Manifold arrangement

Information

  • Patent Grant
  • 11065569
  • Patent Number
    11,065,569
  • Date Filed
    Monday, August 26, 2019
    4 years ago
  • Date Issued
    Tuesday, July 20, 2021
    2 years ago
Abstract
Provided is an improved filtration module assembly comprising a vessel having a filtration cartridge disposed within it and a header coupled to an end of the vessel, the header including a housing having an open-ended upper end and a lower end, and an end cap including a portion that mates with a complimentary structure defined by the inner all of the open ended upper end of the housing to removable engage with the housing and the end cap may further define a passageway for fluid to flow out of the vessel. The filtration module assembly may enable an improved manifold arrangement used to communicate fluids to and from a filtration system comprising a plurality of such modules and the configurations of the present invention may facilitate improved operation of such filtration systems.
Description
BACKGROUND

Aspects and embodiments of the present invention relate to membrane filtration systems and, more particularly, to manifold arrangements used to communicate fluids to and from a plurality of filtration modules.


SUMMARY

In accordance with an aspect of the present invention, there is provided a filtration module assembly comprising a vessel and a header coupled to an end of the vessel. The header includes a housing having an open-ended upper end and a lower end. The filtration module assembly further comprises an end cap including a portion that mates with a complimentary structure defined by the inner wall of the open-ended upper end of the housing to removably engage with the housing and the end cap defines a passageway for fluid to flow out of the vessel. A filtration cartridge disposed within the vessel includes an upper end removably coupled to the lower end of the housing.


In accordance with some embodiments, the filtration cartridge comprises a plurality of permeable hollow fiber membranes extending between the lower end of the filtration cartridge and the upper end of the filtration cartridge.


In accordance with some embodiments, the vessel comprises a screen extending between the lower end of the filtration cartridge and the upper end of the filtration cartridge and surrounding the plurality of permeable hollow fiber membranes.


In accordance with some embodiments, the module assembly further comprises a filtrate collection chamber defined by the end cap and the upper end of the filtration cartridge.


In accordance with some embodiments, the passageway includes a filtrate communication passageway in fluid communication between the filtrate collection chamber and a first fluid transfer manifold.


In accordance with some embodiments, the end cap further comprises a shut off valve constructed and arranged to fluidly isolate the filtrate collection chamber from a filtrate communication port.


In accordance with some embodiments, the first fluid transfer manifold is coupled to the header and includes a filtrate passageway and is further coupled to a second fluid transfer manifold of a second module assembly to provide fluid communication between the filtrate passageway of the first fluid transfer manifold and a filtrate passageway of the second fluid transfer manifold.


In accordance with some embodiments, the passageway includes a filtrate communication passageway defined by a side surface of the end cap and an internal surface of the housing.


In accordance with some embodiments, the filtration cartridge includes an external diameter smaller than an internal diameter of the housing.


In accordance with some embodiments, the filtration cartridge includes fluid communication openings defined in a potting sleeve surrounding a portion of the membranes, the fluid communication openings in fluid communication between a feed passageway in the housing and outer surfaces of the membranes.


In accordance with some embodiments, the removable end cap includes screw threads configured to engage with mating screw threads provided on an upper portion of an inner wall of the housing.


In accordance with another aspect of the present invention, a filtration system is provided comprising a first filtration module including a first fluid communication opening and a first header having a first removable end cap engaged with an upper end of the first header and a first filtration cartridge having an end disposed in a lower end of the first header, a second filtration module including a second fluid communication opening and a second header having a second removable end cap engaged with an upper end of the second header and a second filtration cartridge having an end disposed in a lower end of the second header, and a first common fluid transfer manifold in fluid communication with the first fluid communication opening and the second fluid communication opening positioned between the first filtration module and the second filtration module.


In accordance with some embodiments, the first common fluid transfer manifold is in fluid communication with lumens of membrane fibers included in the first filtration module and with lumens of membrane fibers included in the second filtration module.


In accordance with some embodiments, the filtration system further comprises a second common fluid transfer manifold located between the first header and the second header, and in fluid communication with external surfaces of membrane fibers included in the first filtration module and with external surfaces of membrane fibers included in the second filtration module.


In accordance with some embodiments, the first header includes an internal diameter greater than an external diameter of the first filtration cartridge header includes an internal diameter greater than an external diameter of the second filtration cartridge.


In accordance with some embodiments, one or more fluid communication openings defined in each of the first housing and the second housing are in fluid communication with both the first filtration cartridge and the second filtration cartridge.


In accordance with some embodiments, the first removable end cap is engaged with the first open-ended housing to define a filtrate collection chamber between the first removable end cap and the first filtration cartridge.


In accordance with some embodiments, the first removable end cap includes a fluid communication passageway in fluid communication between the filtrate collection chamber and the first fluid communication opening.


In accordance with another aspect of the present invention, a method of operating a filtration system is provided comprising passing a feed through a plurality of filtration modules each including a filtration cartridge, the plurality of filtration modules fluidly connected by a common feed transfer manifold and a common filtrate transfer manifold, the plurality of filtration modules each including respective removable end caps disposed in respective open-ended upper housings, isolating the filtration cartridge of a first filtration module of the plurality of filtration modules from the common filtrate manifold and taking the first filtration module out of operation by engaging a shut-off valve in the end cap of the first filtration module, disengaging the removable end cap from the open-ended upper housing of the first filtration module, accessing the filtration cartridge of the first filtration module by longitudinally displacing the filtration cartridge of the first filtration module through the housing of the first filtration module, re-engaging the removable end cap with the housing of the first filtration module assembly, and returning the first filtration module assembly to operation.


In accordance with some embodiments, disengaging the removable end cap from the housing of the first filtration module assembly includes rotating the removable end cap of the first filtration module relative to the housing of the first filtration module, disengaging screw threads formed on the removable end cap of the first filtration module from mating screw threads provided on an upper portion of an inner wall of the housing of the first filtration module.





DESCRIPTION OF FIGURES

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 is a schematic cross-sectional elevation view of a pair of membrane filtration modules according to an exemplary embodiment of the present invention;



FIG. 2 is an enlarged schematic cross-sectional elevation view of region A of FIG. 1;



FIG. 3 is a further enlarged schematic cross-sectional elevation view of the portion of region A below the dotted line shown in FIG. 2;



FIG. 4 is an enlarged schematic cross-sectional elevation view of an upper potting head of a membrane filtration module according to an exemplary embodiment of the present invention;



FIG. 5 is a schematic, partially exploded, cross-sectional elevation view of an upper potting head of a membrane filtration module in accordance with an exemplary embodiment of the present invention;



FIG. 6 is an enlarged schematic cross-sectional elevation view of a membrane filtration module having a removable end cap according to an exemplary embodiment of the present invention;



FIG. 7 is a front schematic, partially exploded, perspective view of a bank of membrane modules according to an exemplary embodiment of the present invention;



FIG. 8 is a rear schematic, partially exploded, perspective view of the bank of membrane modules of FIG. 7;



FIG. 9 is an enlarged schematic, partially exploded, perspective view of the rear upper portion of the bank of membrane filtration modules of FIG. 7;



FIG. 10 is an enlarged schematic, partially exploded, perspective view of the rear lower portion of the bank of membrane filtration modules of FIG. 7;



FIG. 11 is a schematic front elevation view of a row of pairs of filtration modules mounted on a support rack according to an exemplary embodiment of the present invention;



FIG. 12 is a schematic perspective view of the rack of filtration modules of FIG. 11;



FIG. 13 is a schematic, partially exploded, cross-sectional elevation view of the pair of membrane modules of FIG. 1 according to an exemplary embodiment of the present invention; and



FIG. 14 is a broken schematic cross-sectional elevation view of a pair of membrane filtration modules according to an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

Filtration module assemblies often comprise a header that retains a filtration cartridge. The filtration cartridge may comprise a filtration sub-system and may in some embodiments comprise a plurality of membranes. The filtration cartridge is mounted to the header and permeate received from the filtration cartridge is passed through the header, and thus the filtration module, and drawn off as filtrate. Filtration systems often comprise a plurality of such filtration modules fluidly connected to one another by manifolds. Manifolds are typically positioned above and below the filtration module headers and communicate fluids to and from the modules via the headers.


The filter cartridges in these systems often have a finite life and may need to be removed for cleaning and/or replacement at regular intervals during the operating life of a filtration system. Filter cartridges that require service are typically removed by first removing, for example, by vertically displacing, the header mountings to release the filter cartridge from the module. The cartridge is then removed from the module.


The membranes in the modules may require regular testing, evaluation, diagnosis, cleaning and/or replacement. Filtration module assemblies often have manifolds vertically positioned above modules. The position of the manifolds may require that the modules be removed laterally to maneuver around the vertically positioned manifolds. Filtration systems generally comprise a plurality of filtration modules, and the modules are often arranged in banks that form large arrays. Accessing a single membrane module in a filtration system may require that multiple neighboring modules in the bank also be removed to provide access to a module in need of service. This is particularly problematic when the module is located deep within a bank. Evaluating or servicing a single module, especially one located deep within a multi-rowed array of membrane modules, can be time and labor intensive and result in the filtration system being off-line for undesirably long and costly periods of time.


Additionally, filtration systems generally include modules suspended vertically from an overhead supporting frame so that the headers and the header mountings can be displaced vertically to enable the cartridges to be removed laterally. Overhead supporting frames are often expensive to produce and maintain.


One or more aspects of the present invention relate to improved filtration module assemblies. The improved filtration module assemblies of the present invention may be advantageously used in filtration systems. Aspects and embodiments of the filtration module assemblies disclosed may advantageously reduce the downtime required to service a filtration module of a filtration system. Aspects and embodiments of the filtration module assemblies disclosed may also enable filtration modules of a filtration system to be mounted in an improved mounting arrangement.


A filtration module assembly in accordance with an embodiment of the present invention is illustrated generally at 10 in FIG. 1. Assembly 10 has filter modules 11 and 12 in fluid communication with common upper and lower manifolds, 13 and 14, respectively. In some instances, filter modules 11 and 12 may be referred to as membrane modules, and in some instances, may be referred to as a pair of modules. Each filtration module 11 and 12 includes a tubular outer casing 15 that encloses a respective cartridge 16. The cartridge may comprise a plurality of hollow fiber membranes (not shown) potted in and extending vertically between opposed upper and lower potting heads 17 and 18, respectively. Potting heads 17 and 18 are typically formed of resinous potting material. Potting heads 17 and 18, in the embodiment illustrated in FIG. 1, are generally cylindrical in configuration though the shape and size of the potting heads is not narrowly critical and a variety of configurations may be used including square, rectangular, triangular, or elliptical blocks. Potting heads 17 and 18 are cast into and peripherally surrounded by respective potting sleeves 20 and 19. Each module 11 and 12 has an upper header 155.


The hollow fiber membranes form the working part of the filter cartridge. Each fiber membrane may have an average pore size of about 0.2 micron, a wall thickness of about 600 microns and a lumen diameter of about 200 microns. The fiber membranes may be arranged in bundles. There may be about 14,000 hollow fibers in the bundle, but this number, as well as the individual fiber dimensions and characteristics are not narrowly critical and may be varied according to operational requirements.


In accordance with some embodiments, membrane potting sleeves may have features that enable the transfer of fluid between the membrane lumens and a fluid communication region of the module. Referring to FIG. 2, each potting sleeve 19 extends beyond the interface between the potting head 18 and the membrane fibers to form fluid communication region 21. Each potting sleeve has a plurality of openings 22 formed therein and located in fluid communication region 21. In accordance with some embodiments, an array of openings 22 is spaced circumferentially and longitudinally from each other about the posting sleeves. Each opening 23 is in the form of a circumferentially extending slot. The size, shape and number of openings 23 is not narrowly critical. The openings may have other configurations than shown and may have varying geometries. Referring also to FIG. 1, each potting sleeve 19 and 20 has a plurality of openings 22. The array of openings 22 is may be located towards the distal end of each potting head (the end toward the internal portion of the module). The openings 22 are located towards distal ends 24 and 25 of each respectively potting head 17 and 18.


In accordance with some embodiments, a lower potting head may comprise through passages that promote the transfer of fluid between the potting head and the potted membrane fibers. Referring to FIG. 2, lower potting head 18 has a plurality of through passages 26 which extend generally longitudinally from the lower end surface 27 of the lower potting head 18 to its upper surface from which the potted membrane fibers (not shown) extend. The lower potting head 18 has a downwardly extending skirt 29 which extends beyond the lower end surface 27 of lower potting head 18.


In accordance with aspects and embodiments of the present invention, the lower potting sleeves of membrane modules may be fitted in and coupled to lower sockets. The sockets may be in communication with a fluid control manifold advantageously offset from the lower sockets to facilitate servicing. Referring to FIG. 2, lower potting head 18 and its respective potting sleeve 19 are fitted into lower socket 31. The lower portion 33 of the lower socket 31 tapers inwardly to a tubular neck portion 34 and a downwardly extending connection flange 35. Neck portion 34 and connection flange 35 are in fluid communication with fluid transfer port 45 and mating connection flange 37 in lower header 32. Circumferential grooves 38 and 39 positioned around the neck portion 34 of socket 31 receive O-rings 40 and 41 to provide a sealing engagement between socket 31 and lower header 32 via mating connecting flange 37.


Annular flange 5 extends from lower socket 31 between the tubular neck portion 34 and an outer wall 6 of socket 31. Flange 5 has screw threads to threading engage with a mating upwardly extending annular flange 7 provided on the upper side of the lower header 32. Annular flanges 5 and 7, when threadingly engaged, are positioned so as to align the respective mating connecting flanges 35 and 37.


In accordance with aspects and embodiments, a lower socket may advantageously receive and support a membrane module. In some embodiments, the support provided by the socket may facilitate the use of an improved filtration system frame. Still referring to FIG. 2, the inner wall 42 of upper portion 43 of lower socket 31 has an inwardly extending circumferential rib 44 constructed to receive and support an outer casing 15 of the module. Outer casing 15 fits within the upper portion 43 of the lower socket 31 and is supported by rib 44. Rib 44 may be segmented or formed by a plurality of protrusions.


The lower socket may advantageously define a fluid transfer passageway between the openings in the lower potting sleeve and a fluid transport port located in the lower header. Below circumferential rib 44, inner wall 42 of the lower socket 31 is radially spaced from the lower potting sleeve 19 to define an annular fluid transfer passageway 9. Annular fluid passageway 9 is positioned between and in fluid communication with the openings 22 in lower potting sleeve 19 and a fluid transfer port 45 of lower header 32.


In accordance with aspects and embodiments of the present invention, a membrane module may be fitted into an upper open ended header housing and a lower socket. The header housing may advantageously facilitate access to a membrane module received by the housing, particularly when the module is one of a plurality of modules in a filtration system. Referring generally FIG. 1, upper potting head 17 and potting sleeve 20 are received by upper open-ended header housing 30. Upper open ended header housing 30 may be referred to as upper header housing 30, header housing 30, or simply housing 30. Lower potting head 18 and sleeve 19 are fitted into lower socket 31. Referring also to FIG. 2, lower header 32 has fluid transfer port 45 centrally located in its upper side 46 with a tubular mating connection flange 37 sized to receive the tubular connection flange 35 of respective lower socket 31. In accordance with some embodiments, the lower header 32 may be a combined feed/gas header. Lower header 32 may have a head piece 49 with an internal fluid connection passageway 50 extending downward from fluid transfer port 45 and radially outward to a side of head piece 49 into a radially protruding connection flange 51.


In accordance with aspects and embodiments, a common fluid control manifold may be offset from beneath the lower potting heads and may, in some embodiments, be advantageously positioned below and between membrane modules. Referring to FIG. 3, radially protruding connection flange 51 of each head piece 49 fits within and sealingly connects to connection flanges 52 and 53 of a common fluid control manifold 54. Common fluid control manifold 54 is advantageously located between the lower head pieces 49 of each module. Radially protruding connection flange 51 has a pair of circumferential grooves 55 and 56 for receiving O-rings 57 and 58, respectively, to provide sealing engagement with the respective mating connecting flanges 52 and 53 of manifold 54.


The body of the fluid control manifold 54 includes sidewalls that define a feed passageway 60 and a control port 61 which extends generally vertically downward in a radial direction from an upper wall 62 of the feed passageway 60 and into the feed passageway 60. Control port 61 may be a conduit in the form of a pipe or a tube. Control port 61 may be referred to as conduit 61, and the as used herein, the terms are interchangeable.


Fluid may be fed into one or more passageways in fluid communication with the fluid passageway 60 of fluid control manifold 54. For example, and referring to FIG. 3, output passageways 63 and 64 are connected to respective connecting flanges 51 and 52 of fluid control manifold 54. Output passageways 63 and 64 are in fluid communication with feed passageway 60 by fluid connection with the proximal end of conduit 61. Conduit 61 is open at its lower distal end 65 to allow inflow of feed from feed passageway 60. The feed fluid in passageway 60 may be feed liquid to be filtered, permeate, gas, or any combination thereof. Conduit 61 may be divided into a plurality of passageways. For example, conduit 61 may be divided by a pair of passageways 66 and 67 by one or more longitudinally extending partitions 68 located along the diameter of the conduit 61 and extending upward from lower distal end 65. Conduit 61 passes through the upper wall 62 of feed passageway 60 and may have one or more aeration apertures, for example, a pair of openings 69 and 70 in its side wall. Apertures 69 and 70 provide fluid communication between feed passageway 60 and respective output passageways 63 and 64. The number of aeration openings in the conduit 61 may correspond to the number of passages formed therein or may vary. In some embodiments, various aeration openings may be placed at different heights within fluid control manifold 54.


In some embodiments, aeration control apertures and corresponding passageways may advantageously allow a flow of gas through the membrane module without displacing liquid in the feed passageway. In some embodiments, aeration control features may advantageously prevent the conduit in the common fluid manifold from becoming completely filled with gas. Referring to FIG. 3, conduit 61 in common fluid manifold 54 has aeration control apertures 71 and 72 each in communication with a respective passage 66 and 67 of conduit 61. The number of aeration control apertures in conduit 61 may correspond to the number of passages formed therein, with at least one aeration control aperture opening into each of the passages, or may vary. Aeration control apertures 71 and 72 are positioned at locations spaced vertically from the lower distal end 65 of conduit 61. This position advantageously allows gas to flow through aeration control apertures 71 and 72 without displacing liquid within feed passageway 60. The aeration control apertures may beneficially prevent conduit 61 from being completely filled with gas. Aeration control apertures 71 and 72 may in some embodiments be placed at different heights within the feed passageway 60 to obtain other desirable gas flows.


Referring to FIGS. 1 and 4, the upper ends of the fiber membranes (not shown) are embedded in upper potting head 17. Potting head 17 may include, for example, a plug of resinous material such as polyurethane. The material is cast into potting sleeve 20. In accordance with aspects and embodiments of the present invention, the potted membrane fibers in the membrane modules may be enclosed by a screen 80. The screen may serve to protect the membranes during handling and also assist in retaining fluid flow within the membrane bundle. In some embodiments, the screen may have a smooth surface to reduce potential abrasion of the membranes in use. The lower end 79 of the upper potting sleeve 20 receives the cylindrical screen 80, when present, which encloses the fiber membranes (not shown). The cylindrical screen 80 extends between the lower end 79 of the upper potting sleeve 20 and the upper end of the lower potting sleeve 19 (as shown in FIG. 1). Screen 80 extends longitudinally along the outer wall of the potting sleeve to a position spaced from the fluid communication region 21 by a circumferential rib 80′. In one preferred embodiment, screen 80 is a thin-walled solid tube but other forms of screen, for example, a perforated tube or cage-like mesh may be used.


In accordance with aspects and embodiments of the present invention, an upper potting head and potting sleeve may advantageously be received by an annular adapter. The annular adapter may be mounted within an upper header housing and the configuration may advantageously benefit the construction of filtration modules, filtration system assemblies, and facilitate the service of modules positioned in such assemblies.


Referring again to FIGS. 1 and 4, upper potting head 17 and potting sleeve 20 fit within an annular adaptor 81. The upper potting sleeve 20 and annular adaptor 81 are surrounded by and mounted within upper header housing 30. The upper header housing 30 is open-ended and dimensioned to closely receive upper potting sleeve 20 and annular adaptor 81. Grooves 75 and 76 positioned around the periphery of the upper end of potting sleeve 20 receive O-rings 77 and 78, respectively, which may assist in mating sleeve 20 with annular adapter 81. Potting sleeve 20 is further engaged and held within annular adaptor 81 by means of circlip 82 located in mating grooves 83 and 84 provided on the respective external and internal walls of the upper potting sleeve 20 and annular adaptor 81. Upper potting sleeve 20 is further supported on a radially extending shoulder 85 of the upper header housing 30 by an outwardly extending rib 86 on the upper potting sleeve 20. A locking protrusion 85′ is formed on the external wall of upper header housing 30. The locking protrusion 85′ engages with a slot (not shown) formed in shoulder 85 to prevent relative rotation between the upper potting sleeve 20 and the upper header housing 30.


The upper header housing 30 is formed of upper and lower components 87 and 88 respectively. The lower end 89 of upper component 87 includes a peripheral flange 90. The lower face 91 of the peripheral flange 90 includes annular groove 92. The upper end 93 of the lower component 88 includes peripheral flange 94 which abuts peripheral flange 90. The upper face 95 of peripheral flange 94 includes annular rib 96 which is sized to mate with annular groove 92 when flanges 90 and 94 are abutted. Flanges 90 and 94 are held in an abutted engagement by an external C-section clip 97 which fits over and engages with the periphery of flanges 90 and 94. A dovetail seal is provided between flanges 90 and 94. Clip 97 may be a resilient self-actuating device biased to retain the flanges 90 and 94 in an abutted position, and may be, for example, a pipe clamp. In accordance with some embodiments, clip 97 may be constructed of stainless steel. Flanges 90 and 94 may be disengaged by spreading and removing clip 97. Clip 97 may be removed either manually or with a tool. In accordance with some embodiments, clip 97 may be removed with a spanner or pliers.


During filtration operations, annular adaptor 81 is sealingly engaged with upper component 87 of upper header housing 30. Annular grooves 100 and 101 positioned around the periphery of annular adaptor 81 support O-rings 102 and 103. O-rings 102 and 103 exert a force on the inner wall of upper housing component 87 to provide a sealing engagement.


In accordance with some embodiments, the upper header housing may have an enlarged diameter portion to form a fluid transfer passageway between the outer wall of the upper potting sleeve and the inner wall of the housing. Referring to FIG. 4, upper header housing 30 includes an enlarged diameter portion between lower end 89 of component 87 and annular grooves 100 and 101 on upper component 87. The enlarged diameter portion of housing 30 forms annular fluid transfer passageway 104. Fluid transfer passageway 104 is positioned between the outer wall of upper potting sleeve 20 and the inner wall of the upper component 87 of upper header housing 30 and is in fluid communication with common fluid region 21. A fluid transfer port 105 adjacent to and extending from the annular fluid transfer passageway 104 is located in a side wall of the upper header housing component 87. Fluid transfer port 105 includes tubular connection flange 106 at its free end 107. Annular grooves 108 and 109 support O-rings 110 and 111 around the periphery of connection flange 106.


Upper potting sleeve 20 has a plurality of openings 22 in fluid communication with common fluid region 21. During filtration, upper potting sleeve 20 is mounted within the upper header housing 30 and positioned such that the plurality of openings 22 are further in fluid communication with annular fluid transfer passageway 104. In some embodiments, it may be desirable to prevent the rotation of potting sleeve 20 relative to upper header housing 30. Rotation of potting sleeve 20, and thus apertures 22, may be capable of causing damage to the membranes in the fluid outflow region. Locking protrusion 85′ advantageously prevents such rotation and fixably spaces the location of openings 22 from the fluid transfer port 105 to prevent damage to the membranes in the region of fluid outflow.


In accordance with aspects and embodiments of the present invention, an upper potting sleeve and attached annular adapter may be held at a mounting location within an upper header housing by a removable end cap. The removable end cap may sealingly engage the membrane assembly with the housing and may define a filtrate discharge passageway. As used herein, a “removable end cap” is one which may be reversibly removed from a membrane module without causing damage to either the removable end cap or any other portion of the membrane module in which it is included. A removable end cap which has been removed from a filtration module may be replaced in the module and the module may operate with no loss of performance caused by the removal and replacement of the removable end cap.


Referring to FIG. 5 upper sleeve 20 containing potting head 17 is received by and coupled to annular adaptor 81. Annular adapter 81 is held at the mounting position within upper header housing 30 by a removable end cap 120. Removable end cap 120 may be referred to simply as end cap 120. End cap 120 has a base portion 121, a reduced diameter mid portion 122 and an upper portion 123. Referring to FIG. 4, a filtrate discharge passageway 126 is defined by the inner wall of upper header housing component 87, the outer wall surface of the reduced diameter mid-portion 122 of end cap 120, the bottom surface of end-cap upper portion 123, and the top surface of end-cap base portion 121. Filtrate discharge passageway 126 has an internal concave wall 127, upper wall 129, and lower wall 130. A plurality of radially extending reinforcement ribs (not shown) extend between the upper and lower walls 129 and 130 of the filtrate discharge passageway 126.


Referring to FIGS. 4 and 5, base portion 121 of the end cap 120 has a central boss portion 131 through which a shut-off passageway 124 opens at its lower end 132. The base portion 121 has a circumferential downwardly extending rib 133 which bears against an upper peripheral edge 134 of annular adaptor 81. The upper peripheral edge 134 of annular adaptor 81 includes an inwardly extending circumferential lifting shoulder 139 that that abuts extending rib 133. When abutted, rib 133 and shoulder 139 position base portion 121 above the upper surface 136 of the upper potting head to define a filtrate receiving chamber 135. Filtrate receiving chamber 135 is positioned between the upper surface 136 of the upper potting head 17 and end cap 120. Open ends of the fiber membranes potted in upper potting head 17 open into filtrate receiving chamber 135 and provide fluid communication between the membrane fiber lumens and filtrate receiving chamber 135.


A peripheral groove 137 is positioned adjacent the downwardly extending rib 133 of end cap base portion 121 and supports O-ring 138. Groove 137 and O-ring 138 sealing engage end cap 120 and upper header housing 30. Referring also to FIG. 6, the upper portion 123 of end cap 120 has a floor 140 with a centrally located boss portion 141. A peripherally stepped wall 143 extends upward from floor 140 of upper portion 123 to define an upwardly opening recess 144. The outer peripheral surface of an upper portion 145 of the stepped wall 143 includes screw threads 146 which threadingly engage mating screw threads 147 on an upper portion of the inner wall surface of header housing 30.


The outer wall of the upper portion 123 of the end cap 120, adjacent the step and below screw threads 146 has a peripheral groove 148 which supports O-ring 149. This arrangement, together with O-ring 138, serves to form a fluid tight seal of a filtrate discharge passageway 126.


In accordance with some embodiments, the removable end cap may have features that advantageously control fluid flow. In some embodiments, a valve may operate to disconnect a filtration cartridge from a filtration system without interfering with other modules in the system.


Referring to FIG. 6, end cap 120 includes a centrally located shut-off passageway 124. Shut-off passageway 124 extends from upper portion 123 to side 125 of base portion 121. Shut-off passageway 124 houses a shut-off valve 150 which selectively provides fluid communication from the filtrate receiving chamber 135 to the interior of the filtrate discharge passageway 126. The top portion 151 of shut-off valve 150 has an aperture (not shown) for receiving an adjustment tool, for example, a screw driver or wrench for actuating the valve. In accordance with some embodiments, shut-off valve 150 may be activated manually. In accordance with other embodiments, shut-off valve 150 may be remotely activated using, for example, a remotely controlled servo motor (not shown) or other actuator. Seal 152 positioned adjacent the central portion of shut-off valve 150 provides a fluid-tight seal between shut-off valve 150 and the interior wall of shut-off passageway 124.


Port 154 in end cap 120 fluidly connects filtrate collection chamber 135 and filtrate passageway 160. Shut-off valve 150 includes seal 153 positioned on the lower end of valve 150. When shut-off valve 150 is moved upwardly, seal 153 closes port 154 to prevent flow of filtrate out of filtrate collection chamber 135 and into filtrate discharge passageway 126. The closing of port 154 does not, however, interfere with the flow of filtrate from and to adjacent module headers through filtrate passageway 126. Shut-off valve 150 is designed such that it can be readily operated without having to dismantle component parts of the filter assembly. Shut-off valve 150 may advantageously allow a single membrane module of a filtration system comprising a plurality of modules to be taken offline without requiring other surrounding modules be taken offline as well.


In accordance with some embodiments, valve 150 may be moved from the open position to the closed position by rotating shaft 156 of valve 150 in a screw threading engagement with the inner wall of shut-off passageway 124. Rotating shaft 156 in passageway 124 in a first direction causes upward axial movement of seal 153 and closes port 154. Shut-off valve 150 may be opened by rotating shaft 156 in an opposite direction.


In accordance with some embodiments, valve 150 may have features that further assist an operator of a filtration system. Shaft 156 of shut off valve 150 may, for example, protrude from a lower wall of the upper portion of 123 of end cap 120 when activated so that it is easily ascertainable, even at a distance, that the valve is in the closed position and that the module which the valve controls is disconnected or offline. In accordance with some embodiments, the shut-off passageway 124 may have a transparent window or may be formed of transparent material so that air bubbles can be observed by an operator during a pressure test or a pressure decay test.


The header housings of the present invention may facilitate the construction and design of filtration systems comprising multiple membrane modules housed in header housings as described herein. The header housings of aspects of the present invention may provide for the fluid connection of membrane modules to common fluid manifolds that are advantageously positioned to facilitate an improved method of servicing a filtration system. The header housings of the present invention may additionally facilitate the construction of improved filtration system support frames.


Referring again to FIG. 4, the upper component 87 of header housing 30 includes a filtrate transfer port 160 positioned in a side wall of upper component 87 adjacent to and extending from filtrate discharge passageway 126. Filtrate transfer port 160 has a radially protruding tubular connection flange 161 at its free end 162. Annular grooves 163 and 164 support O-rings 165 and 166 around the periphery of the tubular connection flange 161. Radially protruding connection flange 161 of filtrate transfer port 160 fits within and is sealingly connected to a connection flange 167 located on a common filtrate transfer manifold 168. Common filtrate transfer manifold 168 is positioned between the upper headers 155 of modules 11 and 12.


With continued reference to FIG. 4, fluid transfer port 105 also includes a radially protruding connection flange 106. Radially protruding connection flange 106 fits within and is sealingly connected to a connection flange 169 of a common fluid (for example, feed) transfer manifold 170 located below common filtrate transfer manifold 168 and between the upper headers 155 of modules 11 and 12. O-rings 110 and 111 mate with and provide a sealing engagement with connecting flange 169 of fluid transfer manifold 170. Referring to FIGS. 1 and 2, and as discussed, modules 11 and are further fluidly connected by lower fluid transfer manifold 54.


Referring again to FIG. 1, fluid transfer manifold 170 and filtrate transfer manifold 168 are each provided with generally circular cross-sectional passageways 171 and 172, respectively. Passageways 171 and 172 extend normal to the longitudinal axis of modules 11 and 12. Filtrate transfer manifold 168 is mounted to and above fluid transfer manifold 170. Manifolds 168 and 170 are mounted between the upper header housings 30 of modules 11 and 12. Each of manifolds 168, 170, and 54 are advantageously positioned between the pair of modules. Further, the position of upper manifolds 168 and 170 does not obstruct access to removable end caps 120.


In accordance with aspects and embodiments of the present invention, a filtration system may implement the filtration module assemblies and manifold configurations disclosed herein. The resultant improved filtration system may be more cost-effective to construct and maintain.


Referring generally to FIG. 9, the outer walls of manifolds 168 and 170 include concave portions and form scallops. Manifold 54 likewise includes an outer wall including a concave portion. Header housings 30 have vertically extending, cylindrically profiled side walls. The concave portions of the walls of manifolds 168, 170, and 54 complement the convex geometry of the side walls of the header housings. The manifolds and header housings may mate to provide a compact filtration system.


Common manifolds 54, 168, and 170 are each substantially symmetric about planes defined by the longitudinal axes of the filter module assemblies. Flow of feed, filtrate, and gas within the manifolds passes predominantly perpendicularly to the longitudinal axes of the filter module assemblies. In some embodiments, each manifold 54, 168, and 170 includes planar side faces and at one side of each manifold there are grooves (not shown) for receiving O-rings around the ends of respective passageways 60, 171, and 172. At the opposite side of each manifold there are annular beveled projections (not shown) adapted to engage the O-rings of an adjacent manifold. Each manifold 54, 168, and 170 can be abutted against a like manifold so as to create a row of manifolds to which rows of membrane module pairs 11 and 12 can be connected. The arrangement may allow a greater packing density of modules than is possible in conventional filtration systems.


Referring to FIGS. 8 and 9, manifold 168 includes axially extending through passageways 175 positioned on either side of passageway 171. Manifold 170 similarly includes axially extending though passageways 176 positioned on either side of passageway 172. Through passageways 175 and 176 are adapted to receive tie bars 177 and 178. Tie bars 175 and 176 extend through passages 175 and 176 respectively to hold together and sealingly engage adjacent manifolds 168 and 170 when pairs of modules are arranged in a bank. Referring to FIG. 7, lower manifold 170 further includes through passageway 179 (best shown in FIG. 1) extending longitudinally along its base and is adapted to receive tie bar 179′.


Similarly and referring to FIGS. 1 and 7, lower manifold 54 includes upper and lower axially extending through passageways 200, 201, 202, 203 located on each external side wall adapted to receive tie bars 204, 205, 206, 207. Tie bars 204, 205, 206 and 207 pass through passageways 200, 201, 202, 203 to hold together and sealingly engage adjacent lower manifolds 54 when module pairs are arranged in a bank.


Referring to FIG. 9, the upper external wall of the upper portion of header housing 30, adjacent the top of the end cap 120, includes a pair of tangentially extending brackets 180 and 181 located on opposite sides of header housing 30. Brackets 180 and 181 mate with a pair of corresponding flanges 182 and 183 located on the opposed side walls of upper filtrate transfer manifold 168. Brackets 180 and 181 have vertical through holes 184 and 185, respectively, which align with and receive vertical location dowels 186 and 187 provided in respective flanges 182 and 183 of filtrate transfer manifold 168.


The lower external wall of the upper portion of the header housing 30 includes a pair of radially extending protrusions 190 with tangential through passages 191 formed therein. Protrusions 190 are located on opposed side walls (rear protrusion not shown) such that when the header housing 30 is joined to manifolds 168 and 170, tangential through passages 191 extend normal to the axes of the transfer manifolds 168 and 170. Tie bars 194 and 195 extend through the passages 191 of protrusions 190 of membrane module 11 and further extend through passages 191 of protrusions 190 of header housing 30 of membrane module 12. Tie bars 194 and 195 are provided with threaded end portions 196 and 197, respectively, to receive and engage respectively locking nuts 198 and 199 so as to axially pull the header housings 30 of modules 11 and 12 into an abutting engagement with transfer manifolds 168 and 170.


Referring to FIG. 10, the external wall of lower head piece 49 includes a pair of radially extending protrusions 208 with tangential through passages 209 formed therein. Protrusions 208 are located on opposed side walls (rear protrusion not shown) such that when the lower header is joined to the lower manifold 54, the tangential through passages 209 extend normal to the axis of the lower manifold 54. Passages 209 of protrusions 208 are adapted to receive tie bars 210 and 211. Tie bars 210 and 211 extend through passages 209 of protrusions 208 of module 11 and extend through passages 209 of protrusions 208 of the lower head piece 49 of module 12. Tie bars 210 and 211 have threaded end portions 212 and 213 adapted receive and engage respective locking nuts 214 and 215. Tie bars 210 and 211 axially pull lower head pieces 49 of modules 11 and 12 into abutting engagement with lower manifold 54.


Those skilled in the art will recognize that alternate mechanisms for connecting the manifolds and/or headers together may also or additionally be utilized. For example, the manifolds and/or headers may be provided with clips, intersecting flanges, pressure fit couplings, or screw-like threading adapted to couple to complementary threading on adjacent modules and/or headers.


In accordance with some embodiments, the assemblies of the present invention may facilitate the construction of filtration system using a less-expensive, lighter-weight rack than possible in filtration systems comprising traditional assemblies. Because the modules, module pairs, and their associated headers are essentially self-supporting, the modules may be easily mounted in the lighter weight rack without comprising stability or performance.


Referring to FIGS. 11 and 12, a filtration system arrangement comprising a plurality of membrane module pairs 11 and 12 having filtration membranes included therein is formed on a rack formed of a pair of parallel base support rails 216 and 217 extending longitudinally along a row of module pairs. The lower header piece 49 of each module 11 and the lower header piece 49 of each module 12 is supported on rail 216 and rail 217, respectively. The bases of the lower head pieces 49 are advantageously stepped to facilitate positioning of the module pair between the support rails. End support members 218 and 219 extend vertically upward from the respective rails 216 and 217 at each end of the rack. A lower cross member 220 spaces the end support members and extends horizontally between the support members 218 and 219 adjacent to and above the lower headers 49. An upper cross member 221 further spaces the end support members 218 and 219 and extends horizontally between the support members adjacent to and below fluid transfer manifold 170. An upper longitudinal rail 222 extends along the length of and between the rows of module pairs and is supported on upper cross members 221. Each base support rail 216 and 217 includes feet 223, 224 and 225 which extend downward from the respective ends of the rails and at a mid portion of each rail. The feet support the lower head pieces 49 above the lower common manifolds 54.


The filtration systems and module assemblies of the present invention may improve the ease with which the system may be serviced. In accordance with some embodiments, a module in need of service may be taken offline without taking surrounding membrane modules offline. In some embodiments, the module may be serviced without having to dismantle the components of adjacent membranes. The systems and assemblies of the present invention may enable a system to be serviced without taking a large portion of, or the entire system offline. The systems and assemblies of the present invention may facilitate an operator in servicing the system.


In accordance with aspects and embodiments and referring to the filtration assembly shown in generally in FIGS. 1, 7, and 13, if the need arises to examine, test, remove or replace a membrane fiber bundle of a cartridge, or assess or service any other part of the membrane module, the module can be accessed without disturbing surrounding filtration modules. For example, if the membrane bundle contained within cartridge 16 in module 11 requires replacement, the bundle can be replaced without disturbing module 12.


End cap 120 of module 11 may be removed by unscrewing the end cap from upper header housing 30. As discussed, in some embodiments, end cap 120 may have threads positioned on the outer surface of the upper portion of end cap 120 that mate with complementary threads in upper header housing 30. In accordance with other embodiments, end cap 120 may be removed by pulling end-cap 120 vertically out of an unthreaded header housing 30, or may be removed by other means. As shown in FIGS. 5 and 13, displacement and removal of end cap 120 from upper housing header 30 exposes the distal, top surface 24 of potting head 17 located in annular adapter 81. Annular adapter 81 has inwardly extending lifting shoulder 139, which becomes accessible upon removal of end cap 120. A suitable tool may then be engaged with shoulder 139, and cartridge 16 can be withdrawn from module 11 by sliding the cartridge upward through outer casing 15 and out through the opening formed in the open-ended upper header housing 30. The membrane bundle may then be cleaned or replaced. Serviced cartridge 16 or a replacement cartridge may then be slid back into outer casing 15 of module 11. End cap 120 may then be replaced and re-engaged with cartridge 16 to mount cartridge 16 in upper housing header 30.


In accordance with aspects and embodiments of the present invention, filtration may be performed in a plurality of modes. Filtration may operate in dead end or feed and bleed modes, and in accordance with some aspects and embodiments, cleaning operations may be performed.


Referring to FIGS. 1-4, during normal feed supply mode filtration, feed passageway 60 and feed supply passageways 66 and 67 of the lower header 32 are full of feed liquid. Feed flows through feed passageway 60 through the lower open distal end 65 of conduit 61. Feed flows through passages 66 and 67 and branch output passageways 63 and 64 into fluid connection passageway 50 and out of fluid transfer port 45 of lower header 32. The feed liquid then flows into lower socket 31, along annular fluid transfer passageway 9, through the fluid communication region 21, through openings 22 in the lower potting sleeve 19 and around the membranes of each module 11 and 12. Feed may also flow upward through skirt 29, through passages 26, and the around the membranes.


In accordance with some embodiments, the filtration system may operate in dead end filtration mode. In dead-end filtration mode, the feed liquid is pressurized within the outer casing 15. The pressurization produces a transmembrane pressure differential across the walls of the membranes and feed is forced through the outer surface of the membranes. As a result, filtrate is produced within the membrane lumens. In some embodiments and in accordance with the dead-end filtration mode of operation, the membranes are not open in the lower potting head 18. Filtrate flows upward within the membrane lumens and is discharged into filtrate receiving chamber 135. Filtrate then flows through port 154 into filtrate discharge passageway 126, through filtrate transfer port 160 and into filtrate transfer manifold 168.


In accordance with other embodiments, the filtration system may operate in feed and bleed filtration mode. In feed and bleed filtration mode, a portion of feed liquid does not pass through the membranes to produce filtrate. In accordance with some feed and bleed embodiments, from about 10% of the feed liquid to about 75% of the feed liquid enters the base of each module and flows upward along the outside of the membranes. This portion of the feed then passes outward through opening 22 in upper potting sleeve 20 into annular fluid transfer passageway 104. The feed liquid then flows out through fluid transfer port 105 and into passageway 172 of the fluid transfer manifold 170. The remaining portion of the feed is filtered through the membranes and is collected from the membrane lumens as filtrate in filtrate collection chamber 135. The collected filtrate then flows through filtrate passageway 126 in end cap 120, through port 160, and into filtrate transfer manifold 168.


In accordance with some embodiments, the membranes in the filtration module assemblies and filtration systems of the present invention may be cleaned by a scouring or scrubbing process. When cleaning is desired, the liquid within feed passageway 60 is displaced downwardly by the introduction of gas into feed passageway 60 until the gas/liquid interface reaches the level of aeration openings 71 and 72. The gas then passes through openings 71 and 72, along passages 66 and 67 of conduit 61, and into the respective output passageways 63 and 64. The gas then passes from passageways 63 and 64 into fluid connection passageway 50, outward through fluid transfer port 45, and into the lower socket 31. The gas is then captured by skirt 29 and fed upwards through passages 26 in the lower potting head 18.


The gas then enters the base of each module and gas bubbles flow upward along the membranes and within the screen 80 cleaning the surface of the membranes. As the gas moves past the membrane fibers, the friction between the gas bubbles and contaminants lodged on the membrane surfaces may cause release of the contaminants from the membrane surfaces. The introduction of the gas may also cause the membrane fibers to vibrate and further dislodge contaminants. The gas then passes outward through openings 22 in the upper potting sleeve 20 and into annular fluid transfer passageway 104. The gas then vents through fluid transfer port 105 and into the passageway 171 of the fluid transfer manifold 170. In accordance with some embodiments, a single manifold 54 may be used to selectively supply feed and/or gas bubbles to a membrane module.


A backwash or draindown of the modules may be performed after gas aeration and cleaning. During a backwash or draindown, liquid may be removed from the module by flowing liquid in the reverse direction to that of the feed supply mode. A backwash, such as a reverse fluid flow, for example, flow of filtrate from the lumens through to the outer surfaces of the membranes, may further remove contaminants from the membranes by forcing liquid from the inside of the membranes out through the membrane pores. A drain down of the modules may remove dislodged contaminant waste from the module.


In accordance with some embodiments, the membrane modules may be configured to withdraw filtrate from the bottom or both ends of the potted membranes. Referring to FIG. 14, a lower filtrate collection chamber 226 is formed by providing a collection cap 227 sealingly fitted to the lower end of the lower potting head 18. The membranes (not shown) potted in the lower potting head 18 have lumens opening into the lower filtrate collection chamber 226 at their ends. The lower filtrate collection chamber 226 is fluidly connected to the upper filtrate receiving chamber by a longitudinal conduit 228 extending therebetween. Conduit 228 may be located within the membrane bundle or may comprise any suitable fluid connection constructed and arranged to transfer filtrate between the collection chambers. To isolate the lower collection chamber from the feed side of the module, no through openings are provided in the lower potting head. Feed liquid or gas may flow from the lower header 32 into the lower socket 31, along annular fluid transfer passageway 9 through the fluid communication region 21, the openings 22 in the lower potting sleeve 19 and around the membranes of each module 11 and 12.


While exemplary embodiments of the disclosure have been disclosed, many modifications, additions, and deletions may be made therein without departing from the spirit and scope of the disclosure and its equivalents, as set forth in the following claims.


Those skilled in the art would readily appreciate that the various parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the apparatus and methods of the present disclosure are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present disclosure may further comprise a network of systems or be a component of a heat exchanger system or water treatment system. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosed systems and methods may be practiced otherwise than as specifically described. For example, flat sheet membranes may be prepared and used in the systems of the present disclosure. The present systems and methods are directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems, or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present disclosure.


Further, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. For example, the manifolds may be prepared by any fabrication technique, including injection molding or welding techniques and be fabricated from any desired material. In other instances, an existing facility may be modified to utilize or incorporate any one or more aspects of the invention. Thus, in some cases, the systems may involve connecting or configuring an existing facility to comprise a filtration system or components of a filtration system, for example the manifolds disclosed herein. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.


Use of ordinal terms such as “first,” “second,” “third,” and the like in the specification and claims to modify an element does not by itself connote any priority, precedence, or order of one element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element having a certain name from another element having a same name, but for use of the ordinal term, to distinguish the elements.

Claims
  • 1. A method of operating a filtration system comprising: passing a feed through a plurality of filtration modules each including a filtration cartridge, the plurality of filtration modules fluidly connected by a common feed transfer manifold and a common filtrate transfer manifold, the plurality of filtration modules each including respective removable end caps disposed in respective open-ended upper housings;isolating the filtration cartridge of a first filtration module of the plurality of filtration modules from the common filtrate manifold and taking the first filtration module out of operation by engaging a shut-off valve in the end cap of the first filtration module;said end cap including a portion that mates with a complimentary structure defined by an inner wall of the open-ended upper housing to removably engage with the open-ended upper housing, said end cap comprising a shut-off passageway extending from an upper portion of the end cap to a base portion of the end cap, the end cap defining a filtrate discharge passageway for filtrate to flow out of the first filtration module, the filtrate discharge passageway defined in part by a bottom surface of the upper portion of the end cap, a top surface of the base portion of the end cap, and an inner wall of the open-ended upper housing;disengaging the removable end cap from the open-ended upper housing of the first filtration module;accessing the filtration cartridge of the first filtration module by longitudinally displacing the filtration cartridge of the first filtration module through the open-ended upper housing of the first filtration module;re-engaging the removable end cap with the open-ended upper housing of the first filtration module assembly; andreturning the first filtration module assembly to operation.
  • 2. The method of claim 1, wherein disengaging the removable end cap from the open-ended upper housing of the first filtration module assembly includes rotating the removable end cap of the first filtration module relative to the open-ended upper housing of the first filtration module, disengaging screw threads formed on the removable end cap of the first filtration module from mating screw threads provided on an upper portion of an inner wall of the open-ended upper housing of the first filtration module.
  • 3. The method of claim 2 in which the first filtration module further comprises a filtrate collection chamber defined in part by a lower end of the base portion of the end cap and the upper end of the first filtration module.
  • 4. The method of claim 3 in which the filtrate discharge passageway has a concave wall disposed between the bottom surface of the upper portion of the end cap and the top surface of the base portion of the end cap.
Priority Claims (1)
Number Date Country Kind
2011904047 Sep 2011 AU national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the benefit under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/428,226, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Feb. 9, 2017, which is a divisional of and claims the benefit under 35 U.S.C. § 120 to co-pending U.S. patent application Ser. No. 14/347,258, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Mar. 26, 2014, issued as U.S. Pat. No. 9,604,166 on Mar. 28, 2017, which is a national stage application under 35 U.S.C. § 271 of International Application no. PCT/US2012/055715, titled IMPROVED MANIFOLD ARRANGEMENT, filed on Sep. 17, 2012, each of which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (583)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
403507 Bode May 1889 A
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2517626 Berg Aug 1950 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3246761 Bryan et al. Apr 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3563860 Henderyckx Feb 1971 A
3591010 Pall et al. Jul 1971 A
3592450 Rippon Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3628775 McConnell et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3912624 Jennings Oct 1975 A
3937015 Akado et al. Feb 1976 A
3955998 Clampitt et al. May 1976 A
3962095 Luppi Jun 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4016078 Clark Apr 1977 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4169873 Lipert Oct 1979 A
4183890 Bollinger Jan 1980 A
4187263 Lipert Feb 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4371427 Holler et al. Feb 1983 A
4384474 Kowalski May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4545862 Gore et al. Oct 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702830 Makino et al. Oct 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4752421 Makino Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4769140 van Dijk et al. Sep 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4812235 Seleman et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4828696 Makino et al. May 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4888115 Marinaccio et al. Dec 1989 A
4889620 Schmit et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4908114 Ayers Mar 1990 A
4911838 Tanaka Mar 1990 A
4919815 Copa et al. Apr 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4980066 Slegers Dec 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075044 Augem Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5080770 Culkin Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5102550 Pizzino et al. Apr 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5156738 Maxson Oct 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5180407 DeMarco Jan 1993 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5244579 Horner et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531900 Raghavan et al. Jul 1996 A
5552047 Oshida et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5647988 Kawanishi et al. Jul 1997 A
5651393 Danowski Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
5786528 Dileo et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5891334 Gundrum et al. Apr 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6036030 Stone et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6162020 Kondo Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6217770 Haney et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6224767 Fujiwara et al. May 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790347 Jeong et al. Sep 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6840251 Gill et al. Jan 2005 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863816 Austin et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899138 Lundman May 2005 B2
6936085 DeMarco Aug 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7279215 Hester et al. Oct 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7378024 Bartels et al. May 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7507274 Tonkovich et al. Mar 2009 B2
7510655 Barnes Mar 2009 B2
7540957 Kurth et al. Jun 2009 B1
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7931463 Cox et al. Apr 2011 B2
7938966 Johnson May 2011 B2
20010052494 Cote et al. Dec 2001 A1
20020027111 Ando et al. Mar 2002 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030062301 Merrie et al. Apr 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030075504 Zha et al. Apr 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030196947 Gundrum et al. Oct 2003 A1
20030196955 Hughes Oct 2003 A1
20030226797 Phelps Dec 2003 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040188339 Murkute et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050000885 Stockbower Jan 2005 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050053878 Bruun et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194305 Vido et al. Sep 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060021929 Mannheim et al. Feb 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007207 Mahendran et al. Jan 2007 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070095741 Berends May 2007 A1
20070102339 Cote et al. May 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20080093297 Gock et al. Apr 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080210623 McMahon et al. Sep 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090194477 Hashimoto Aug 2009 A1
20100000941 Muller Jan 2010 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110049047 Cumin et al. Mar 2011 A1
20110049048 Benner et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110114557 Johnson et al. May 2011 A2
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20120074053 Collignon et al. Mar 2012 A1
20120091602 Cumin et al. Apr 2012 A1
20120285885 James et al. Nov 2012 A1
20130037467 Biltoft et al. Feb 2013 A1
20130056426 Barnes Mar 2013 A1
Foreign Referenced Citations (540)
Number Date Country
3440084 Apr 1985 AU
3440084 Apr 1985 AU
7706687 Feb 1988 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
762091 Jun 2003 AU
2531764 Mar 2005 CA
2531764 Mar 2005 CA
1050770 Apr 1991 CN
1050770 Jan 1995 CN
2204898 Aug 1995 CN
2236049 Sep 1996 CN
1468140 Jan 2004 CN
1468140 Jan 2004 CN
1735452 Feb 2006 CN
3904544 Aug 1990 DE
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
19503060 Aug 1996 DE
29804927 Jun 1998 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
29906389 Jun 1999 DE
10045227 Feb 2002 DE
10045227 Feb 2002 DE
10209170 Aug 2003 DE
10209170 Aug 2003 DE
202004012693 Oct 2004 DE
202004012693 Oct 2004 DE
0012557 Jun 1980 EP
0090383 Oct 1983 EP
126714 Nov 1984 EP
126714 Nov 1984 EP
194735 Sep 1986 EP
194735 Sep 1986 EP
280052 Aug 1988 EP
280052 Aug 1988 EP
327025 Aug 1989 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
344633 Dec 1989 EP
407900 Jan 1991 EP
407900 Jan 1991 EP
430082 Jun 1991 EP
0464321 Jan 1992 EP
0464321 Jan 1992 EP
492446 Jul 1992 EP
492942 Jul 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
627255 Dec 1994 EP
627255 Dec 1994 EP
395133 Feb 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
518250 Sep 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
0937494 Aug 1999 EP
0937494 Aug 1999 EP
1034835 Sep 2000 EP
1034835 Sep 2000 EP
1156015 Nov 2001 EP
1156015 Nov 2001 EP
1236503 Sep 2002 EP
1350555 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1466658 Oct 2004 EP
1466658 Oct 2004 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53-5077 Jan 1978 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58088007 May 1983 JP
60019002 Jan 1985 JP
60206412 Oct 1985 JP
60260628 Dec 1985 JP
61097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62004408 Jan 1987 JP
62068828 Mar 1987 JP
62114609 May 1987 JP
62140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62179540 Aug 1987 JP
62237908 Oct 1987 JP
62250908 Oct 1987 JP
62187606 Nov 1987 JP
62262710 Nov 1987 JP
63-93307 Apr 1988 JP
63097634 Apr 1988 JP
63099246 Apr 1988 JP
63143905 Jun 1988 JP
63-1602 Jul 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
S63-38884 Oct 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03-086529 Apr 1991 JP
03110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
04250898 Sep 1992 JP
04256424 Sep 1992 JP
04265128 Sep 1992 JP
04293527 Oct 1992 JP
04310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05-4030 Jan 1993 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05137977 Jun 1993 JP
05157654 Jun 1993 JP
05161831 Jun 1993 JP
05184884 Jul 1993 JP
05279447 Oct 1993 JP
05285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
06170364 Jun 1994 JP
06190250 Jul 1994 JP
06218237 Aug 1994 JP
06238273 Aug 1994 JP
06-292820 Oct 1994 JP
06277469 Oct 1994 JP
06285496 Oct 1994 JP
06343837 Dec 1994 JP
07000770 Jan 1995 JP
07024272 Jan 1995 JP
07047247 Feb 1995 JP
07068139 Mar 1995 JP
07136470 May 1995 JP
07136471 May 1995 JP
07155564 Jun 1995 JP
07155758 Jun 1995 JP
7-39921 Jul 1995 JP
07178323 Jul 1995 JP
07185268 Jul 1995 JP
07185270 Jul 1995 JP
07185271 Jul 1995 JP
07185272 Jul 1995 JP
07204635 Aug 1995 JP
07236819 Sep 1995 JP
07251043 Oct 1995 JP
07256253 Oct 1995 JP
07275665 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08010585 Jan 1996 JP
8039089 Feb 1996 JP
08197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09038648 Feb 1997 JP
09072993 Mar 1997 JP
09075689 Mar 1997 JP
09099227 Apr 1997 JP
09103655 Apr 1997 JP
09103661 Apr 1997 JP
9117647 May 1997 JP
9138298 May 1997 JP
09141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09220569 Aug 1997 JP
09271641 Oct 1997 JP
09313902 Dec 1997 JP
09324067 Dec 1997 JP
10015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10066972 Mar 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10249171 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028339 Feb 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11076769 Mar 1999 JP
11076770 Mar 1999 JP
11090189 Apr 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11165200 Jun 1999 JP
11179171 Jul 1999 JP
11300177 Nov 1999 JP
11302438 Nov 1999 JP
11309351 Nov 1999 JP
11319501 Nov 1999 JP
11319507 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
200051670 Feb 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000093758 Apr 2000 JP
2000157845 Jun 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001-510396 Jul 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001212587 Aug 2001 JP
2001232160 Aug 2001 JP
2001-269546 Oct 2001 JP
2002011472 Jan 2002 JP
2002113333 Apr 2002 JP
2002143849 May 2002 JP
2002177746 Jun 2002 JP
3302992 Jul 2002 JP
2002525197 Aug 2002 JP
2002527229 Aug 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004008981 Jan 2004 JP
2004073950 Mar 2004 JP
2004-230287 Aug 2004 JP
2004216263 Aug 2004 JP
2004230280 Aug 2004 JP
2004249168 Sep 2004 JP
2004322100 Nov 2004 JP
2004-536710 Dec 2004 JP
2004337730 Dec 2004 JP
2005-502467 Jan 2005 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006116495 May 2006 JP
4833353 Dec 2011 JP
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
20030066271 Aug 2003 KR
20030097167 Dec 2003 KR
2005-063478 Jun 2005 KR
1006390 Dec 1998 NL
1020491 Oct 2003 NL
1021197 Oct 2003 NL
20053769 Feb 2006 NO
537874 Feb 2007 NZ
216773 Dec 1993 TW
347343 Dec 1998 TW
1985001449 Apr 1985 WO
1986005116 Sep 1986 WO
1986005705 Oct 1986 WO
8800494 Jan 1988 WO
8800494 Jan 1988 WO
8801529 Mar 1988 WO
8801529 Mar 1988 WO
88001895 Mar 1988 WO
88001895 Mar 1988 WO
8806200 Aug 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
9000434 Jan 1990 WO
9104783 Apr 1991 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
9116124 Oct 1991 WO
9302779 Feb 1993 WO
9302779 Feb 1993 WO
1993002779 Feb 1993 WO
9315827 Aug 1993 WO
9315827 Aug 1993 WO
9323152 Nov 1993 WO
9323152 Nov 1993 WO
9411094 May 1994 WO
9411094 May 1994 WO
9511736 May 1995 WO
9511736 May 1995 WO
9534424 Dec 1995 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
9628236 Sep 1996 WO
199629142 Sep 1996 WO
9641676 Dec 1996 WO
9641676 Dec 1996 WO
WO 9641676 Dec 1996 WO
9706880 Feb 1997 WO
9706880 Feb 1997 WO
9710046 Mar 1997 WO
9710046 Mar 1997 WO
9822204 May 1998 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
9901207 Jan 1999 WO
9906326 Feb 1999 WO
9906326 Feb 1999 WO
199908773 Feb 1999 WO
99-55448 Nov 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
9959707 Nov 1999 WO
0021890 Apr 2000 WO
200018498 Apr 2000 WO
0030740 Jun 2000 WO
200030742 Jun 2000 WO
200100307 Jan 2001 WO
200100307 Jan 2001 WO
200105715 Jan 2001 WO
200105715 Jan 2001 WO
0108790 Feb 2001 WO
200119414 Mar 2001 WO
200119414 Mar 2001 WO
200132299 May 2001 WO
200132299 May 2001 WO
200136075 May 2001 WO
200136075 May 2001 WO
0143856 Jun 2001 WO
200145829 Jun 2001 WO
200145829 Jun 2001 WO
0230550 Apr 2002 WO
200226363 Apr 2002 WO
200226363 Apr 2002 WO
0238256 May 2002 WO
2002040140 May 2002 WO
2002040140 May 2002 WO
2002047800 Jun 2002 WO
2002047800 Jun 2002 WO
2003000389 Jan 2003 WO
2003000389 Jan 2003 WO
03013706 Feb 2003 WO
2003013706 Feb 2003 WO
2003013706 Feb 2003 WO
2003024575 Mar 2003 WO
2003024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
2003095078 Nov 2003 WO
2003095078 Nov 2003 WO
04024304 Mar 2004 WO
2004018084 Mar 2004 WO
2004018084 Mar 2004 WO
2004033078 Apr 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005021140 Mar 2005 WO
2005023997 Mar 2005 WO
2005023997 Mar 2005 WO
2005028085 Mar 2005 WO
2005028085 Mar 2005 WO
2005028086 Mar 2005 WO
2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005046849 May 2005 WO
2005070524 Aug 2005 WO
2005070524 Aug 2005 WO
2005077499 Aug 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2005107929 Nov 2005 WO
2006017911 Feb 2006 WO
2006017911 Feb 2006 WO
2006026814 Mar 2006 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006047814 May 2006 WO
2006066319 Jun 2006 WO
2006066319 Jun 2006 WO
2006066350 Jun 2006 WO
2006066350 Jun 2006 WO
2006126833 Nov 2006 WO
2006126833 Nov 2006 WO
2007022576 Mar 2007 WO
2007022576 Mar 2007 WO
2007053528 May 2007 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007065956 Jun 2007 WO
2007073080 Jun 2007 WO
2007073080 Jun 2007 WO
2007135087 Nov 2007 WO
2007135087 Nov 2007 WO
2008025077 Mar 2008 WO
2008025077 Mar 2008 WO
2008034570 Mar 2008 WO
2008034570 Mar 2008 WO
2008071516 Jun 2008 WO
2008071516 Jun 2008 WO
2008141080 Nov 2008 WO
2008141080 Nov 2008 WO
2008153818 Dec 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
2009030405 Mar 2009 WO
2011049441 Apr 2011 WO
2011049441 Apr 2011 WO
Non-Patent Literature Citations (36)
Entry
Almulla et al., “Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems,” Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon™ THV and Dyneon™ HTE Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Australian Patent Examination Report No. 1 dated Jul. 2, 2014 for Application No. 2013200833.
Cote et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis,” Desalination, 139 (2001), pp. 229-236.
Cote et al., “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater,” Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442.
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364.
Crawford et al., American Water Works Association Membrane Technology Conference, “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications,” (2003).
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91.
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Delgrange-Vincent et al., “Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production,” Desalination 131 (2000) pp. 353-362.
Dow Chemical Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
EPA, Membrane Filtration Guidance Manual, Nov. 2005.
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication.
Jones, Craig, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999, Chapters 2 and 5.
Judd, “The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment,” (2006), pp. 174-178.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system,” Water Research, 37(5) Mar. 2003, pp. 1192-1197, Elsevier, Amsterdam, NL.
Lloyd, D.R. et al. “Microporous Membrane Formation via Thermally Induced Phase Separation/Solid-Liquid Phase Separation,” Journal of Membrane Science, 52(3) (1990), pp. 239-261, Elsevier Scientific Publishing Company, Amsterdam, NL.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic,” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, to Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Miller et al., “Side Stream Air Lift MBR Development and Successful Application of a New Generation of MBR,” Pollution Solutions Brochure, NORIT, The Netherlands, Apr. 2008.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via thermally induced phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. 1, Scientific Publishing Company, Amsterdam, NL.
Rosenberger et al., “Filterability of activated sludge in membrane bioreactors,” Desalination, 151 (2002), pp. 195-200.
Schematic of 4″ Geyser Pump, Geyser Pump Tech. Co., Nov. 13, 2005.
Supplementary European Search Report dated May 21, 2015 for Application No. 12835621.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
White et al., “Optimisation of intermittently operated microfiltration processes,” The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Yamamoto et al., “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank,” Water Science Technology, 21 (1989), pp. 43-54.
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production” Water Research, 37 (2003), pp. 1921-1931, Elsevier, Amsterdam, NL.
ZENON, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Related Publications (1)
Number Date Country
20190374888 A1 Dec 2019 US
Divisions (1)
Number Date Country
Parent 14347258 US
Child 15428226 US
Continuations (1)
Number Date Country
Parent 15428226 Feb 2017 US
Child 16551305 US