 | Apr 2005 | JP |
2005144291 | Jun 2005 | JP |
2005154551 | Jun 2005 | JP |
2005279447 | Oct 2005 | JP |
2006116495 | May 2006 | JP |
4833353 | Dec 2011 | JP |
20-0232145 | Jul 2001 | KR |
1020020067227 | Aug 2002 | KR |
20-0295350 | Nov 2002 | KR |
2002-0090967 | Dec 2002 | KR |
2003-033812 | May 2003 | KR |
2003-060625 | Jul 2003 | KR |
20030066271 | Aug 2003 | KR |
20030097167 | Dec 2003 | KR |
2005-063478 | Jun 2005 | KR |
1006390 | Dec 1998 | NL |
1020491 | Oct 2003 | NL |
1021197 | Oct 2003 | NL |
20053769 | Feb 2006 | NO |
537874 | Feb 2007 | NZ |
216773 | Dec 1993 | TW |
347343 | Dec 1998 | TW |
1985001449 | Apr 1985 | WO |
1986005116 | Sep 1986 | WO |
1986005705 | Oct 1986 | WO |
8800494 | Jan 1988 | WO |
8800494 | Jan 1988 | WO |
8801529 | Mar 1988 | WO |
8801529 | Mar 1988 | WO |
88001895 | Mar 1988 | WO |
88001895 | Mar 1988 | WO |
8806200 | Aug 1988 | WO |
8806200 | Aug 1988 | WO |
8900880 | Feb 1989 | WO |
8900880 | Feb 1989 | WO |
9000434 | Jan 1990 | WO |
9000434 | Jan 1990 | WO |
9104783 | Apr 1991 | WO |
9104783 | Apr 1991 | WO |
9116124 | Oct 1991 | WO |
9116124 | Oct 1991 | WO |
9302779 | Feb 1993 | WO |
9302779 | Feb 1993 | WO |
1993002779 | Feb 1993 | WO |
9315827 | Aug 1993 | WO |
9315827 | Aug 1993 | WO |
9323152 | Nov 1993 | WO |
9323152 | Nov 1993 | WO |
9411094 | May 1994 | WO |
9411094 | May 1994 | WO |
9511736 | May 1995 | WO |
9511736 | May 1995 | WO |
9534424 | Dec 1995 | WO |
9534424 | Dec 1995 | WO |
9603202 | Feb 1996 | WO |
9603202 | Feb 1996 | WO |
9607470 | Mar 1996 | WO |
9607470 | Mar 1996 | WO |
9628236 | Sep 1996 | WO |
9628236 | Sep 1996 | WO |
199629142 | Sep 1996 | WO |
9641676 | Dec 1996 | WO |
9641676 | Dec 1996 | WO |
WO 9641676 | Dec 1996 | WO |
9706880 | Feb 1997 | WO |
9706880 | Feb 1997 | WO |
9710046 | Mar 1997 | WO |
9710046 | Mar 1997 | WO |
9822204 | May 1998 | WO |
9822204 | May 1998 | WO |
9825694 | Jun 1998 | WO |
9825694 | Jun 1998 | WO |
9828066 | Jul 1998 | WO |
9828066 | Jul 1998 | WO |
9853902 | Dec 1998 | WO |
9853902 | Dec 1998 | WO |
9901207 | Jan 1999 | WO |
9901207 | Jan 1999 | WO |
9906326 | Feb 1999 | WO |
9906326 | Feb 1999 | WO |
199908773 | Feb 1999 | WO |
99-55448 | Nov 1999 | WO |
99-55448 | Nov 1999 | WO |
9959707 | Nov 1999 | WO |
9959707 | Nov 1999 | WO |
0021890 | Apr 2000 | WO |
200018498 | Apr 2000 | WO |
0030740 | Jun 2000 | WO |
200030742 | Jun 2000 | WO |
200100307 | Jan 2001 | WO |
200100307 | Jan 2001 | WO |
200105715 | Jan 2001 | WO |
200105715 | Jan 2001 | WO |
0108790 | Feb 2001 | WO |
200119414 | Mar 2001 | WO |
200119414 | Mar 2001 | WO |
200132299 | May 2001 | WO |
200132299 | May 2001 | WO |
200136075 | May 2001 | WO |
200136075 | May 2001 | WO |
0143856 | Jun 2001 | WO |
200145829 | Jun 2001 | WO |
200145829 | Jun 2001 | WO |
0230550 | Apr 2002 | WO |
200226363 | Apr 2002 | WO |
200226363 | Apr 2002 | WO |
0238256 | May 2002 | WO |
2002040140 | May 2002 | WO |
2002040140 | May 2002 | WO |
2002047800 | Jun 2002 | WO |
2002047800 | Jun 2002 | WO |
2003000389 | Jan 2003 | WO |
2003000389 | Jan 2003 | WO |
03013706 | Feb 2003 | WO |
2003013706 | Feb 2003 | WO |
2003013706 | Feb 2003 | WO |
2003024575 | Mar 2003 | WO |
2003024575 | Mar 2003 | WO |
03053552 | Jul 2003 | WO |
03057632 | Jul 2003 | WO |
03059495 | Jul 2003 | WO |
03068374 | Aug 2003 | WO |
2003095078 | Nov 2003 | WO |
2003095078 | Nov 2003 | WO |
04024304 | Mar 2004 | WO |
2004018084 | Mar 2004 | WO |
2004018084 | Mar 2004 | WO |
2004033078 | Apr 2004 | WO |
2004033078 | Apr 2004 | WO |
2004050221 | Jun 2004 | WO |
2004050221 | Jun 2004 | WO |
2004056458 | Jul 2004 | WO |
2004056458 | Jul 2004 | WO |
2004078327 | Sep 2004 | WO |
2004078327 | Sep 2004 | WO |
2004101120 | Nov 2004 | WO |
2004101120 | Nov 2004 | WO |
2005005028 | Jan 2005 | WO |
2005005028 | Jan 2005 | WO |
2005021140 | Mar 2005 | WO |
2005021140 | Mar 2005 | WO |
2005023997 | Mar 2005 | WO |
2005023997 | Mar 2005 | WO |
2005028085 | Mar 2005 | WO |
2005028085 | Mar 2005 | WO |
2005028086 | Mar 2005 | WO |
2005028086 | Mar 2005 | WO |
2005037414 | Apr 2005 | WO |
2005037414 | Apr 2005 | WO |
2005046849 | May 2005 | WO |
2005046849 | May 2005 | WO |
2005070524 | Aug 2005 | WO |
2005070524 | Aug 2005 | WO |
2005077499 | Aug 2005 | WO |
2005077499 | Aug 2005 | WO |
2005082498 | Sep 2005 | WO |
2005082498 | Sep 2005 | WO |
2005107929 | Nov 2005 | WO |
2005107929 | Nov 2005 | WO |
2006017911 | Feb 2006 | WO |
2006017911 | Feb 2006 | WO |
2006026814 | Mar 2006 | WO |
2006026814 | Mar 2006 | WO |
2006029456 | Mar 2006 | WO |
2006029456 | Mar 2006 | WO |
2006029465 | Mar 2006 | WO |
2006047814 | May 2006 | WO |
2006047814 | May 2006 | WO |
2006066319 | Jun 2006 | WO |
2006066319 | Jun 2006 | WO |
2006066350 | Jun 2006 | WO |
2006066350 | Jun 2006 | WO |
2006126833 | Nov 2006 | WO |
2006126833 | Nov 2006 | WO |
2007022576 | Mar 2007 | WO |
2007022576 | Mar 2007 | WO |
2007053528 | May 2007 | WO |
2007053528 | May 2007 | WO |
2007065956 | Jun 2007 | WO |
2007065956 | Jun 2007 | WO |
2007073080 | Jun 2007 | WO |
2007073080 | Jun 2007 | WO |
2007135087 | Nov 2007 | WO |
2007135087 | Nov 2007 | WO |
2008025077 | Mar 2008 | WO |
2008025077 | Mar 2008 | WO |
2008034570 | Mar 2008 | WO |
2008034570 | Mar 2008 | WO |
2008071516 | Jun 2008 | WO |
2008071516 | Jun 2008 | WO |
2008141080 | Nov 2008 | WO |
2008141080 | Nov 2008 | WO |
2008153818 | Dec 2008 | WO |
2008153818 | Dec 2008 | WO |
2009030405 | Mar 2009 | WO |
2009030405 | Mar 2009 | WO |
2011049441 | Apr 2011 | WO |
2011049441 | Apr 2011 | WO |
Entry |
---|
Almulla et al., “Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems,” Desalination, 153 (2002), pp. 237-243. |
Anonymous, “Nonwoven Constructions of Dyneon™ THV and Dyneon™ HTE Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages. |
Australian Patent Examination Report No. 1 dated Jul. 2, 2014 for Application No. 2013200833. |
Cote et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis,” Desalination, 139 (2001), pp. 229-236. |
Cote et al., “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater,” Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442. |
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364. |
Crawford et al., American Water Works Association Membrane Technology Conference, “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications,” (2003). |
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91. |
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003). |
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003). |
Delgrange-Vincent et al., “Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production,” Desalination 131 (2000) pp. 353-362. |
Dow Chemical Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568. |
EPA, Membrane Filtration Guidance Manual, Nov. 2005. |
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999. |
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication. |
Jones, Craig, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999, Chapters 2 and 5. |
Judd, “The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment,” (2006), pp. 174-178. |
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816. |
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system,” Water Research, 37(5) Mar. 2003, pp. 1192-1197, Elsevier, Amsterdam, NL. |
Lloyd, D.R. et al. “Microporous Membrane Formation via Thermally Induced Phase Separation/Solid-Liquid Phase Separation,” Journal of Membrane Science, 52(3) (1990), pp. 239-261, Elsevier Scientific Publishing Company, Amsterdam, NL. |
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication. |
Mark et al., “Peroxides and Peroxy Compounds, Inorganic,” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, to Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18. |
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS. |
Miller et al., “Side Stream Air Lift MBR Development and Successful Application of a New Generation of MBR,” Pollution Solutions Brochure, NORIT, The Netherlands, Apr. 2008. |
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000. |
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via thermally induced phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. 1, Scientific Publishing Company, Amsterdam, NL. |
Rosenberger et al., “Filterability of activated sludge in membrane bioreactors,” Desalination, 151 (2002), pp. 195-200. |
Schematic of 4″ Geyser Pump, Geyser Pump Tech. Co., Nov. 13, 2005. |
Supplementary European Search Report dated May 21, 2015 for Application No. 12835621. |
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494. |
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/. |
White et al., “Optimisation of intermittently operated microfiltration processes,” The Chemical Engineering Journal, 52 (1993), pp. 73-77. |
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007. |
Yamamoto et al., “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank,” Water Science Technology, 21 (1989), pp. 43-54. |
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production” Water Research, 37 (2003), pp. 1921-1931, Elsevier, Amsterdam, NL. |
ZENON, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication. |
Number | Date | Country | |
---|---|---|---|
20190374888 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14347258 | US | |
Child | 15428226 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15428226 | Feb 2017 | US |
Child | 16551305 | US |